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1. Introduction

There is a rapidly growing body of observations relating to the study of solar-stellar

phenomena which will lead to a better understanding of the internal dynamics of the pre-main

sequence and early post-main sequence evolutionary phases of stars like the Sun. But before this

wealth of data can be fully understood, the role of the convection zone structure, its depth and

overturn time scale, and its interaction with rotation need to be clari�ed. This is of importance

for understanding not only the mechanism of angular momentum transfer in stars, but also the

evolution of rotating stars, both in the pre main-sequence and post main-sequence phases. The

interaction of rotation with convection is now widely believed to be responsible for the generation

of stellar dynamos and the observed stellar magnetic activity and activity cycles.

Durney and Latour (1978) (see also Durney, Mihalas and Robinson 1981, and Durney and

Robinson 1982) made an important step forward in relating the principles of mean-�eld dynamo

theory to the observations. They showed that if a stellar dynamo is responsible for the observed

stellar activity, there should be a relation between magnetic activity and the characteristics of

rotating stellar convection zones. With the help of dimensional arguments, they pointed out

the signi�cance of the Rossby number (proportional to the ratio of the rotation period to the

convective turnover time) in the dynamo mechanism. Since in the dynamo model, the dynamo

action is believed to take place at the base of the convection zone, anchored in the radiative

layers just below the convective interface, the convective turnover time of the deepest part of the

convection zone is the most relevant in the evaluation of the Rossby number. Soon afterwards, the

availability of precise rotation periods for magnetically active stars (Baliunas et al. 1983) made it

possible to test this hypothesis in a semi-empirical way by combining convective turnover times

derived from model convection zones, such as the models of Gilman (1980), with the observed

rotation periods (Noyes 1983). This was done by a number of researchers (Mangeney and Praderie

1984; Hartmann et al. 1984; Noyes et al. 1984) for stars near the main sequence and for pre-main

sequence stars (Simon et al. 1985). Since then a large number of studies have been performed

correlating di�erent types of magnetic activity indices to such semi-empirically derived Rossby

numbers and to other parameters such as the stellar rotation rate (Basri 1987; Shrijver and Rutten

1987; Simon and Fekel 1987; Dobson and Radick 1989).

The pattern of convective velocities as a function of e�ective temperature and age derived

from stellar models, which serve as input in Rossby number calculations, depend sensitively on the

particulars of the stellar interior models, either input parameters such as chemical composition, or

mass, or physics input such as opacities or the equation of state used. In addition, because of the

well-known non-linearity of the equation of stellar structure, it is unadvisable to construct stellar

envelope models by simple inward integration without applying the interior boundary conditions,

as the early calculations frequently did; fully consistent interior models are needed. An important

step in relating activity observations to self consistent stellar evolutionary tracks and the predicted

evolutionary changes in convective overturn times was made by Gilliland (1985, 1986). Other

calculations of Rossby numbers, based on complete main sequence stellar models, have also been
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published by Rucinski and VandenBerg (1986, 1990). Since then, rapid progress has been made in

our knowledge of stellar opacities and equation of state (see e.g. Rogers and Iglesias 1994), and

much improved models of the Sun and Sun-like stars can be constructed (Guenther et al 1992;

Chaboyer et al. 1995; Guenther, Kim and Demarque 1995).

The theory of rotating stellar evolution has also advanced. The work of Endal and So�a (1978,

1981), which included the spin-down due to a stellar wind, and introduced into stellar evolution

the e�ects of various rotationally induced mixing processes acting on di�erent time scales, thus

relating angular moment transfer to internal mixing, opened up new ways of confronting theory

and observation (Pinsonneault et al. 1989, 1990; Chaboyer et al. 1995).

The purpose of this paper is to provide estimates of turnover time scales for Sun-like stars

in the pre-main-sequence and early post main-sequence phases of evolution, based on up-to-date

physical input for the stellar models. In this �rst study, all models have solar abundances, which

are typical stars in the Galactic disk. Another new feature of these models is the inclusion of

rotation. Because the evolution of internal rotation has been included in the models, it is possible

to derive theoretically the Rossby number for each star along its evolutionary track based on the

theoretical estimates for both the convective turnover time and the rotation rate of the convection

zone. These internally self consistent models should make possible a new class of observational

tests of stellar theory which were impossible with semi-empirical models.

