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Abstract

We address the question of the microscopic origin of dissipation in collective

motion of a quantum many–body system in the framework of a parametric random

matrix approach to the intrinsic dynamics. We show that the fluctuation–dissipation

theorem is generally violated and, moreover, energy diffusion has a markedly non–

Gaussian character and the corresponding distribution has very long tails. Such

features do not support a Langevin or Fokker–Planck approach to dissipation in

collective nuclear motion.
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While theory and experiment have gone a long way in the study of the collective

nature of large amplitude nuclear motion, the theoretical understanding of the coupling

between the collective and the intrinsic degrees of freedom is still in its infancy. Most of

the approaches are more or less phenomenological in nature. Hill and Wheeler [1] sug-

gested almost forty years ago that Landau–Zener transitions are at the origin of nuclear

dissipation. Over the years there have been a relatively large number of studies of this

particular mechanism [2] and the range of results is equally diverse. Implicit in this inter-

pretation is the presumption that irreversibility is of quantum origin. Even though there

exist quantum approaches (the linear response model [3], the hopping model [4], path in-

tegral method [5] and others), many formulations are basically classical , e.g. the so called

“wall formula” [6]. These include the more pragmatic phenomenological models, such as

the Langevin equation or Fokker–Planck equation [7], Maxwell’s model for friction with

memory effects [8], and to a certain extent kinetic approaches, e.g. two–body dissipation

mechanism [6]. In an analysis of a generic problem of coupled slow and fast degrees of

freedom, Berry and Robbins [9] obtained friction for the slow subsystem only by treating

the entire system classically, attributing it to “a clash between the essence of quantization,

namely the discrete spectrum of frequencies, and the essence of chaos, namely mixing and

a continuous spectrum extending to zero frequency” [9]. The present status of our under-

standing of the microscopic origin of dissipation in many–body quantum systems is thus

rather unsatisfactory. In this letter we explore the nature of dissipation in a many-body

system, using parametric random matrix theory, which allows for direct solution in many

cases of the quantum dynamics of the system.

The physical systems we explore are many-body systems which exhibit excitations

on two distinct time scales, described by collective (slow) and intrinsic (fast) degrees of

freedom. In order to address how energy is transferred from the slow (X,P ) to the fast

(x, p) modes, we will assume that the slow modes evolve classically at constant velocity

V0 according to X(t) = V0t. (Although we do not consider it here, this restriction can

be lifted, and the more general problem solved using the results and methods presented

here.) As a consequence of this assumption, we can solve for the quantum dynamics of

the fast subsystem, and even obtain analytic results for situations which are analogous

to the conventional adiabatic and diabatic limits. The intrinsic system is defined by its

matrix elements, and is taken as complex, described by its average level density, ρ(E),

and its spectral fluctuations, in the form

H(X) = H0 +H1(X). (1)

Here H0 is chosen to be a diagonal N ×N matrix, defining the average density of states,

with 〈k|H0|l〉 = [H0]kl = εkδkl. In the basis of the eigenstates of H0, we define H1(X) as a

parameter dependent, N ×N real Gaussian random matrix, which is completely specified

by its first two moments

[H1(X)]ij [H1(Y )]kl = [δikδjl + δilδjk]Fij(X − Y ),

[H1(X)]kl = 0. (2)
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Fij(X−Y ) is a “bell–shaped” correlation function with a characteristic width X0, and the

overline stands for the ensemble average. The dependence on i, j allows for the description

of banded matrices, where an effective number of states N0 ≤ N can be coupled by H1(X).

Such a parametrization implies that correlations between different instantaneous spectra

corresponding to different ‘shapes’ X are effective only within a distance ≈ X0. The

average level density for each fixed shape X is given by H0, while its spectral fluctuation

properties (in this case GOE, but all our formalism applies to GUE as well) are determined

by H1(X). We use a convenient parametrization of the correlator Fij(X) introduced in

Refs. [5]

Fij(X) =
W0√

ρ(εi)ρ(εj)
exp

[
−

(εi − εj)2

2κ2
0

]
F
(
X

X0

)
. (3)

Here F (x) = F (−x) = F ∗(x) ≤ 1, F (0) = 1 and W0, κ0 (N0 ≈ κ0ρ(ε)) and X0 are

characteristic to the given system. The instantaneous spectra of a Hamiltonian H(X)

with constant average level density, [H0]kl = kδkl, is shown in Fig. 1 for gaussian F (x) =

exp(−x2/2) (top) and exponential F (x) = exp(−|x|) (bottom) correlations. Notice that

a conventional adiabatic limit does not exist for the exponential, as the individual energy

levels undergo Brownian motion, and are not smooth on any time scale.

