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Abstract

We construct a supersymmetric SO(10)×U(1)F model of the Yukawa interactions at

the grand unification scale from knowledge of a phenomenological set of mass matrices

obtained by a previous bottom-up approach. The U(1)F family symmetry determines

the textures for the Majorana and generic Dirac mass matrices, while the SO(10)

symmetry relates each particular element of the up, down, neutrino and charged lepton

Dirac matrices. The dominant second and third family contributions in the Dirac

sector are renormalizable, while the remaining contributions to the Dirac mass matrices

are of higher order, restricted by the U(1)F family symmetry to a small set of tree

diagrams, and mainly complex-symmetric. The tree diagrams for the Majorana mass

matrix are all non-renormalizable and of progressively higher-order, leading to a nearly
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geometrical structure. Pairs of 1, 45, 10 and 126 Higgs representations enter with those

having large vacuum expectation values breaking the symmetry down to SU(3)c ×

SU(2)L×U(1)Y near the grand unification scale. In terms of 12 parameters expressed

as the Yukawa couplings times vacuum expectation values for the Higgs representations

employed, a realistic set of 15 quark and lepton masses (including those for the 3 heavy

righthanded Majorana neutrinos)and 8 mixing parameters emerges for the neutrino

scenario involving the non-adiabatic conversion of solar neutrinos and the depletion of

atmospheric muon-neutrinos through oscillations into tau-neutrinos.

PACS numbers: 12.15.Ff, 12.60Jv
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I. INTRODUCTION

The standard model (SM) of strong and electroweak interactions, while providing excel-

lent agreement with experiment todate, is known to be woefully inadequate to explain the

mass spectrum and mixings of the three families of quarks and leptons. One needs to go be-

yond the standard model in order to relate the independent Yukawa couplings to each other.

Of the various possibilities, supersymmetric grand unified theories and superstring theories

seem to hold the most promise for successfully incorporating the Yukawa interactions in a

more satisfactory fashion. In this paper we shall restrict our attention to supersymmetric

SO(10) grand unification, which has been shown [1] to unify the gauge couplings successfully

at a scale of ΛSGUT ∼ 1016 GeV.

It is a generally held opinion that knowledge of the mass matrices in the weak flavor

basis can provide insights into the dynamical mass-generating mechanism.[2] This follows

from the fact that the mass eigenvalues are obtained by diagonalization of the mass matrices,

while the mixing matrices in the mass eigenbasis can be constructed from knowledge of the

diagonalizing matrices connecting the two bases. By starting from the correct mass matrices,

one should then be able to deduce the observed quark and lepton masses and mixings after

evolving the results down to the present “low energy” scales.

Generally two procedures are at one’s disposal for the identification of the “correct”

mass matrices. One can attempt to postulate a particular structure or “texture” for the

mass matrices based on some well-defined and presumably simple theoretical concepts such

as the unification group and/or the number of texture zeros present.[3] This procedure has

been employed by most researchers in the past twenty years. Alternatively, one can make

use of the known low energy mass and mixing data, supplemented by reasonable guesses

for data which is not yet well determined, in order to extract mass matrices within some

framework at the unification scale which yield the low energy data in question. Of special
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interest are neutrino scenarios incorporating the Mikheyev - Smirnov - Wolfenstein (MSW) [4]

nonadiabatic resonant conversion interpretation of the depletion of solar electron-neutrinos

[5] and either the observed depletion of atmospheric muon-neutrinos through oscillations [6]

or neutrinos of satisfactory mass to contribute to the hot component of mixed dark matter

[7], for example.

In a series of papers [8] the authors have demonstrated the latter “bottom-up” approach

by making use of Sylvester’s theorem [9] to construct mass matrices from the low energy

masses and mixing matrices evolved to the unification scale. In doing so, we have attempted

to look for simplicity of the mass matrices in the SO(10) framework while varying the quark

and lepton weak bases. Such simplicity was found for the MSW solar and atmospheric

neutrino depletions in the bases where the up quark and Dirac neutrino mass matrices are

real and diagonal, while the down quark and charged lepton matrices are in general complex

symmetric. The right-handed Majorana neutrino matrix exhibits a simple nearly geometrical

texture.

