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Abstract

The chirally symmetric quark-gluon plasma produced in energetic heavy-ion

collisions is predicted to supercool at the late stages of its evolution. The

thermal energy is then transformed into the potential energy associated with

an energetically unfavorable field configuration. Since the system is in an

unstable state it eventually rolls down to the true minimum of the effective

chiral potential. When this motion is described in terms of the sigma-model,

we find that the energy of the coherent σ−field is very efficiently converted

into pionic excitations due to anharmonic oscillations around this minimum.

The system is expected to partially thermalize before its disintegration.
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The process of hadronization being of essentially nonperturbative character is not well

understood at present. This leads to large theoretical uncertainties in describing the late

stages of temporal evolution of the quark-gluon plasma predicted to be produced in very en-

ergetic heavy ion collisions. Recently, the hadronization of an extended quark-gluon plasma

has been studied within the nucleation model [1,2] by considering the growth of hadronic

bubbles in the quark-gluon plasma undergoing a first-order phase transition. Thermal equi-

librium between both phases was assumed. The authors of refs [1] found that the conversion

of the quark-gluon plasma into hadrons is slow with a characteristic time of order 50-100

fm/c, resulting in significant supercooling before the plasma hadronizes. Since the micro-

scopic mechanism which actually converts quarks and gluons into hadrons remains unknown,

it is unclear to what extent the assumption of thermal equilibrium in both phases holds.

Inspired by the very recent work by Kofman, Linde, and Starobinsky [3], who studied

the reheating after inflation in the early Universe, we here discuss a nonequilibrium scenario,

where the hadronization coincides with the chiral phase transition. When the quark-gluon

plasma is supercooled, the system is in a moderately excited state over a chirally symmetric

false vacuum. In this state, the original thermal energy of the plasma is partially transformed

into vacuum energy. Once the instability is triggered, the system rolls down to the true

chirally asymmetric minimum of the effective potential. Since the oscillations around this

minimum are anharmonic, the coherent field is converted into pionic excitations. As we

argue below, the conversion mechanism is fast and strongly couples the long wavelength

modes to those of short wavelength. Thus, the pions are expected to partially thermalize

before freeze-out. Our picture is closely related to that of Rajagopal and Wilczek [4] who

studied the excitation of long-wavelength modes during the decay of a supercooled, false

chiral vacuum state. However, we are here concerned not with the formation of coherent

field domains, which has been numerically studied extensively [4,5], but rather with the

excitation of quasi-thermal modes of the pion field.

In the following, we analyse this hadronization mechanism within the linear sigma model

defined by the effective Lagrangian
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L(t, x) =
1

2
∂µφa∂µφa −

λ

4
(φaφa − v

2)2 +m2
πvχ (1)

where φa ≡ (χ, ~π) and the parameters are λ ≈ 20, v ≈ 90 MeV, mπ ≈ 140 MeV. It is

important to stress that in the deconfined, chirally symmetric phase the fields φa are treated

as an effective description of quarks and gluons. The φa−field is thought to dominate the

low-energy dynamics of quarks and gluons near the transition, see e.g. [4]. Below the critical

temperature the chiral symmetry is broken and one deals with the physical fields σ = v0−χ

and ~π, which correspond to the sigma mesons and pions, respectively. Here v0 ≈ v is the

minimum of the potential in (1).

When the system is significantly supercooled in the symmetric chiral phase, where σ ≈ v

and ~π ≈ 0, the energy density is dominated by the potential energy

εpot =
λ

4
v4 .

If this energy is converted into thermal energy of the pion gas, i.e.

εpot = εth =
π2

10
T 4 ,

where the pion mass is neglected1, one finds the temperature T ≈ 135 MeV, which is close

to the freeze-out temperature of pions observed in relativistic nucleus-nucleus collisions [6].

Thus, even the complete supercooling of the system with subsequent reheating is not in

conflict with the data. Let us then discuss the scenario in more detail.

The sigma and pion fields satisfy the following equations of motion:

[
∂2 + 2λv2 − 3λvσ + λσ2 + λ~π2

]
σ = λv~π2 , (2)

[
∂2 +m2

π − 2λvσ + λσ2 − λ~π2
]
~π = 0 . (3)

1Since the average thermal energy of a massless pion is 3T , the zero mass or ultrarelativistic

approximation is not bad even for temperatures of the order of the pion mass.
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We use these equations to discuss the temporal evolution of the system which initially is in

the chirally symmetric phase. The fields are treated as classical. Since the system is assumed

to be significantly supercooled, the initial values of the fields are taken as σ ≈ v and ~π ≈ 0.

Then, the system appears on the top of a “Mexican hat” potential. When the σ−field is

rolling down to the potential minimum at σ = 0, its amplitude decreases. Therefore one

expects that v2σ > vσ2 > σ3, and as a zeroth approximation, we neglect in eqs. (2, 3) the

terms which are quadratic and cubic in the fields. In this way we get the equations

[
∂2 +m2

σ

]
σ(0) = 0 ,

[
∂2 +m2

π

]
~π(0) = 0 , (4)

with mσ ≡
√

2λv = 600 MeV, which have plane wave solutions. Keeping in mind the initial

conditions, we choose the solutions of eqs. (4) as

σ(0) = σ0cos(mσt+ ϕ) , ~π(0) = 0 , (5)

where the field σ(0) is assumed to be homogeneous. The solution (5) describes undamped

collective oscillations of the σ−field around its minimum. Now we substitute the solutions

(5) into eqs. (2, 3) and keep the terms no more than quadratic in the σ−field and linear in

the ~π−field. Changing the time variable (2z ≡ mσt + ϕ) and writing down the equations

for modes labeled by the momentum k we get[
d2

dz2
+Aσ − 2qσcos(2z)

]
σ

(1)
k (z) = 0 , (6)

[
d2

dz2
+Aπ − 2qπcos(2z)

]
~π

(1)
k (z) = 0 , (7)

where

Aσ ≡ 4
m2
σ + k2

m2
σ

, qσ ≡ 3
σ0

v
, (8)

and

Aπ ≡ 4
m2
π + k2

m2
σ

, qπ ≡ 2
σ0

v
. (9)
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Eqs. (6,7) are written down in the form of the well known Mathieu equation [7], which

corresponds to the wave equation in elliptic coordinates. As discussed above σ0 < v, thus

0 < qσ < 3 and 0 < qπ < 2, while Aσ ≥ 4 and Aπ ≥ 0.2 .