The time evolution of this system is found by solving the time–dependent Schrödinger

equation:

ψ(t) = T exp
[
−
i

h̄

∫ t

0
dsH(X(s))

]
ψ(0) = U(t)ψ(0). (4)

where T is the time-ordering operator, and U(t) the propagator. (We assume that the

initial state ψ(0) is uncorrelated with the Hamiltonian H(X(t)) at later times.) The

average propagator U(t) = U(t), found by using Eqs. (2) and resumming all leading order

diagrams in perturbation expansion of U(t) in the limit N0 � 1, satisfies the system of

integral equations [11]:

Uk(t) = U0 k(t)−
1

h̄2

∫ t

0
ds1

∫ s1

0
ds2U0 k(s2)Uk(t− s1)

×
N∑
n=1

Fkn(X(s1)−X(s2))Un(s1 − s2), (5)

where U0 k(τ ) = exp(−iεkt/h̄). In order to compute averages of observables, we introduce

the set of generalized occupation number probabilities

Nk(t1, t2) = 〈ψ(t1)|k〉〈k|ψ(t2)〉

=
∑
l

〈l|U †(t1)|k〉〈k|U(t2)|l〉nl(0), (6)

where nl(t) ≡ Nl(t, t) is the occupation probability of the state |l〉. Nk(t1, t2) satisfy the

following set of integral equations

Nk(t1, t2) = U∗k (t1)Uk(t2)nk(0) +
1

h̄2

∫ t1

0
ds1

∫ t2

0
ds2

∑
l

Nl(s1, s2)Flk(s1 − s2)

×U∗k (t1 − s1)Uk(t2 − s2). (7)
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These equations specify the time evolution of the system, and we will consider (i) the

numerical solutions of (5)-(7) and the velocity dependence of the diffusion constant, and

(ii) the extension of the formalism to the regime 1 � N0 < N = ∞, where we find

analytic limits and a great simplification of the formalism as well.

The first situation we study is that of constant average level density ([H0]kl = kδkl),

as in a stadium billiard. Eqs. (5)-(7) have been solved numerically for N = 101 levels, a

bandwidth N0 = 21, a gaussian correlation F (x) = exp(−x2/2) with X0 = 1, and initial

conditions nk(0) = δk,51. The resulting occupation numbers nk(t) are shown in Fig. 2

for the cases of fast (V0 = 4, top) and slow (V0 = 1/16, bottom) driving velocities. As

the results are symmetric with respect to the index k, nk(t) = n102−k(t), only k = 1− 51

are shown, counting from the bottom of the figure. One might expect that even a small

driving velocity would result in a complicated time evolution, as the Hamiltonian is time–

dependent, and has many small gaps in the instantaneous spectrum, where Landau–

Zener transitions might occur and thus induce “irreversibility” [1]. Actually, as we have

discussed at length in Ref. [10], this mechanism, which has been advocated in many

previous treatments [2], is valid only for isolated level crossings and thus is unrealistic

when there are many non–isolated ones as shown in Fig.1.

In Fig. 2, one can clearly distinguish two time scales: a relatively rapid initial transient

evolution, followed by a much slower one. While the initial transient behaviour is almost

identical in both cases, governed by the same spreading width Γ↓, the long time behaviour

is strikingly different. For small driving velocities, the time evolution rapidly equilibrates,

and can be understood in terms of the V0 → 0 limit, corresponding to constant random

matrix theory [11]. For large velocities there is a steady evolution to a different probability

distribution. The initial transient behaviour arises only because our initial occupation

probabilities nk(0) did not originate from an instantaneous eigenstate of H(0) (detailed

discussion on initial conditions will be presented elsewhere[10]). The subsequent long time

behaviour is due to the explicit time dependence of the Hamiltonian H(t) and would be

absent for a time independent one.