We describe convection by the mixing-length formalism in the usual way. While it is known

that the convective velocities near the stellar surface are not well described by the mixing-length

approximation (Kim et al. 1995a,b), the convective turnover time scales calculated here are

dominated by the conditions near the base of the convection zone, where the temperature gradient

is for all practical purposes adiabatic, and the mixing-length approximation is known to provide

an adequate description of convection, at least in an average sense (Chan and So�a 1989; Lydon

et al. 1992). For this reason, the Rossby number estimates should be little a�ected (subject to

a constant scale factor) by improvements in our understanding of convection. We emphasize,

however, that for many other purposes, such as describing the outer layers where radiation plays

a dominant role, the mixing length approximation is inadequate, and more re�ned convection

models that take into consideration the interplay between convection and radiation, are needed

(Kim et al. 1995a,b). This conclusion applies in particular for understanding the structure of the

transition superadiabatic layer at the top of the convection zone. It is also likely to apply for

understanding the behavior of magnetic �elds, the details of the generation of acoustic noise in

stellar chromospheres, and the driving of p-modes in Sun-like stars.

Section 2 describes the series of stellar models with masses ranging from 0:5M� to 1:2M�

which were evolved from the fully convective pre-main-sequence Hayashi phase to the sub-giant

phase. The calculation of the convective turnover time and of the Rossby number and their

evolution as a function of time are considered in Sections 3 and 4, respectively. Finally, we briey

discuss the results in section 5.
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2. Calculations

2.1. Stellar models

A series of stellar models with masses ranging from 0.5 to 1.2M� (in 0.1M� increments),

have been evolved from a fully convective pre-main sequence model to the sub-giant phase. The

OPAL opacities tables (Iglesias and Rogers 1991), constructed for the solar mixture of Anders and

Grevesse(1989) were used, together with the Kurucz (1991) low temperature opacities. The Kurucz

(1992) model atmospheres served as surface boundary conditions. The numerical tolerances and

input physics were identical for all evolutionary runs, and similar to those adopted by Chaboyer et

al. (1995). All models used the parameters derived for the standard solar model, where the initial

X , Z, and the mixing length ratio � are varied until a solar model at the solar age of 4.55Gyr

(Guenther 1989) has the observed solar values of luminosity, radius, and Z=X . In addition, the

solar surface rotational velocity and 7Li depletion were used to calibrate the rotation and di�usion

parameters of all evolutionary sequences, as described in sections 2.2 and 2.3 below. The solar

model in this calibration matches the solar radius and luminosity to within 0.01%, while the

surface Z=X matches the observed value to within 1.0%. The model also reproduced the observed

solar rotation rate and Li depletion to within 1.5%. Table 1 summarizes the characteristics of the

models and their input parameters.

Figure 1 shows the evolutionary tracks in the H-R diagram. For the internal rotation rates

considered here, rotation has a negligible e�ect on both the rate of evolution and the path of the

evolutionary track in the H-R diagram (Pinsonneault et al. 1989; Deliyannis et al. 1989).

2.2. Rotation

All models used in this paper have been constructed using a version of the Yale Rotating

Stellar Evolution Code (Prather 1976, Pinsonneault 1988). Recently, the YREC has been improved

in the microscopic di�usion and its interaction with rotational mixing (Chaboyer et al. 1995). The

calculation has been carried out using this improved version.

The evolutionary sequences were started from fully convective pre-main sequence models in

the Hayashi phase. At �rst, the whole star rotates as a rigid body, and spins up as it contracts.

The torque due to the stellar wind then takes over and spins the star down (see below), and in the

process of transferring out internal angular momentum, progressively depletes 7Li in the star. The

evolution of the internal angular momentum distribution follows the approach of Pinsonneault et

al (1989), which includes the e�ects of rotationally induced instabilities in the radiative layers.

This results in a state of di�erential rotation. The Sun seems to be overdepleted in 7Li compared

with other stars of its age and spectral class. Since the amount of mixing in a star increases as its

initial rotational velocity increases, it is likely that the Sun was initially a rapid rotator. Therefore,

even though observations show that the majority of T-Tauri stars have rotation velocities around
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10km=s, we have chosen an initial rotation velocity of 30km=s for the solar model. Observations

of T-Tauri stars also indicate that there is no large di�erence in surface rotation rates between

high and low mass stars over the mass range we study, i.e. 0:5 � 1:2M� (Bouvier 1991; Bouvier

et al. 1993), and for this reason, we have the applied the same rotation parameters to all masses.