From the phenomenological mass matrices constructed, we have attempted to derive mass

matrices of similar textures from some well-defined family symmetry. In particular, we find

within an SO(10) × U(1)F symmetry framework that we can reproduce all the known and

assumed-known low energy mass and mixing data for the quarks and leptons in terms of

products of Yukawa couplings and Higgs vacuum expectation values (VEVs). The U(1)F

symmetry controls the textures for the generic Dirac and Majorana mass matrices, while

SO(10) relates particular elements of the up, down, Dirac neutrino and charged lepton mass

matrices to each other.

In this paper we shall present all the details for this model construction which were

summarized in a short letter submitted elsewhere [10]. Section II summarizes the bottom-

up procedure and the phenomenological mass matrices obtained for the neutrino scenario
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preferred. The U(1)F family symmetry is introduced and applied in the Dimopoulos tree-

diagram approach [11] in Sect. III for the contributions to the mass matrices. In Sect. IV the

diagramatic contributions to the mass matrix elements are explicitly given with quantitative

results presented in Sect V. Our work is summarized in Sect. VI.

II. PHENOMENOLOGICAL MATRICES from a BOTTOM-UP APPROACH

We begin by presenting the low scale input and procedure by which we were able to

construct a relatively simple SO(10) set of phenomenological mass matrices at the SUSY

GUT scale as spelled out in detail in Ref. [8] The relevant framework is assumed to be that

of SUSY SO(10) grand unification at a scale of ΛSGUT = 1.2×1016 GeV with supersymmetry

breaking occuring at a scale of 180 GeV, in order that we can use the analytical one-loop

evolution formulas and results given by Naculich [12].

For the low scale quark data, we assumed the following set of quark masses and Cabbibo

- Kobayashi - Maskawa (CKM) mixing matrix [13]

mu(1GeV) = 5.1 MeV, md(1GeV) = 8.9 MeV

mc(mc) = 1.27 GeV, ms(1GeV) = 175 MeV

mt(mt) = 150 GeV, mb(mb) ' 4.25 GeV

(2.1a)

VCKM =


0.9753 0.2210 0.0031e−i155o

−0.2206 0.9744 0.043

0.011 −0.041 0.999
−0.001i

 (2.1b)

The light quark masses were chosen to be the central values given by Gasser and Leutwyler

[14], while the heavy physical top mass was set equal to 160 GeV prior to its discovery

yielding a running mass of 150 GeV. We assumed a value of 0.043 for Vcb, which is now

thought to be closer to 0.040, and applied strict unitarity to determine Vub, Vtd and Vts.
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The greatest SO(10) simplicity was obtained for the neutrino scenario incorporating the

observed depletion of solar neutrinos [5] through the nonadiabatic MSW [4] matter conversion

of electron-neutrinos into muon-neutrinos in the interior of the sun and the depletion of

atmospheric muon-neutrinos through oscillation into tau-neutrinos observed now by several

deep mine collaborations [6]. The central values deduced for these mixing plane results are

δm2
12 ∼ 5× 10−6 eV2, sin2 2θ12 ∼ 0.008

δm2
23 ∼ 1× 10−2 eV2, sin2 2θ23 ∼ 0.9

(2.2)

We took for the lepton input

mνe = 0.5× 10−6 eV, me = 0.511 MeV

mνµ = 0.224× 10−2 eV, mµ = 105.3 MeV

mντ = 0.105 eV, mτ = 1.777 GeV

(2.3a)

and

Vlept =


0.9990 0.0447 0.0076e−i155o

−0.0363 0.8170 0.575

0.026 −0.570 0.818
−0.007i

 (2.3b)

These masses and mixing matrix data were evolved to the SUSY GUT scale by using

formulas given by Naculich [12] as spelled out in detail in Ref. 8. We could then reconstruct

complex-symmetric mass matrices at the SUSY GUT scale by making use of Sylvester’s

theorem [9] as illustrated by Kusenko [15] for the quark sector. The construction is not

unique, for one is free to change the quark and lepton weak bases by letting two parameters,

xq and x`, vary independently over their support regions, 0 ≤ x ≤ 1. For xq (x`) = 0, the

up quark (Dirac neutrino) mass matrix is diagonal; while for xq (x`) = 1, the down quark

(charged lepton) mass matrix is diagonal. One is also free to vary the signs of the mass

eigenvalues.