The diffusion process associated with these time evolutions can be characterized by

the energy variance, ∆E(t), and the energy diffusion constant D(V 2
0 ), defined by

∆E(t) = 〈ψ(t)|[H(t)− E(t)]2|ψ(t)〉 ≈ const + 2D(V 2
0 )t. (8)

t→∞

In Fig. 3, D(V 2
0 ) can be seen to exhibit quadratic velocity dependence, in contradiction to

previous claims [2]. In the case we consider here of a symmetrical initial distribution nk(0)

and constant level density, the average energy E(t) = 〈ψ(t)|H(t)|ψ(t)〉 is constant, hence

the reaction force on the slow system, in particular the friction force, exactly vanishes.

This is consistent with a fluctuation–dissipation theorem in the following sense. Expressed

as γ = βD, where γ is the “friction” coefficient and β = 1/T = d ln ρ(e)/de ≡ 0 is the

inverse thermodynamic temperature, we have the expected result dE(t)/dt = γ ≡ 0.
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We shall outline briefly a further extension and simplification of the formalism in the

limit N → ∞, i.e. in the spirit of the standard constant random matrix theory, by

introducing the characteristic functional [11]

N (t1, t2, τ ) = 〈ψ(t1)| exp

[
iH0(τ − t1 + t2)

h̄

]
|ψ(t2)〉,

Nk(t1, t2) =
1

2πh̄ρ(εk)

∫
dτN (t1, t2, τ )

× exp

[
−
iεk(τ − t1 + t2)

h̄

]
, (9)

N (t, t, τ ) = exp

[∑
n

〈〈ψ(t)|Hn
0 |ψ(t)〉〉

(iτ )n

h̄nn!

]
, (10)

where 〈〈ψ(t)|Hn
0 |ψ(t)〉〉 are cumulants. N (t1, t2, τ ) satisfies the evolution equation

N (t1, t2, τ ) = σ∗(t1)σ(t2) +

√
2πκ0W0

h̄2

∫ t1

0
ds1

∫ t2

0
ds2

×N (s1, s2, τ ) exp

κ2
0

2

(
β

2
+ i

s1 − s2 − τ

h̄

)2


×F

(
(s1 − s2)V0

X0

)
σ∗(t1 − s1)σ(t2 − s2), (11)

where σ(t) = exp(iεkt/h̄)Uk(t) (note σ(t) is state independent), for which an equation

similar to Eq. (5) can be derived. In this case, there is only one equation to be solved,

instead of N–coupled equations (cf. Eq. (7)), which results in a significant simplification

of the entire formalism. Moreover, various analytic solutions can be obtained, as we

exemplify below, by analyzing the adiabatic and the diabatic evolutions of the occupation

numbers for a system with a realistic level density of the form ρ(ε) = ρ0 exp(βε). β = 0

corresponds to the case we have just described, of constant average level density, while

the case of finite β approximates fairly well a many–fermion system.

The adiabatic limit corresponds to κ0X0/h̄V0 � 1 (and also κ0β � 1), from which we

find

N (t, t, τ ) = exp

{
2πW0

h̄

[
F

(
τV0

X0

)
− 1

]
t−

2πW0|τ |

h̄

}
. (12)

All odd moments of H0 vanish identically (since F (x) = F (−x)), and in the limit t→∞,

all even cumulants of H0 increase linearly in time. If F (x) = exp(−x2/2) (we shall use

this form hereafter for illustrative purposes) then

〈〈ψ(t)|H2n
0 |ψ(t)〉〉 =

2πW0t

h̄

(
h̄V0

X0

)2n
(2n)!