Figure 2 shows the evolution of the rotation period of our theoretical models. It is important to

note that changing the initial rotation velocity a�ects the time-scale for early spin-down, but does

not change appreciably the �nal con�guration. This is due to the fact that our calibration requires

the solar model to rotate at the present rotation rate of the Sun (the adopted initial rotational

velocity a�ects primarily only the present 7Li abundance, which is not particularly relevant to the

convective turnover calculations of this paper). Note in Figure 2 that the rotation period depends

sensitively on mass for a given age.

When calculating the evolution of the Rossby number, the adopted wind law is the most

important input of our rotating models, as internal structural e�ects of rotation are minimal in

these models which rotate relatively slowly. A modi�ed version of Kawaler's parameterization

for the loss of angular momentum due to magnetic stellar wind (Kawaler 1988) has been used

(Chaboyer et al. 1995). It is given by:

dJ

dt
= fkKwR

2�NM�N=3 _M1�2N=3!1+4N=3 (! < !crit);

dJ

dt
= fkKwR

2�NM�N=3 _M1�2N=3!!
4N=3
crit (! � !crit);

where R is the radius in units of the solar radius (R�), M is the mass in units of the solar

mass (M�), !crit introduces a saturation level into the angular momentum loss law (set to

1:5� 10�5 s�1), Kw = 2:036� 1033
�
1:452� 109

�N
in cgs units, and _M is the mass-loss rate in unit

of 10�14M�yr
�1 (set to 2:0). Here, it is primarily the exponent N in the wind model (a measure

of the magnetic �eld geometry), which determines the rate of angular momentum loss with time.

We have adopted the value of 1.5 for N , which reduces to the empirical Skumanich (1972) law

near the main sequence i.e.,

vrot / ��:51;

where vrot is equatorial rotation velocity, and � is the age in Gyr. The constant factor in the wind

model, fk , determines the total amount of the angular momentum loss. We adjust fk for a given

N to give the solar surface rotation velocity at the solar age. We use the observed value at about

30 degrees from the equator, 1:86km=s, since this value is close to the mean value which from the

seismology data, the interior of the Sun appears to approach (Libbrecht and Morrow 1991)

For the sake of completeness, the transport of angular momentum and chemical elements have

also been taken into account in the models. Two types of rotation-induced mixing { the dynamical

shear instabilities and the Solberg-Hoiland instability { and three type of secular instabilities {

meridional circulation, the Goldreich-Schubert-Fricke instability, and the secular shear instability

{ were included in the calculations (Chaboyer et al. 1995, Pinsonneault et al. 1989).
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In this study, the uncertain e�ects of other secular instabilities are treated as free parameter,

and the di�usion coeÆcients are set to be the same as that of meridional circulation, fc. The

value of fc is �xed in the solar model by requiring the model lithium depletion to match the solar

value at the solar age. The depletion of Li is inferred by comparing the cosmic abundance with

the photospheric abundance. A comparison of the meteoric abundance with the photospheric

abundance shows the depletion to be a factor of 140+40
�30 (Anders and Grevesse 1989). We have

therefore set the solar 7Li depletion factor equal to 140.

2.3. Di�usion

The microscopic di�usion coeÆcients of Michaud and ProÆtt (1993) have been used. They

have the advantage of being valid not only for 4He and 1H , but also for 3He, 6Li, 7Li, and
9Be. Comparison with the di�usion coeÆcients of Thoul et al. (1994) indicates that the

Michaud-ProÆtt coeÆcients are good to within 15%. Finally we note that when di�usion is taken

into account, the surface Z=X is not a constant during a stellar evolution calculation. As 4He

di�use with respect to hydrogen with the relatively short time scale, the model structures are

a�ected. Measurements of the solar photosphere do not actually determine Z { they measure Z=X

(i.e. [Fe=H ]). The Anders and Grevesse (1989) photospheric mixture with meteoritic Fe gives

Z=X = 0:0267� 0:001. Thus, our model of the present Sun was constrained to match this number.