By varying the signs of the mass eigenvalues and the two parameters xq and x`, we

then searched for a simple SO(10) structure for the mass matrices. The greatest simplicity
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occurred with xq = 0 and x` = 0.93 corresponding to diagonal up quark and Dirac neutrino

mass matrices and leading to

MU ∼MNDirac ∼ diag(126; 126; 10) (2.4a)

MD ∼ME ∼


10′, 126 10′, 126

′
10′

10′, 126
′

126 10′

10′ 10′ 10

 (2.4b)

with MD
11, M

E
12 and ME

21 anomalously small and only the 13 and 31 elements complex. En-

tries in the matrices stand for the Higgs representations contributing to those elements,

which we elaborate upon in the next Section. We have assumed complete unification for the

Yukawa couplings of the third families of quarks and leptons and that vacuum expectation

values (VEVs) develop only for the symmetric representations 10 and 126. The 10’s con-

tribute equally to (MU , MD) and (MNDirac, ME), while the 126’s weight (MU , MD) and

(MNDirac, ME) in the ratio of 1 : -3. The Majorana neutrino mass matrix MR, determined

from the seesaw formula [16] with use of MNDirac and the reconstructed light neutrino mass

matrix, exhibits a nearly geometrical structure [17] given by

MR ∼


F −

√
FE

√
FC

−
√
FE E −

√
EC

√
FC −

√
EC C

 (2.4c)

where E ' 5
6

√
FC with all elements relatively real [18]. It can not be purely geometrical,

however, since the singular rank-1 matrix can not be inverted as required by the seesaw

formula, MNeff ' −MNDirac(MR)−1MNT
Dirac.

III. U(1)F FAMILY SYMMETRY and RESULTING TREE DIAGRAMS

The challenge is now to introduce a family symmetry which will enable us to derive the

mass matrix textures derived above phenomenologically from our bottom-up approach. For
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this purpose, we propose to use a U(1)F family symmetry [19], where we leave open for the

time being whether the symmetry is global or local in which case it can be gauged. Before

proceeding with this, we review briefly the elements of the SO(10) symmetry group which

play important roles in our model construction.

In the SO(10) framework, each family of left-handed quarks, leptons, conjugate quarks

and conjugate leptons belongs to a 16 dimensional representation. It is convenient to rep-

resent a given flavor (and color) member of the ith family and its conjugate by the two

components ΨiL = (ψiL, (ψc)iL). In the corresponding three-family basis ordered as follows,

ΨL = {ψ1L, ψ2L, ψ3L, (ψc)1L, (ψc)2L, (ψc)3L}, the contributions to the up or down quark, neu-

trino or charged lepton, mass terms in the Yukawa Lagrangian are then given by

L = ΨT
LC
−1MΨL + h.c. (3.1a)

where the 6 x 6 matrix can be written in terms of 3 x 3 submatrices

M =MT =

 ML MDirac

MT
Dirac MR

 (3.1b)

with the individual contributions referring to

ML : (ψiL)TC−1ψjL

MDirac : (ψiL)TC−1(ψc)jL = ψjRψiL

MT
Dirac : (ψc)iL

TC−1ψjL = ψiRψjL

MR : (ψc)TiLC
−1(ψc)jL = ψiR(ψc)jL

(3.1c)

Here the diagonal block entries appear only for neutrinos withML the left-handed Majorana

neutrino mass matrix which we take to vanish, while MR is the right-handed Majorana

neutrino mass matrix which receives large contributions near the SUSY GUT scale.

