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Abstract

In field theories where a metastable false vacuum state arises

as a result of radiative corrections, the calculation of the rate of

false vacuum decay by bubble nucleation depends on the effective

potential and the other functions that appear in the derivative

expansion of the effective action. Beginning with the Nielsen

identity, we derive a series of identities that govern the gauge

dependence of these functions. Using these, we show, to leading

nontrivial order, that even though these functions are individually

gauge-dependent, one obtains a gauge-independent result for the

bubble nucleation rate. Our formal arguments are complemented

by explicit calculations for scalar electrodynamics in a class of Rξ

gauges.
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1 Introduction

In addition to the minimum energy true vacuum state, many quantum field theories have
one or more metastable “false vacua” that can decay to the true vacuum by the nucleation
of bubbles of the stable vacuum. Methods have been developed for calculating the rate of
this process either at zero temperature [1] or at high temperature [2]. However, these must
be modified in the case of theories in which symmetry breaking arises as a result of radiative
corrections [3]. While a scheme for dealing with such cases (at zero temperature) has been
developed [4], it leads to an expression for the bubble nucleation rate that is not manifestly
gauge-independent. In this paper we address the issue of this gauge dependence.

The standard approach [1] to the calculation of the bubble nucleation rate at zero tem-
perature is based on finding a “bounce” solution of the classical Euclidean field equations.
The nucleation rate per unit volume Γ may be written as

Γ = Ae−B (1.1)

where B is the Euclidean action of the bounce solution and A is an expression involving
functional determinants that is generally equal to a numerical factor of order unity times a
dimensionful quantity determined by the characteristic mass scales of the theory.

A problem arises if radiative corrections modify the vacuum structure of the theory.
Theories in which this happens generally have no bounce solution; even if a bounce does
exist, the nucleation rate calculation based on the bounce is not reliable. However, by
integrating out certain fields at the outset, one can derive a modified algorithm [4] that can
be applied to this situation. The results of this method are conveniently expressed in terms
of the functions that appear in the derivative expansion

Seff =
∫
d4x

[
V eff(φ) +

1

2
Z(φ)(∂µφ)2 + · · ·

]
(1.2)

of the Euclidean effective action. (The dots represent terms containing four or more deriva-
tives; these do not enter the calculation at the order to which we work.) These functions
can in turn be expanded in power series in the couplings. For example, in a gauge theory
with weak (i.e., O(e4)) scalar self-couplings, the effective potential is of order e4 and may be
written, using an obvious notation, as

V eff = V eff
e4 + V eff

e6 + · · · , (1.3)

while
Z = 1 + Ze2 + · · · . (1.4)
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The first step in this approach is to use the leading approximation to the effective action
to determine a bounce solution φb(x) through the equation

2φb =
∂V eff

e4

∂φ
. (1.5)

The desired nucleation rate is then given by

Γ = A′e−(B0+B1) (1.6)

where

B0 =
∫
d4x

[
V eff
e4 (φb) +

1

2
(∂µφb)

2
]

(1.7)

turns out to be of order e−4 while

B1 =
∫
d4x

[
V eff
e6 (φb) +

1

2
Ze2(φb)(∂µφb)

2
]

(1.8)

is of order e−2. The calculation of the pre-exponential factor is much more complicated than
in the standard case; in particular A′ cannot be expressed solely in terms of the functions
appearing in Eq. (1.2). Nevertheless, one finds that, just as in the standard case, A′ is equal
to a numerical factor of order unity times a dimensionful factor determined by the mass
scales of the theory.

Like any physically measurable quantity, the nucleation rate should be gauge indepen-
dent. Since the leading terms in the effective potential are gauge independent, there is no
difficulty in this regard with respect to either B0 or the bounce solution itself. However,
both of the functions that enter in B1 are known [5] to depend on gauge. Our goal is to show
that, nevertheless, these combine to give a gauge-independent contribution to the nucleation
rate. Although we do not explicitly examine the prefactor A′, we expect that our methods
could be extended — albeit with considerably more technical complication — to show that
it too is independent of gauge.