2nn!
,

D(V 2
0 ) =

πh̄W0V
2

0

X2
0

=
h̄Γ↓V 2

0

2X2
0

, (13)

(Γ↓ = 2πW0) resulting in a non-Gaussian distribution.
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In the diabatic limit, κ0X0/h̄V0 � 1, we find

N (t, t, τ ) = exp

2πX0W0κ0

h̄2V0

exp

κ2
0

2

(
β

2
+
iτ

h̄

)2
− exp

(
κ2

0β
2

8

) t
 . (14)

In this case again all the cumulants of H0 increase linearly in time

〈〈ψ(t)|Hn
0 |ψ(t)〉〉 =

[
2πX0W0κ0

h̄2V0

exp

(
β2κ2

0

8

)(
iκ0√

2

)n
Hn

(
−
iκ0β

2
√

2

)]
t, (15)

where Hn(x) are Hermite polynomials. From the explicit expressions for the first and

second cumulants we thus obtain that

βD = γ

(
1 +

β2κ2
0

4

)
, (16)

which shows that the Einstein fluctuation–dissipation theorem is generally violated.

The most salient feature of the solutions (12) and (14) becomes evident when one

considers the asymptotic behaviour of the cummulants. Since cumulants of higher than

second order are nonvanishing, Gaussian processes are not obtained in any of these lim-

iting cases for the energy diffusion. 〈〈ψ(t)|Hn
0 |ψ(t)〉〉 either increase indefinitely with n

or increase subsequently after an initial decrease, depending on the values of parameters.

As a result the energy distribution has very long tails. In particular for V0 ≡ 0 the dis-

tribution corresponding to Eq. (12) has a Lorentzian shape. These features imply that

a Langevin or Fokker–Planck approach to energy dissipation is at least questionable. As

we have discussed in Ref. [10] the present results apply equally to the GUE case.

The present approach treats the fast subsystem quantum mechanically and the slow

subsystem classically, as has been done often in the past [2]. The energy diffusion process

is described in terms of some intrinsic characteristics of the many–body system (thermo-

dynamic temperature, spreading width Γ↓, κ0 and X0) and V0. It is not clear yet whether

these characteristics have a meaningful classical limit separately or only in a given com-

bination, and this seemingly points to an apparent lack of a classical limit for the fast

degrees of freedom (h̄ → 0) of the solutions (13), (15). In Ref. [9], friction was obtained

only in a classical treatment of both fast and slow system, while in Ref. [5], dissipation

and friction appear only in a explicit quantum treatment (path integral) of the entire

system and the presence of quantum fluctuations in the slow subsystem was essential.

The wall formula [6] leads to a diffusion constant D ∝ V 2
0 as we have obtained here (see

Fig. 3 and Eq. (13)), but is essentially a classical result, which does not depend in any

significant way on h̄, and apparently reflects a different underlying mechanism. It will be

highly desirable to identify the classical limit of the present approach.

In conclusion, we have presented numerical and analytical solutions of the time de-

pendent evolution of a driven complex quantum system, such as a nucleus, under the

assumption that the number of levels is large. The parametric random matrix approach

chosen here incorporates the essential attributes of the intrinsic dynamics, namely: an
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exponentially increasing level density, GOE spectral fluctuations and loss of correlations

during large amplitude collective motion. We have shown that the resulting energy dif-

fusion process is highly non–Gaussian in character, that the energy distribution has very

long tails and also that the energy diffusion constant is proportional to the square of the

collective velocity.
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Figure 1: Instantaneous eigenvalue spectrum En(X) as a function of the “shape” (X),

for a Hamiltonian of the ensemble defined by Eqs. (1–3), with [H0]jk = kδjk, using the

correlator F (x) = exp(−x2/2) (top) and F (x) = exp(−|x|) (bottom).
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Figure 2: The time dependence of the occupation probabilities nk(t), for k = 1, . . . , 51

(in this case nk(t) = n102−k(t)), where k counts from bottom to top in the figure, for the

case of fast, V0 = 4 (top), and slow, V0 = 1/16 (bottom), driving velocities.
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Figure 3: The time dependence of the energy variance ∆E(t) for a range of velocities

V0 = 4, 2, 1, 0.5, 0.25, 0.125 and 0.0625. The highest curve corresponds to the larger

velocity. The insert shows the diffusion constant D(V 2
0 ) as a function of V 2

0 , indicating

D ∝ V 2
0 .
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