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Signals for new, non-supersymmetric physics at hadron colliders are
reviewed. We focus on extended gauge sectors and new matter parti-

cles.

OVERVIEW

The Standard Model (SM) is in complete agreement with present experi-
mental data. Nevertheless, it is believed to leave many questions unanswered,
and this belief has resulted in numerous attempts to �nd a more fundamen-
tal underlying theory. One key ingredient in the extrapolation of the SM to
higher energies is to identify the complete particle spectrum at the electroweak
scale. Two popular examples of theories which populate the TeV scale with
a plethora of new particles are supersymmetry and technicolor. This has re-
sulted in extensive searches for super- and techni-particles, which have been
reported elsewhere at this meeting (1). In this talk, I will identify other pos-
sible manifestations of new physics, and discuss their implications on hadron
collider physics.

EXTENDED GAUGE SECTORS

The phenomenology of models with extended gauge symmetries is particu-
larly rich with the existence of new gauge bosons being the hallmark signature
of such theories (2). However, additional gauge bosons are not the sole man-
ifestation of an extended gauge group, as these theories also contain exotic
fermions, which are required for anomaly cancellation, as well as an enlarged
Higgs sector to facilitate the extended symmetry breaking. In addition, Su-
persymmetry may also be present, particularly in Grand Uni�ed Theories
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(GUTS), in order to solve the hierarchy problem and to ensure coupling con-
stant uni�cation.
Perhaps the most appealing set of enlarged electroweak models are those

which are based on SUSY-GUTS, examples being the unifying groups SO(10)
and E6. In E6 e�ective rank-5 models (3), additional neutral gauge bosons
arise from the symmetry breaking chain

E6! SO(10) � U (1) ! SU (5) � U (1)� � U (1) 
! SM � U (1)� ; (1)

where U (1)� is a linear combination of U (1)�; and remains unbroken at low
energies (<� 1 TeV). The parameter � governs the fermion couplings of the
Z0 boson and lies in the range �90� � � � 90�. Special models of this type
include � = 0� (Model  ), � = �90� (Model �) and � = arcsin(

p
3=8) (Model

�). We note that in the GUTS Renormalization Group Evolution of this
model, the extra U (1) enters at the 2-loop level and that there are additional
low mass thresholds from the new particle content. E6 and SO(10) GUTS
can also lead to the symmetry chain

SO(10)! SU (3)c � SU (2)L � SU (2)R � U (1)B�L ; (2)

which yields right-handed charged currents (as well as an additional neutral
current) and is the now classic (4) left-right symmetric model (LRM). In
this model � � gR=gL represents the ratio of the right- to left-handed current
coupling strengths, and lies in the range (4) 0:55 <� � <� 2:0. It has been shown
(5) that a light right-handed mass scale (� 1 TeV) is consistent with coupling
constant uni�cation in Supersymmetric SO(10) models. We note the existence
of a right-handed Cabbibo-Kobayashi-Maskawa (CKM) matrix in this model,
VR, which need not be the same as the corresponding left-handed mixing
matrix. Another extended model based on the above `low-energy' gauge group
is the alternative left-right symmetric model (ALMR) (6), which is embedded
in E6 GUTS and switches the quantum number assignments between some of
the ordinary and exotic fermions contained in the 27 representation of E6. In
this case, � = 1, and the right-handed W carries lepton number, has negative
R-parity, and is produced via the parton-level reaction gu! WR+leptoquark,
thus avoiding the usual mass constraints on right-handed W 's.
There is also a large number of extended electroweak models which are not

based on a GUTS scenario. The principal case of this type is that of the
sequential SM (SSM), in which the additional Z boson is an exact replica of
the SM Z, only heavier. This model is not gauge invariant, but it provides
a useful benchmark in judging the search capabilities of various experiments.
A list of other models in this category can be found in Refs. (2,7).
In all of the above extended electroweak models, the Z � Z0 mass matrix

takes the form

M2 =

�
M2
Z


M2
Z


M2
Z

M2
Z0

�
; (3)
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TABLE 1. Mass bounds (in GeV) on new neutral gauge bosons from a �t to
precision electroweak data performed in Ref. 8.