Our approach is based on the Nielsen identity [6], which describes the gauge dependence
of the effective action, and which has been used to show that gauge-independent physical
quantities can be obtained from a gauge-dependent effective potential [7]. In Sec. 2 we
present a compact derivation of this identity, following the method of Kobes, Kunstatter,
and Rebhan [8]. However, the usual form of the identity is not quite sufficient for our
purposes. Instead, what we need is a series of identities, each of which gives the gauge
dependence of one of the functions appearing in the derivative expansion (1.2). Although
the identity for the effective potential is well-known, the remaining identities are, to our
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knowledge, new. In Sec. 3 we derive these from the master identity and then use them to
give a general proof of the gauge-independence of B1. To complement this formal proof, we
have verified the relevant identities by explicit calculations for the case of scalar quantum
electrodynamics in Rξ gauges. These calculations, which expand upon the work of Aitchison
and Fraser [9], are described in Sec. 4. Section 5 contains some concluding comments. Some
two-loop effective potential calculations are presented in an Appendix.

2 The Nielsen identity

In this section we use the method of Ref. [8] to derive the Nielsen identity. We consider a
gauge theory with fields denoted by φi. The classical action S is invariant under a set of
infinitesimal gauge transformations of the form

δgφi = ∆β
i θβ (2.1)

where the ∆β
i are linear operators. ( We will henceforth suppress the index β; for scalar

electrodynamics, which we examine in greatest detail, there is only a single gauge parameter
θ in any case.) By choosing a gauge-fixing function F (φi) and introducing Fadeev-Popov
ghosts η and η̄, we can write the generating functional of connected Green’s functions as

exp [iW (J, F )] =
∫

[Dφi][Dη][Dη̄] exp
[
iI(F ) + i

∫
d4yJ i(y)φi(y)

]
(2.2)

where

I(F ) = S −
∫
d4x

{
[F (φ)]2

2ξ
+ η̄

δF

δφi
∆iη

}
(2.3)

is invariant under the BRST transformations

δBRST φi = ζ ∆iη, δBRST η̄ = −ζ
1

ξ
F, δBRST η = 0 (2.4)

with ζ an arbitrary Grassman number.
In presenting the derivation, it is convenient to adopt a compact notation where

〈O(φ)〉 ≡ e−iW
∫

[Dφ][Dη][Dη̄]O(φ, η, η̄) exp
[
iI + i

∫
d4yJ i(y)φi(y)

]
(2.5)

for any operator O. Now note that if O is linear in the ghost fields, its odd Grassman
character leads to the vanishing of this quantity. In particular,

〈η̄ G〉 = 0 (2.6)
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for any functional G[φ(x)]. Applying the BRST transformation (2.4) to this equation results
in the identity 〈

δBRST[η̄(x)G(x)] + iη̄(x)G(x)
∫
d4yJ i(y) δBRSTφi(y)

〉
= 0 (2.7)

which may be rewritten, using the anticommutivity of η and η̄, as

−

〈
1

ξ
F (x)G(x) + η̄(x)

δG(x)

δφi(x)
∆iη(x)

〉
= −i

∫
d4yJ i(y) 〈∆iη(y) η̄(x)G(x)〉 . (2.8)

Now consider the effect of an infinitesimal change F → F + ∆F in the gauge-fixing
function. Recalling Eqs. (2.2) and (2.3), we see that the change in the generating functional
W [J ] is simply the integral over x of the left hand side of Eq. (2.8), with G set equal to ∆F .
Hence,

∆W = −i
∫
d4x d4y J i(y)〈∆iη(y) η̄(x) ∆F (x)〉 . (2.9)

Recalling that the effective action is related to W [J ] by the Legendre transformation

Seff = W −
∫
d4xJ i(x)