3. Global turnover time and Rossby number

The close connection between stellar rotation and its chromospheric emission can be described

in terms of general stellar dynamo models. In the mean-�eld dynamo theory, a dimensionless

parameter, the dynamo number, characterizes the model behavior. The dynamo number is

essentially proportional to the inverse square of the Rossby number, NR, which is the ratio of the

stellar rotation period to the local convective turnover time (Durney and Latour 1978; Noyes et

al 1984). Thus, in principle, one could draw a theoretical Rossby number vs. magnetic activity

diagram.

In practice, however, our knowledge on stellar convection is too limited to calculate `correct'

convective turnover times. The characteristic length scales as well as the velocities are not well

known. Even when one decides to resort to the mixing length approximation, there are still

uncertainties: the mixing length ratio � is assumed to be the same for all stars with di�erent

masses and/or at di�erent evolutionary stage, which is probably not be quite correct. In addition,

some assumption must be made as to where in the convection zone the dynamo process is

operating, since the convective overturn time is strongly depth dependent. For example, Gilman

(1980) set the characteristic convective overturn time equal to the convective overturn time

one scale height above the bottom of the convective zone. On the other hand, Gilliland (1986)
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determined the turnover time at a distance of half of the mixing length above the base of the

convection zone.

3.1. Global convective turnover time

To depict the characteristics of convection at each stellar evolution stage, two parameters

have been calculated; the `global' convective turnover time, and the Rossby number. For the

characteristic time scale of convective overturn, the `non-local' (or `global') convective turnover

time has been calculated at each time step. It is:

�c =
Z R�

Rb

dr

v

where Rb is the location of of the bottom of the surface convection zone, which is de�ned where

the r�rad = 0, R� is the total radius of the stellar model, and v is the local convective velocity.

Figure 3 shows the evolution with time of the convective turnover time. Note that in the pre-main

sequence phase, �c varies rapidly with time. Near the main sequence, �c remains nearly constant

and is primarily a function of mass.

3.2. Rossby number

For the Rossby number calculation, the characteristic convective overturn time was set equal

to the `local' convective overturn time at a distance of half of the mixing length � HP

2
above the

base of the convection zone. The ratio of the rotation period to this characteristic convective

overturn time is used to characterize the Rossby number in the deep convection zone, where

dynamo generation of magnetic �elds is thought to occur.

NR = 2�v=�
HP

where v is the characteristic convective velocity, � is the mixing length ratio, 
 is rotational

velocity, and HP is the local pressure scale height. It turns out that the evolution of the

`local' turnover time is the same as the `non-local' one, except for a scaling factor.

The evolution of the inverse squared Rossby number is illustrated in Figure 4. This quantity,

sometimes called the `dynamo number', is believed to be proportional to the strength of magnetic

activity. Note that the dynamo number depends on both the age and the mass of the star.

4. Isochrones

Theoretical isochrones o�er the opportunity to test stellar evolution theory in star clusters

where stars are coeval and formed from a gas cloud of uniform composition. Conversely, when

properly calibrated, isochrones can become a powerful tool to study the properties of �eld stars.
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Isochrones were constructed using the evolutionary tracks for the ages of 0.2, 0.5, 0.7, 1.0, 4.55

(the solar age), 10, and 15 Gyr. Their characteristics are listed in Table 2. Figure 5 shows a plot

of isochrones of the non-local turnover time vs. log Teff (the solid lines). For comparison, a few

isochrones of the local turnover time are shown (the dotted lines), in the same �gure. Isochrones

of the non-local turnover time vs. rotation period are given in Figure 6. In Figure 7, rotation

period vs. log Teff is shown, where the increase of logTeff can be understood as the increase of

the stellar mass, because of the proximity of the main sequence. The right most point of each line

is for 0.5 M�. Assuming our treatment of stellar rotation is correct, then one can use Figure 7 to

uniquely determine stellar mass and age from the e�ective temperature and the rotation period.

Figure 8 shows the the inverse square of the Rossby number, N�2

R vs. logTeff . Once empirical

relations between N�2
R and magnetic activity indices are determined, one can use Figure 8 for

determination of the age and the mass of a star by observing its e�ective temperature and an

activity index. Figure 9 is the plot of N�2

R vs. rotation period, where for an isochrone, the right

most point of the line represent the lowest mass. We see that, given the assumptions implicit in

our discussion, our grid of theoretical evolutionary tracks provide the means to determine the age

and the mass of a star from a measurement of its rotation period and an activity index.