Model Unconstrained Fit Constrained Fit

� 330 920

 170 170

� 220 610
LRM 390 1360

SSM 960

where 
 is determined in each model once the Higgs sector is speci�ed. The
physical eigenstates are then

Z1 = Z0 sin�+ Z cos � ;

Z2 = Z0 cos�� Z sin� ; (4)

where Z1 is presently being probed at LEP, and tan 2� = 2
M2
Z
=(M2

Z
�M2

Z0 ),
with the constraint j�j <� 0:01 from LEP data (8). Restrictions on extended
gauge sectors can be obtained from precision measurements by limiting the Z2

contributions to processes such as �-decay, deep-inelastic neutrino scattering,
atomic parity violation, as well as from the properties of the Z1 boson, and
the mass of the W boson. These indirect bounds are summarized (2) in Table
1, from the results of a global electroweak �t performed in Ref. (9). The limits
are presented for (i) an unconstrained �t with no assumptions on the Higgs
sector, and (ii) a constrained �t where 
, and hence � are speci�ed for a given
Higgs sector. The shift in theW mass due to Z�Z0 mixing is presented in Fig.
1 from Ref. (10), where we see that a measurement of �MW � 100 MeV would
provide stringent bounds on j�j. The dashed line in this �gure represents the
constraint �MW = MZ��

p
1� xw=2 with � < 1:5 for all models discussed

here.
New gauge bosons can be produced directly at hadron colliders via (i) the

Drell-Yan mechanism, p(�p) ! Z0 ! `+`� and p(�p) ! W 0� ! `� 6 pT , for
which the new gauge boson must couple to both quarks and leptons, and (ii)
the Z0;W 0 ! 2-jets channel. The latter mechanism requires the observation
of a peak in the inclusive dijet invariant mass spectrum and is discussed at
this meeting by Harris (11). The 95% C.L. Z0 search reach in the Drell-Yan
channel at the Tevatron is displayed in Fig. 2 (a) for various models as a
function of integrated luminosity, (b) for the rank-5 E6 model as a function
of �, and (c) for the LRM as a function of �. These results are for electron
data samples alone; the inclusion of muon �nal states would increase the
mass reach by ' 35 � 40 GeV. In all cases we assume that the Z0 decays
only to SM fermions, Z � Z0 mixing is neglected, and the CTEQ2M parton
densities are used. We see that Z0 masses up to 1 TeV will be probed with the
main injector luminosity upgrade. The new CDF search limit reported at this
meeting (12) of MZ0 > 650 GeV for the SSM with L = 70pb�1 in the electron
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FIG. 1. W mass shift due to Z � Z 0 mixing. From top to bottom the curves
correspond to Z 0 masses of 2.0, 1.75, 1.5, 1.25, 1.0, 0.75 TeV.

+ muon channel agrees well with our expectations. The Z0 search capability
of a

p
s = 14 TeV LHC is presented in Fig. 2d as a function of integrated

luminosity, with the same set of assumptions as listed above. These search
limits would degrade if exotic decay channels were open to the Z0 boson. For
example, the LHC search reach is reduced by ' 300 � 400 GeV if the Z0

leptonic branching fraction decreased by a factor of 2.
If a new neutral gauge boson is discovered, a much more interesting and dif-

�cult question arises, e.g., from which extended electroweak gauge model does
the new Z0 originate? Numerous studies of this issue have been performed
and are summarized in Ref. (2). Several processes have been proposed as a
means to determine the couplings of the Z0 to the SM quarks and leptons,
including the (i) leptonic forward-backward asymmetry, (ii) � polarization
asymmetry, (iii) 3-body Z0 decays Z0 ! `�W; ���Z, (iv) associated produc-
tion p(�p) ! Z0
; g; Z;W , (v) rapidity ratios, and (vi) examining the 2-jet
decay of the Z0. All of these techniques (except for the forward-backward
asymmetry) su�er from either (or both) a large background, and an event
rate which dies o� at MZ0 >� 1�2 TeV at the LHC. Naive parton-level studies
have been carried out (2) and show that the Z0 couplings can be determined
at the � 5� 20% level with 100fb�1 at the LHC for MZ0 = 1 TeV.
The corresponding search for an additional charged gauge boson via the