δW

δJi(x)
= W −

∫
d4xJ i(x)φi(x) (2.10)

we find that

∆Seff = i
∫
d4x d4y

δSeff

δφi(y)
〈∆iη(y) η̄(x) ∆F (x)〉1PI (2.11)

where the subscript 1PI indicates that only the contributions from one-particle irreducible
graphs are to be included. In particular, an infinitesimal change dξ in the gauge parameter
is equivalent to the choice ∆F = −(F/2ξ)dξ. Hence,

ξ
∂Seff

∂ξ
= −

i

2

∫
d4x d4y

δSeff

δφi(y)
〈∆iη(y) η̄(x)F (x)〉1PI (2.12)

=
∫
d4y

δSeff

δφj(y)
Hj[φ(z), y] (2.13)

where

Hj [φ(z), y] = −
i

2

∫
d4x〈∆iη(y) η̄(x)F (x)〉1PI . (2.14)

Eq. (2.13) is the Nielsen identity.
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3 Derivative expansion of the Nielsen identity and for-

mal proof of gauge independence of the nucleation

rate

To study the gauge-dependence of the bubble nucleation rate, we will need a set of identities
that are obtained by making derivative expansions of both sides of Eq. (2.13). For simplicity,
consider the case where the effective action depends on only a single field φ(x). There is
then only a single functional H[φ(x), y], which can be expanded as

H[φ(x), y] = C(φ) +D(φ)(∂µφ)2 + · · · (3.1)

where all terms on the right are understood to be evaluated at point y and the dots represent
terms with more than two derivatives. Inserting this, together with the expansion (1.2) of
the effective action, into Eq. (2.13), gives

ξ
∂

∂ξ

∫
d4x

[
V eff(φ) +

1

2
Z(φ)(∂µφ)2 + · · ·

]

=
∫
d4x

[
C(φ) +D(φ)(∂µφ)2 + · · ·

] [
∂V eff

∂φ
+

1

2

∂Z

∂φ
(∂µφ)2 − ∂µ [Z(φ) ∂µφ] + · · ·

]
.

(3.2)

If this identity is to hold for arbitrary φ(x), then not only must the integrands on the
two sides be equal point by point, but the terms with equal number of derivatives must be
separately equal. Thus, the terms with no derivatives obey

ξ
∂V eff

∂ξ
= C

∂V eff

∂φ
(3.3)

while from the terms with two derivatives we obtain

ξ
∂Z

∂ξ
= C

∂Z

∂φ
+ 2D

∂V eff

∂φ
+ 2Z

∂C

∂φ
. (3.4)

(Eq. (3.3), which can be obtained immediately from Eq. (2.13) by choosing φ(x) to be a
constant, appears in Ref. [6].)

We now specialize to the case of a gauge theory with gauge coupling e and scalar self-
couplings of order e4. As indicated in Eq. (1.3), the effective potential begins with terms of

5



order e4, while Z(φ) = 1 +O(e2). Analysis of the relevant graphs shows that C(φ) starts at
order e2 and D(φ) is of order unity. The terms of order e4 in Eq. (3.3) yield

ξ
∂V eff

e4

∂ξ
= 0 . (3.5)

Now recall that the bounce solution φb(x) is determined, through Eq. (1.5), by V eff
e4 . Since

Eq. (3.5) shows that the latter is gauge independent, both φb(x) and B0, the leading contri-
bution to the exponent of the nucleation, are independent of ξ.

To study the gauge dependence of B1, we need the order e6 terms of Eq. (3.3),

ξ
∂V eff

e6

∂ξ
= Ce2

∂V eff
e4

∂φ
, (3.6)

as well as the terms of order e2 in Eq. (3.4),

1

2
ξ
∂Ze2

∂ξ
=
∂Ce2

∂φ
. (3.7)

These equations, together with Eq. (1.8), imply that

ξ
∂B1

∂ξ
= ξ

∂

∂ξ

∫
d4x

[
V eff
e6 +

1

2
Ze2(∂µφb)

2
]

=
∫
d4x

[
Ce2

∂V eff
e4

∂φ
+
∂Ce2

∂φ
(∂µφb)