5. Discussion

Estimates of turnover time scales and the Rossby number are provided, for Sun-like stars

in the pre-main sequence and early post-main sequence phases of evolution, based on up-to-date

physical input for the stellar models, and including rotation.

We expect the results in this paper to be robust, since the convective turnover timescale

is weighted toward the deepest part of the convection zone, where the shortcomings of the

mixing length approximation are least important. This is the reason why our `global' and `local'

convective time scale give the same result except for a scaling factor (e.g. Figure 5). This is

consistent with recent numerical simulations of convection (e.g. Chan and So�a 1989; Kim et al.

1995b) which con�rm the validity of the mixing length approximation in the limit of deep and

eÆcient convection.

In this study, all models have solar abundances; they will therefore �nd applications in the

interpretation of the rotational history and magnetic activity indices for stars in young star

clusters and Sun-like �eld stars, which are the most common stars in our part of the Galactic disk.

Caution must be exercised, however, with stars with chemical composition that di�er appreciably

from solar. Both the depth of the convection zone and the convective velocities are known to

depend on opacities and equation of state. As more detailed observations about the rotational

properties and magnetic activity of very metal-poor and very metal rich stars become available,

the sensitivity of convective turnover timescales to chemical composition parameters will need to

be explored in some detail.
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Figure Captions

Figure 1: The evolutionary tracks in the theoretical HR-diagram. Several isochrones have also

been drawn for 1 Gyr to 15 Gyr. The lower age isochrones are indisguishable from the 1 Gyr

isochrone on the scale of this diagram.

Figure 2: The rotation period as a function of age and mass. The slope near the main sequence

of each mass curve corresponds to the Skumanich law with a proportionality factor which

depends on mass.

Figure 3: The non-local convective turnover time as a function of age and mass. Near the main

sequence, �c remains nearly constant with time for a given mass.

Figure 4: The dynamo number (/ N�2
R ), often used as a measure of magnetic activity strength,

as a function of age and mass. This plot (together with Figures 8 and 9) provides the means

of calibrating magnetic activity indices along the main sequence of a star cluster.

Figure 5: The global and local convective turnover times as a function of e�ective temperature

and age.

Figure 6: Global convective turnover time as a function of rotation period and age.

Figure 7: Rotation period as a function of e�ective temperature and age.

Figure 8: The dynamo number as a function of e�ective temperature and age.

Figure 9: The dynamo number as a function of rotation period and age.
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Table 1. Input physics

Parameter Input

Mass 0:5 � 1:2M�

Mixing length ratio 1.86315

Weight fraction of hydrogen, X 0.70952

Weight fraction of all heavy elements, Z 0.01926

Mixture of heavy elements Anders-Grevesse(1989)

The exponent in the wind model, N 1.5

The constant factor in the wind model, fk 17.4837

The di�usion coeÆcient, fc 0.05575

Initial rotation velocity 30 km s�1

Opacity tables OPAL

with Kurucz opacity tables for low temperature

Atmosphere Kurucz model atmosphere

Equation of state The standard implementation

with Debye-H�uckel correction

The microscopic di�usion Michaud and ProÆtt (1993)
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Table 2. Isochrones

M=M� log Teff (B � V ) a log L=L� �c
b N�2

R
c Rotation Period

(day) (day)