Drell-Yan mechanism relies on the assumptions that (i) the W 0 production
vertex has SM coupling strength, and (ii) the W 0 decays into a light and
stable neutrino which manifests itself in the detector as missing ET . Here we
explore the rami�cations of each assumption in the context of the LRM. In
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FIG. 2. Z 0 search reach at the Tevatron (a) as a function of integrated luminos-
ity for model  (solid), the LRM (dashed), the SSM (dotted), and the ALRM
(dash-dotted); (b) for the rank-5 E6 model as a function of the parameter �, for the
integrated luminosities of Run Ia, 100, 250, 500, 1000 pb�1, from bottom to top; (c)
for the LRM as a function of the ratio of right- to left-handed coupling strengths
with the same values of integrated luminosity as in (b). (d) Same as in (a), except
for the LHC.
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the LRM, the �rst supposition corresponds to taking � = 1 and to setting
the right-handed CKM matrix equal to its left-handed counterpart. The WR

search reach as a function of � (taking VR = VL) is presented in Figs. 3(a-
b) for various integrated luminosities at the Tevatron and LHC, respectively.
Again, we see that masses of order 1 TeV will be explored at the Tevatron
with the main injector, and that the LHC can search for masses up to the 4�5
TeV range, with a decrease of � 500 GeV if the leptonic branching fraction is
reduced by a factor of 2. A more interesting variation in the WR search reach
results if the assumption VR = VL is relaxed. A Monte Carlo study performed
by Rizzo (13) shows that a signi�cant search reach degradation can occur at
the Tevatron in this case. Fig. 3(c) shows the percentage of VR parameter
space which allows a WR below a given mass for Run Ia. We see that for
50(10)% of the parameter space, the Run Ia search limit is reduced toMWR

>�
550(400) GeV (the bound assuming (i) above is 652 GeV (12)). This reduction
is the result of modifying the weight of the various parton densities which enter
the production cross section. The corresponding spread in the cross section
� leptonic branching fraction at the LHC is displayed in Fig. 3(d). At the
LHC, surrendering the hypothesis VR = VL is not as costly since the Drell-Yan
WR production occurs through sea � valence parton densities in pp collisions,
whereas the process is nominally valence � valence at the Tevatron if VRud '
1. The WR search becomes more problematic if assumption (ii) above is
surrendered and the right-handed neutrino is massive. If the WR decay into
the right-handed neutrino is kinematically allowed, one then has events of the
type W+

R
! `+�R ! `+`� + jj, where either lepton charge sign is equally

likely if �R is a Majorana fermion. Searches of this type were reported at this
meeting by D0 (14) with the general result MWR

>� 520 GeV for some regions
of the parameter space. The worst case scenario results when m�R

> MWR
so

that the WR has only the hadronic (or exotic) decay channels open. In this
case, one must search for bumps in the dijet distributions (11). Additional
help may be gained by making use of the WR � ZR mass relationship in the
LRM, i.e., if a ZR is found then this relationship tells us something about
where to look for the right-handed W in the dijet channel. If instead, only
a limit on the ZR mass is obtained, then this mass relationship can be used
and yields (10) a relatively weak bound on the WR.

NEW MATTER PARTICLES

Excluding supersymmetric particles, new matter particles may be classi�ed
by three categories (15): exotic fermions, excited fermions, and difermions.
Exotic fermions are predicted by many gauge extensions of the SM and in-
clude sequential (fourth generation) fermions, vector fermions (e.g., those
present in E6 GUTS), mirror fermions, and singlet fermions. If a new
gauge boson associated with an extended gauge group is found to be rela-
tively light, then unitarity arguments force (16) the exotic fermions in the
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FIG. 3. WR search reach as a function of the ratio of right- to left-handed coupling
strengths for (a) the Tevatron with the same values of integrated luminosity as in Fig.
2(b); (b) the LHC with 100 fb�1, with the top (bottom) 2 curves corresponding to
sqrts = 14(10) TeV. In each set of curves, the bottom curve represents the reduction
in search capability when the leptonic branching fraction is decreased by a factor
of 2. (c) Percentage of the VR parameter space allowing the WR mass to be below
a given value from Run Ia. (d) Maximum and minimum cross sections for WR

production at the LHC as allowed by the VR parameter space (taking � = 1).
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theory to also be light. All color triplet exotic fermions are copiously pro-
duced at hadron colliders via standard QCD processes, with signatures de-
pending on the decay kinematics of the particular model. For example, one
`gold-plated' signal (17) for the iso-scalar quark present in E6 theories is
p(�p) ! Q �Q ! (qZ)(�qZ) ! (j`+`�)(j`+`�), which occurs at large rates
at the LHC for mQ