2

]

=
∫
d4x

[
Ce2

∂V eff
e4

∂φ
+ (∂µCe2)(∂µφb)

]

=
∫
d4xCe2

[
∂V eff

e4

∂φ
− 2φb

]
(3.8)

where all quantities are to be evaluated with φ(x) set equal to the bounce solution φb(x).
Eq. (1.5), which determines the bounce, shows that the last expression on the right hand
side must vanish, and hence that

ξ
∂B1

∂ξ
= 0 . (3.9)

This verifies that, at least up to pre-exponential terms of order unity, the bubble nucleation
rate is gauge independent.
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4 Scalar Electrodynamics

4.1 Basics

We now illustrate these formal arguments by explicit calculations for the case of scalar
electrodynamics. The Lagrangian, which we write in the form

L = −
1

4
F 2
µν +

1

2
(∂µΦ1 − eAµΦ2)2 +

1

2
(∂µΦ2 + eAµΦ1)2 − V (Φ) (4.1)

with

V (Φ) =
1

2
m2Φ2 +

λ

4!
Φ4 (4.2)

and Φ ≡ (Φ2
1 + Φ2

2)1/2, is invariant under the gauge transformation

δgAµ = ∂µθ, δgΦ1 = eΦ2θ, δgΦ2 = −eΦ1θ . (4.3)

If m2 > 0, the tree-level potential has a minimum at Φ = 0. In order that one-loop effects
be able to change the vacuum structure and give a symmetry-breaking minimum at Φ =
〈Φ〉 6= 0, we must require that both λ and m2 be anomalously small, of order e4 and e2〈Φ〉2,
respectively.

For calculating the bubble nucleation rate it is sufficient to evaluate the terms in the
derivative expansion of the effective action for Φ2 = Aµ = 0. With this in mind, we will
consider the class of gauges determined by the gauge-fixing function

F = (∂µA
µ + evΦ2) . (4.4)

(The gauge-dependence of the effective potential in these gauges was studied in detail by
Aitchison and Fraser [9]; in the following discussion we will make use of a number of their
results.) The Nielsen identity (2.13) then involves only the single functional

HΦ1 [φ(z), y] = −
ie

2

∫
d4x〈(Φ2(y) η(y) η̄(x) (∂µA

µ(x) + evΦ2(x))〉 . (4.5)

The effective action can be obtained as the sum of one-particle irreducible vacuum graphs
in the theory obtained from the Lagrangian (4.1) by making the shift Φ1 → Φ1 +φ and then
dropping all terms linear in the quantum fields. The vertex factors for these graphs can be
simply read off from the resulting Lagrangian in the standard fashion (see, e.g., Ref. [9]).
The propagators require a bit more work. Following the usual approach, one would obtain
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from the Lagrangian (together with the gauge-fixing and ghost terms) the effective Φ1, Φ2,
Aµ, and ghost propagators

G1(k) =
i

k2 − m̃1(φ)2
(4.6)

G2(k) =
i(k2 − ξe2φ2)

D(k)
(4.7)

Gµν(k) = GT
µν(k) +GL

µν(k)

= i
−gµν + kµkν

k2

k2 − e2φ2
−
i[ξ(k2 − m̃2

2)− e
2v2]

D(k)

kµkν

k2
(4.8)

Gg =
i

k2 + e2vφ
(4.9)

as well as the mixed Φ2 –Aµ propagator

G2µ(k) =
e(ξφ+ v) kµ

D(k)
(4.10)

where the momentum flow is understood to flow from the Φ2 end to the Aµ end. In these
expressions

D(k) = k4 − k2(m̃2
2 − 2e2vφ) + e2φ2(e2v2 + ξm̃2

2) (4.11)

and

m̃2
1(φ) = m2 +

λ

2
φ2 = V ′′(φ) (4.12)

m̃2
2(φ) = m2 +

λ

6
φ2 =

V ′(φ)

φ
. (4.13)