0.20 Gyr

0.5 3.54 1.55 -1.50 125.10 6.18 23.41

0.6 3.59 1.37 -1.19 104.06 27.58 9.18

0.7 3.64 1.16 -0.88 83.19 28.40 7.23

0.8 3.68 0.99 -0.61 66.50 24.13 6.31

0.9 3.72 0.83 -0.36 53.15 18.90 5.69

1.0 3.75 0.69 -0.14 40.27 13.30 5.19

1.1 3.78 0.57 0.06 27.49 7.73 4.67

1.2 3.80 0.49 0.24 13.95 2.48 4.13

0.50 Gyr

0.5 3.53 1.60 -1.53 137.40 11.13 19.19

0.6 3.59 1.37 -1.18 106.56 13.57 13.44

0.7 3.64 1.16 -0.87 84.84 11.77 11.46

0.8 3.68 0.99 -0.60 67.18 9.31 10.25

0.9 3.72 0.83 -0.35 53.07 7.01 9.33

1.0 3.75 0.69 -0.13 39.97 4.82 8.57

1.1 3.78 0.57 0.07 26.97 2.56 7.94

1.2 3.80 0.49 0.26 13.14 0.69 7.42

0.70 Gyr

0.5 3.53 1.60 -1.53 140.32 9.26 21.32

0.6 3.59 1.37 -1.18 107.55 10.14 15.69

0.7 3.64 1.16 -0.87 84.88 8.42 13.59

0.8 3.68 0.99 -0.60 67.40 6.57 12.22

0.9 3.72 0.83 -0.35 52.96 4.92 11.12

1.0 3.75 0.69 -0.13 40.00 3.37 10.21

1.1 3.78 0.57 0.08 26.76 1.77 9.44

1.2 3.80 0.49 0.27 12.87 0.46 8.81
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Table 2|Continued

M=M� log Teff (B � V ) a log L=L� �c
b N�2

R
c Rotation Period

(day) (day)

1.00 Gyr

0.5 3.53 1.60 -1.53 141.14 7.15 24.45

0.6 3.59 1.37 -1.18 108.04 7.30 18.61

0.7 3.64 1.16 -0.87 85.43 5.90 16.29

0.8 3.69 0.95 -0.59 67.49 4.55 14.68

0.9 3.72 0.83 -0.34 52.74 3.40 13.37

1.0 3.75 0.69 -0.12 39.86 2.31 12.28

1.1 3.78 0.57 0.09 26.32 1.19 11.34

1.2 3.80 0.49 0.29 12.40 0.30 10.56

2.00 Gyr

0.5 3.53 1.60 -1.53 142.19 4.11 32.61

0.6 3.59 1.37 -1.18 108.88 3.73 26.23

0.7 3.64 1.16 -0.86 85.26 2.91 23.24

0.8 3.69 0.95 -0.58 67.28 2.22 20.98

0.9 3.73 0.78 -0.32 52.62 1.63 19.19

1.0 3.76 0.65 -0.09 39.25 1.07 17.72

1.1 3.78 0.57 0.14 25.00 0.53 16.23

1.2 3.80 0.49 0.34 11.44 0.13 15.07

4.55 Gyr

0.5 3.53 1.60 -1.52 144.87 1.80 49.92

0.6 3.59 1.37 -1.16 110.05 1.54 40.97

0.7 3.64 1.16 -0.84 85.10 1.19 36.26

0.8 3.69 0.95 -0.54 66.70 0.89 32.77

0.9 3.73 0.78 -0.26 51.21 0.65 29.83

1.0 3.76 0.65 0.00 37.49 0.41 27.66

1.1 3.78 0.57 0.25 24.82 0.22 25.14

1.2 3.78 0.57 0.44 26.42 0.28 23.40
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Table 2|Continued

M=M� log Teff (B � V ) a log L=L� �c
b N�2

R
c Rotation Period

(day) (day)

10.00 Gyr

0.5 3.53 1.60 -1.50 145.61 0.73 78.38

0.6 3.59 1.37 -1.13 109.32 0.62 64.26

0.7 3.65 1.11 -0.78 83.95 0.47 56.79

0.8 3.70 0.91 -0.45 65.26 0.33 52.86

0.9 3.74 0.74 -0.11 50.58 0.24 48.69

1.0 3.75 0.69 0.28 50.94 0.32 42.01

15.00 Gyr

0.5 3.54 1.55 -1.48 144.95 0.39 107.04

0.6 3.60 1.33 -1.10 108.32 0.33 87.34

0.7 3.66 1.07 -0.73 83.08 0.24 78.18

0.8 3.71 0.87 -0.34 64.97 0.18 70.55

0.9 3.74 0.74 0.13 68.27 0.34 53.99

a Revised Yale Isochrones and Luminosity Functions (Green et al. 1987)

b �c =
R R�

Rb

dr

v(r) , where Rb is the location of the bottom of the surface convection zone, R�
is the total radius of the stellar model, and v(r) is the convective velocity as a function of

radius.
c NR = 2�v=�
HP where v is the local convective velocity at a distance of the half of the

mixing length � HP

2 above the base of the convection zone, � is the mixing length ratio, 


is rotational velocity, and HP is the local pressure scale height.