The solutions of Mathieu’s equation are of the form

Fν(z) = eiνzP (z) ,

where the constant ν, which is called the characteristic exponent, depends on A and q and

P (z) is a periodic function with the period π. It is easy to see that for an infinitesimally small

q there are narrow regions of resonant solutions of the equations (6,7) for A ≈ N2 where

N is an arbitrary integer number. Then, the characteristic frequency of the wave equation

is a multiple of the frequency of the stimulating force. Let us consider for illustration the

first resonant region around A = 1. The parameters A, q and ν are then connected by the

equation [7]

A = ν2 +
q2

2(ν2 − 1)
, for ν 6= 1 .

For A = 1 one immediately finds

ν2 = 1±
i
√

2
q .

Decomposing ν into the real and imaginary parts with |Re ν| � |Im ν|, we get

Im ν ≈ ±
i

2
√

2
q .

As expected, we have found an unstable mode which generally grows exponentially in time.

When the amplitude of the stimulating force represented by q increases, the narrow

resonances change into wide resonant bands in the A − q plane. The imaginary part of

the characteristic exponent ν is negative there and the solutions of Mathieu’s equation are

unstable. For example, when q = 1 the resonant regions extend for A from the intervals (0,

1.9), (3.9, 4.4), (9.06, 9.08) etc. As seen, the first two resonances are rather broad while the

third and higher ones remain narrow for q = 1.

Although our zeroth order solution (5) is homogeneous, i.e. k = 0, it effectively couples

(via eqs. (6, 7)) not only to the long wavelength pion modes but also to those with |k| ≈ mσ.
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Let us consider how fast these modes grow. For a given value of A and q, the characteristic

exponents can be read from the charts presented in [7]. For qσ = 3 and qπ = 2, which

are the maximal values, one finds for Aσ ≈ Aπ ≈ 4 the imaginary characteristic exponents

equal 0.35 and 0.17, respectively. Then, the particle numbers proportional to |σ(1)
k |

2 and

|~π(1)
k |

2 grow in time as et/τ with τσ = 0.9 fm/c and τπ = 1.9 fm/c, where τ−1 = mσIm ν.

The characteristic time τπ of growth of the occupation of single-particle pion modes appears

much smaller than the nucleation time found in [1]. Therefore, the mechanism described

here can indeed be responsible for hadronization of the quark-gluon plasma.

The hadronization which proceeds simultaneously with the transition from the chirally

symmetric to asymmetric state has been discussed in [9]. The hadronization time has been

identified there with the characteristic time of rolling down from the top of the “Mexican hat”

to the potential minimum, which is of order 0.5 fm/c. In our opinion, we deal with “physical”

pions only when the coherence of the σ and ~π fields breaks down due to the anharmonic

oscillations around the true vacuum state. Therefore, we identify the hadronization time

with τπ found above which equals about 2 fm/c.

An important feature of our hadronization scenario is the strong coupling of the soft

coherent modes to those with |k| ≈ mσ. This implies that the spectrum of produced

pions is rather broad, similar to a thermal spectrum at T ≈ mπ. Therefore, we expect at

least partial thermalization of the system. The reheating or even overheating due to the

rapid release of the latent heat has also been advocated [10] within the nucleation model

[1]. The thermal spectrum of hadrons observed in relativistic heavy-ion collisions supports

such an expectation. It might be of critical importance for the so-called Disoriented Chiral

Condensates actively discussed recently [4,5,8].

It has been suggested that coherent domains of the pion field can appear in the nonequi-

librium chiral phase transition of the quark-gluon system created in high energy collisions.

The phenomenon, analogous to the formation of misaligned domains in a ferromagnet, would

be observed by the coherent pion emission when the domains relax to the ground state with

vanishing pion field. Specifically, one expects significant fluctuations in the number of neu-
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tral and charged pions. The soft pions are expected to be particularly sensitive to the domain

formation. Numerical simulations of the linear sigma model represented by the Lagrangian

(1) have shown [4,5] that the disoriented condensates can indeed appear under favorable

conditions.

As the reheating proceeds in the hadronizing system, it will generate additional back-

ground on which it is more difficult to observe the pions from coherent domains. We note

that the numerical simulations [4] do not fully take into account the short wavelength modes

excited by eqs. (6,7) due to the finite lattice spacing, typically of 1 fm. Therefore, the cou-

pling of the coherent soft modes to the harder ones could easily be underestimated.

In summary, if the quark-gluon plasma produced in relativistic heavy-ion collisions is

significantly supercooled at the late stage of its evolution, its thermal energy is converted

into potential energy of the σ−field. The system then rolls down from the chirally symmetric

to the asymmetric state and the hadronization coincides with the chiral phase transition. The

physical pions emerge when the system anharmonically oscillates around the true vacuum.

Due to the efficient resonant coupling between the soft and hard modes, the system is

expected to thermalize again, at least partially, on a short time scale.
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