<� 1 TeV. Indirect signals for very heavy quarks may also
be potentially observable at the LHC (18) from the triangle and box diagram
contributions to gg ! ZZ. Heavy lepton production can also be important
in hadronic collisions, and proceeds through the Drell-Yan mechanism, gluon
fusion (via the triangle diagram), and photon-photon fusion. The resulting
cross sections (15) are � 102 fb at the LHC for heavy lepton masses in the
few hundred GeV range.
The second category of new non-SUSY matter particles, i.e., excited

fermions, is a characteristic signature for substructure in the fermionic sector.
Compositeness is a potential alternative to the SM description of electroweak
symmetry breaking and it is conceivable that the �rst excitations will not
make their presence felt until the Fermi scale, or above, is explored. Excited
quarks can be produced in hadron collisions via the parton level processes
g + q ! q� and qq ! qq�; q�q�, with the characteristic signatures of dijet
mass bumps, or jet + gauge boson or jet + lepton pair combinations. The
existence of excited leptons can also be probed via contact interactions, where
the cross sections could be large with distinctive leptonic �nal states. More
details on exotic fermion production at hadron colliders can be found in, e.g.,
Ref. (11,15).
Difermions can be either scalar or vector particles with unusual baryon

or lepton number assignments, such as diquarks, dileptons, and leptoquarks.
Diquarks are, of course, copiously produced via s-channel resonance at hadron
colliders and yield bumps in the dijet mass spectrum (3,11). Leptoquarks are
naturally present in theories which place quarks and leptons on an equal
footing, such as SU(5), SO(10), and E6 GUTS, technicolor, and composite
models. They couple to a lepton-quark pair via a Yukawa type coupling of
unknown strength; this is often parameterized as �2=4� = F�em. They also
have the usual gauge couplings to the photon, the Z andW bosons, and gluons
(for which an anomalous magnetic moment can exist in the case of vector
leptoquarks). A systematic classi�cation of the possible leptoquark quantum
number assignments can be found in Buchm�uller et al. (19), which yields
10 types of leptoquarks, 5 of which are scalar, and 5 being vector particles.
Leptoquarks may be pair produced in hadronic collisions via gg; qq ! LQ LQ,
similar to squark pair production. These processes are essentially independent
of the unknown Yukawa coupling �, and yield the signatures 2jets +`+`�,
+`� 6 pT , or + 6 pT . The total production cross sections at the Tevatron for
scalar (20) and vector (21) leptoquark pair production are given in Figs. 4(a)
as a function of the leptoquark mass, and in (b) as a function of the possible
anomalous magnetic moment � in the vector case. The on-going searches
for the pair production of these particles are summarized by Park (12) and
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Lueking (22) at this meeting. Leptoquarks may also be singly produced (20)
through the mechanism gq ! LQ + `; LQ + �, with the total cross sections
being presented in Figs. 4(c-d) for scalar and vector leptoquarks, respectively
(taking F = 1). The possible signatures for single production, jet +`+`�,
+`� 6pT , or + 6pT , are distinctive. This process has the disadvantage in that
it is directly proportional to the unknown value of �2, but it does have a large
amount of available phase space, and hence yields larger rates than that from
pair production for the parameter values F >� 0:1. The search reach for this
process, albeit dependent on �, could extend the bound obtained from pair
production, and could be competitive with that of HERA. Another single
production process (23) is given by photon bremsstrahlung from an initial
quark and yields manageable event rates at the LHC. Indirect signatures
for leptoquark exchange (24) could a�ect the Drell-Yan distribution q�q !
e+e�. This t-channel leptoquark exchange goes as �4, and hence produces an
observable e�ect only for very large values of the parameter F .

CONCLUSIONS

In summary, we see that signatures for new physics at hadron colliders are
many and diverse, and we urge our experimental colleagues to continue to
hunt for them.
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