These propagators are not quite what we need. Our assumption that λ is of order e4

not only makes some of the one-loop terms comparable to the tree-level terms, but also
implies that some multi-loop graphs are not suppressed relative to graphs with fewer loops;
specifically, the insertion of transverse photon loops along a scalar propagator does not
increase the order of the graph. To restore the validity of our expansion, these insertions
must be summed. This can be done simply by replacing the propagators given in Eqs. (4.6-
4.8) by “dressed” propagators in which the m̃2

a are replaced by

m2
1(φ) = V ′′e4 (φ) (4.14)

m2
2(φ) =

V ′e4 (φ)

φ
. (4.15)
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(To avoid double-counting, subtractions are needed for certain graphs with two or more loops;
these corrections only affect contributions of higher order than those we will be considering.)

Before we proceed to verify the identities, there is one more issue to be addressed. Many
of the graphs contributing to the effective action have divergences that must be cancelled
by appropriate counterterms. We will not display these explicitly, but all divergent integrals
should be understood to be made finite by some gauge-invariant renormalization scheme
(e.g., minimal subtraction in the context of dimensional regularization); when we refer to
the magnitude of an integral, this should be understood as referring to the magnitude of its
finite part.

4.2 The identity for the effective potential

To order e2 the function C(φ) entering the identity (3.3) receives contributions only from
the two graphs shown in Fig. 1. These combine to give 1

Ce2 = −
ie

2

∫
d4k

(2π)4

1

(k2 + e2vφ)D(k)

[
e(ξφ+ v) k2 − ev(k2 − ξe2φ2)

]
= −

ie2φξ

2

∫
d4k

(2π)4

1

D(k)
. (4.16)

The effective potential is obtained by summing the graphs with vanishing external mo-
menta. The one-loop contributions may be split into three parts. First, the graphs with a
transverse photon loop give a contribution

−
3i

2

∫
d4k

(2π)4
ln(k2 − e2φ2) . (4.17)

From dimensional arguments, this integral is clearly of order e4φ4. Hence, it combines with
the tree-level potential to give

V eff
e4 =

1

2
m2φ2 +

λ

4!
φ4 −

3i

2

∫
d4k

(2π)4
ln(k2 − e2φ2) . (4.18)

This is manifestly gauge-independent, in accordance with Eq. (3.5). A second gauge-
independent contribution, coming from the graphs with Φ1-loop graphs, is

−
i

2

∫
d4k

(2π)4
ln(k2 −m2

1) . (4.19)

1 Apart from an overall sign arising from a difference in the definition in C(φ), these
expressions are the same as those appearing in Ref. [9]
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This is of order m4
1, and hence contributes only to V eff

e8 . Finally, there is an order e6 contri-
bution

V eff
e6;1−loop = −

i

2

∫
d4k

(2π)4

[
lnD(k) − 2 ln(k2 + e2vφ)

]
(4.20)

in which the first term arises from graphs with Φ2, longitudinal photon, or mixed scalar-
photon propagators while the second is due to those with a single ghost loop.

In addition to these one-loop contributions, there are a number of two-loop graphs that
contribute to V eff

e6 . Some two-loop graphs have already been included in Eq. (4.20) as a
result of the replacement m̃2

i → m2
i , including in particular the ξ-dependent “figure-eight”

graph with one transverse photon loop and one Φ2 loop. In the Appendix we show that
although a number of the remaining graphs are ξ-dependent, they add together2 to give a
gauge-independent contribution to V eff

e6 . Hence, we can combine Eq. (4.20) with Eqs. (4.11),
(4.15), and (4.16), to obtain

ξ
∂V eff

e6

∂ξ
= ξ

∂V eff
e6;1−loop

∂ξ
= Ce2

∂V eff
e4

∂φ
, (4.21)

thus verifying Eq. (3.6).

4.3 The identity for Z(φ)

We now turn to the identity (3.4), which we will verify to order e2. We begin by recalling that
Z(φ) can be calculated from the sum of one-particle irreducible graphs with one external line
carrying momentum p, another carrying momentum−p, and all others with zero momentum.
If the contribution of graph j is denoted by Ij(p2), then

Z = −i
∂

∂p2

∑
Ij

∣∣∣∣∣
p2=0

. (4.22)

Although there are many one-loop graphs contributing to the scalar self-energy, we will
need to calculate only a few. Those graphs with quartic vertices are independent of the
external momentum and hence do not contribute to Z(φ). Because of our assumption that

2 The cancellation of the gauge-dependence among these graphs can be understood
by considering the case λ ∼ e2, where the loop expansion is completely equivalent to
an expansion in e2. Apart from the appearance of m̃2

2 rather than m2
2, the one-loop

approximation to C(φ) is precisely the same as Ce2 of Eq. (4.16). Hence, Eq. (3.3) can be
satisfied both at the one-loop level in that case (as was shown in [9]) and in at O(e6) in
our case only if this cancellation among the two-loop graphs occurs.
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λ = O(e4), all graphs with a vertex arising from the scalar self-interaction are at least of
order e4 and can also be ignored here. Finally, the self-energy graph with a single ghost loop,
although of order e2, is ξ-independent. Thus, the entire ξ-dependence of Ze2 (φ) comes from
the four graphs shown in Fig. 2.

It is convenient to consider separately the terms containing the transverse and the longi-
tudinal parts of the photon propagators. The only contribution with two transverse propaga-
tors, from graph b, is manifestly independent of ξ and so can be neglected here. Graphs a, b,
and c each give contributions with a single transverse propagator; although separately these
each contain ξ-dependent terms of order e2, their sum is easily seen to be ξ-independent to
this order.

This leaves the terms containing only longitudinal photons. These may be written as

Ij = e2
∫

d4k

(2π)4

1

D(k)D(p + k)
bj(k, p) (4.23)

where

ba = −[(p+ k)2 − ξe2φ2] (ξk2 − e2v2) [k · (2p + k)]2 k−2

bb = 2e2φ2 (ξk2 − e2v2) [ξ(p + k)2 − e2v2][k · (p+ k)]2 k−2 (p + k)−2

bc = −4e2φ2 (ξφ+ v) (ξk2 − e2v2)[k · (p + k)] [k · (2p + k)] k−2

bd = e2(ξφ+ v)2 (k2 − p2) k · (k + 2p) . (4.24)

(In these expressions we have omitted terms proportional to m2
2 since the contribution of

these is at least O(e4). Note also that we have included a factor of two in the the contribution
from graph c to take into account the fact that reversing the direction of p gives a second
graph with the same value.) Summing these expressions, we obtain

ba + bb + bc + bd = ξ(p2 − 2p · k − k2)D(p + k)− 2ξp2
(
e2φv + e4φ2v2

)
+

{
e6φ4v2

2

[
3(k + p)2 − 3k2 +

(p + k)4

k2
−

k4

(p + k)2

]
+
e4φ2ξ2

2
[k4 − (p + k)4]

}
+ · · · (4.25)

where the dots denote terms that are either ξ-independent, of order p3, or else proportional
to m2

2 and thus of higher order in e. Because of their antisymmetry under the interchange
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k2 ←→ (p+k)2, the contributions of the terms in curly brackets to the integral in Eq. (4.23)
cancel. Inserting the remaining terms into the integral and keeping terms proportional to
p2, we find that

Ze2 = −ie2ξ
∫

d4k

(2π)4

[
1

D(k)
−

2 (e2φv + e4φ2v2)

[D(k)]2

]
+ ξ−independent terms

= −ie2ξ
∫

d4k

(2π)4

[
1

D(k)
−

φ

[D(k)]2
∂D(k)

∂φ

]
+ ξ−independent terms

= 2
∂Ce2

∂φ
+ ξ−independent terms . (4.26)

(In going from the first to the second line, contributions proportional to ∂m2
2/∂φ have been

neglected as being of higher order.)
Differentiating this with respect to the gauge-parameter ξ gives

ξ
∂Ze2

∂ξ
= 2

∂

∂φ

[
Ce2 + ie2φξ

∫ d4k

(2π)4

e2φ2ξm2
2

[D(k)]2

]

= 2
∂Ce2

∂φ
+O(e4) . (4.27)

This verifies the identity (3.7).

5 Concluding remarks

In this paper we have have shown how the Nielsen identity that describes the gauge depen-
dence of the effective action can be converted into an infinite series of identities, one for each
of the functions appearing in the derivative expansion of the effective action. Using these
identities, we have shown, to leading nontrivial order, that one obtains a gauge-independent
result for the bubble nucleation rate even in theories where the calculation of this rate in-
volves the gauge-dependent higher order contributions to the effective action. This provides
one more example to show that the gauge-dependence of the effective action does not prevent
it from being a useful tool for obtaining gauge-independent physical results.

As an explicit example, we have verified the identities for the ξ-dependence of V eff(φ)
and Z(φ) in the class of gauges defined by the gauge-fixing function (4.4). In fact, these
gauges actually depend on a second parameter, v. (Note that nothing in our calculations
requires that v be equal to the vacuum expectation value of φ.) Working from Eq. (2.11),
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we find that

v
∂V eff

∂v
= Cv ∂V

eff

∂φ
(5.1)

and

v
∂Z

∂v
= Cv ∂Z

∂φ
+ 2Dv ∂V

eff

∂φ
+ 2Z

∂Cv

∂φ
. (5.2)

where Cv(φ) and Dv(φ) are obtained from the derivative expansion of

Hv
Φ1

[φ(z), y] = −ie2v
∫
d4x〈(Φ2(y) η(y) η̄(x) Φ2(x)〉 . (5.3)

(Note the absence of the factor of 1/2 relative to Eq. (4.5).) In particular, the leading
contributions to these identities comes from

Ce2 = −ie2v
∫

d4k

(2π)4

(k2 − ξe2φ2)

(k2 + e2vφ)D(k)
(5.4)

The Fermi gauges, defined by F = ∂µA
µ, can be obtained from the Rξ gauges we have

considered by setting v = 0. However, because of the infrared divergences that afflict these
gauges, the limit v → 0 is somewhat nontrivial and the verification of the identities for these
gauges must be done separately [10]. To see the cause of these difficulties, note that our
assumptions about the magnitude of λ and m2 imply that if v = 0 the zeros of D(k) occur at
values of k2 of order e4φ2. This has the effect of making some two-loop graphs (beyond those
resummed by the conversion of m̃2

i to m2
i ) comparable to one-loop graphs. For example, in

the calculation of the quantity ∂Ce2/∂φ on the left hand side of the Nielsen identity for Ze2 ,
the terms involving ∂m2

2/∂φ are no longer higher order. The corresponding terms on the
right hand side of the identity come from contributions to Ze2 due to two-loop graphs and
one-loop graphs with vertices proportional to λ; both types of contributions can be neglected
for generic nonzero values of v.

A Appendix

In this appendix we show that, although individual two-loop graphs give gauge-dependent
contributions to V eff

e6 , their sum is ξ-independent. The first step is to identify the relevant
graphs. All graphs with vertices proportional to λ give higher order contributions, and so can
be omitted. Similarly, any graph with a loop containing only Φ1 propagators is proportional
to a power of m2

1 and hence of higher order. Finally, there is a two-loop graph containing a

13



ghost loop, but it is manifestly gauge-independent. The only nonzero graphs remaining are
shown in Fig. 3.

It is convenient to decompose the photon propagators into transverse and longitudinal
parts, and to examine separately the contributions from each. Consider first the contributions
involving transverse photon propagators. The part of graph a involving two such propagators
and the part of graph e involving one transverse photon have already been included in the
one-loop calculation by the resummation that converted the m̃2

i to the m2
i , and hence should

be omitted. This leaves the portions of graphs a, b, and d that involve only a single transverse
photon each. The contribution of these to the effective potential is

−e2
∫

d4k

(2π)4

d4p

(2π)4

gµν −
kµkν
k2

(k2 − e2φ2)D(p) [(k + p)2 −m2
1]

[
2e2φ2 (ξp2 − e2v2)

(
pµpν

p2

)

−
1

2
(p2 − ξe2φ2) (k + 2p)µ(k + 2p)ν − 2e2φ(ξφ+ v)(k + 2p)µpν

]

= 2e2
∫ d4k

(2π)4

d4p

(2π)4

1

(k2 − e2φ2) [(k + p)2 −m2
1]

(
1−

(p · k)2

k2p2

)
+ · · · (A.1)

where the dots represent terms proportional to m2
2. Not only is this result independent of ξ,

but examination of the integrals shows it to be in fact of order e8.
This leaves us with the terms involving only longitudinal photons. Let us denote the

corresponding contribution from graph j by Jj. For the first four graphs this may be written
in the form

Jj = −e2
∫

d4k

(2π)4

d4p

(2π)4

1

[(k + p)2 −m2
1]D(k)D(p)

aj(k, p) . (A.2)

Omitting terms proportional to m2
2, whose effects are of higher order, one finds that

aa = e2φ2 (ξk2 − e2v2) (ξp2 − e2v2) (k · p)2 k−2 p−2

ab = −
1

2
(ξk2 − e2v2) (p2 − ξe2φ2) (k2 + 2k · p)2 k−2

ac =
e2

2
(ξφ+ v)2 (k2 + 2k · p) (p2 + 2k · p)

ad = −2e2φ (ξφ + v) (ξk2 − e2v2) (k2 + 2k · p) (k · p) k−2 . (A.3)

The sum of these is

aa + ab + ac + ad = −
1

2
(p + k)2

[
(k2 − ξe2φ2) (ξp2 − e2v2) + (k · p) (2p2ξ − e2φ2ξ2)

]
+
ξ

2
D(p) [(p + k)2 − p2] +A(k, p) + · · · (A.4)
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where A(k, p) is an antisymmetric function of k and p and the dots represent terms that are
either proportional to m2

2, and thus of higher order, or else ξ-independent.
When this sum is inserted back into the integral, the term containing A(k, p) vanishes

because of its antisymmetry. The remaining terms give

Ja + Jb + Jc + Jd =
e2

2

∫
d4k

(2π)4

d4p

(2π)4

[
1 +

m2
1

[(k + p)2 −m2
1]

]
1

D(k)D(p)

×
[
(k2 − ξe2φ2) (ξp2 − e2v2) + (k · p) (2p2ξ − e2φ2ξ2)

]
−
e2ξ

2

∫
d4k

(2π)4

d4p

(2π)4

[(p+ k)2 − p2]

[(k + p)2 −m2
1]D(k)

+ · · · . (A.5)

The terms in the first integral that are proportional to m2
1 are at least O(e8) and can be

omitted. In the second integral, let us make the change of variable p→ p− k. The resulting
integral is then clearly the product of two integrals, one of which is proportional to m2

1, and
is thus also higher order. Hence,

Ja + Jb + Jc + Jd =
e2

2

∫
d4k

(2π)4

(k2 − ξe2φ2)

D(k)

∫
d4p

(2π)4

(ξp2 − e2v2)

D(p)
+ · · · . (A.6)

This last expression is precisely equal to −Je. Hence, the two-loop contribution to V eff
e6 is

ξ-independent, as was claimed.
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Figure 1: The two graphs that contribute to Ce2 . Photon, Φ2, and ghost propagators are
indicated by wiggly, long-dashed, and short-dashed lines, respectively.
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(a) (b)

(c) (d)

Figure 2: The graphs that contribute to Ze2 . Solid lines represent Φ1 propagators, with all
other propagators shown as in Fig. 1.
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(d) (e)

(a) (b) (c)

Figure 3: The two-loop graphs that contribute to Ve6 .

19