By construction the 6 x 6 matrixM is complex symmetric, but the Dirac mass submatrix

is not necessarily complex symmetric. We shall assume that the dominant contributions are
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complex symmetric and that any departures from this form arise from small higher-order

corrections. Recall that the SO(10) product rules read

16× 16 = 10s + 120a + 126s (3.2a)

16× 16 = 1 + 45 + 210 (3.2b)

Hence we shall assume that only the symmetric Higgs representations 10 and 126 develop low

scale VEVs, while the antisymmetric 120 does not. In terms of the SU(5) decompositions,

we have

10→ 5 + 5̄, 126→ 50 + 45 + 15 + 10 + 5̄ + 1 (3.3a)

The up-type quarks and Dirac neutrinos then can receive contributions from the neutral

members of 10(5) and 126(5), the down-type quarks and charged leptons from those of

10(5̄) and 126(45), and the heavy right-handed Majorana neutrinos from those of 126(1).

We shall later assume the Higgs representations 1 and 45 play a role in the higher-order

corrections, where the 45(1) and 45(24) develop VEVs according to the decomposition

45→ 24 + 10 + 10 + 1 (3.3b)

Returning to the phenomenological mass matrices obtained in Section II, we use the

textures given in (2.4a,b,c) as our starting point for the construction of an SO(10) × U(1)F

model of the Yukawa interactions. We find it useful to introduce a generic Dirac matrix,

MDirac, to go along with the one Majorana matrix, MR. The U(1)F family symmetry will

then determine the textures for MDirac and MR, while the SO(10) symmetry will relate the

corresponding matrix elements of the four Dirac matrices MU , MD, MN and ME to each

other.

Simplicity of the SO(10) structure requires that just one Higgs 10 representation con-

tributes to the (MDirac)33 element (hereafter labeled D33). Since a 10 contributes equally to
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the 33 elements of all four Dirac matrices, this implies that we assume complete unification

of the Yukawa couplings at the unification scale: m̄τ = m̄b = m̄t/ tan β10, where tan β10 is

equal to the ratio of the up quark to the down quark VEVs in the 10, i.e.,

m̄t = g10(v/
√

2) sin β10 ≡ g10vu

m̄b = m̄τ = g10(v/
√

2) cos β10 ≡ g10vd

tanβ10 = vu(5)/vd(5̄)

(3.4a)

in terms of the SU(5) decomposition of SO(10) with v = 246 GeV. The same 10 can not

contribute to D23 = D32, for the diagonal nature of MU and MN requires the presence of

another 10′ with

tanβ10′ = v′u(5
′)/v′d(5̄

′) = 0 (3.4b)

Likewise we assume a pure 126 contribution to D22 with

tanβ126 = wu(5)/wd(45) (3.4c)

In other words, for simplicity we have taken the 2-3 sector of MDirac to be renormalizable

with two 10’s and one 126 developing low scale VEVs. We illustrate the renormalizable

3-point tree diagrams in Fig. 1a.

We now assign U(1)F charges as follows to the three families (in order of appearance)

and to the three Higgs representations introduced which generate low scale VEVs with the

numerical values to be determined later:

16α3 , 16β2 , 16γ1 , 10a, 10′
b
, 126

c
(3.5a)

Conservation of U(1)F charges then requires 2α + a = 0, α + β + b = 0 and 2β + c = 0 as

seen from the diagrams in Fig. 1a.

We assume the rest of the MDirac elements arise from higher-order tree diagrams as first

suggested by Dimopoulos [11] twelve years ago. The point is that not only does SUSY
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control the running of the Yukawa couplings between the SUSY GUT scale and the weak

scale where it is assumed to be softly broken, but it also allows one to assume that only

simple tree diagrammatic contributions to the mass matrices need be considered as a result

of the non-renormalization theorem [20] applied to loop diagrams. While the low-scale VEVs

introduced act only once in each diagram, other GUT scale VEVs arising from 1 and 45

Higgs representations can connect superheavy GUT scale 16 fermions and their conjugate

16 mirrors to each other and to the three light 16 families. The superheavy fermions and

their mirrors pair off and get masses slightly higher than the SUSY GUT breaking scale, so

their propagators in the higher-order tree diagrams lead to non-renormalizable contributions

scaled by their masses.

For each 45 Higgs representation, as noted earlier in terms of the SU(5) decomposition

given in (3.3b), VEVs can develop in the orthogonal directions

< 45X >∼ 45(1), < 45Y >∼ 45(24) (3.6a)

or in any non-orthogonal directions. One such direction of interest corresponds to the hy-

percharge direction for flipped [21] SU(5) × U(1) as clarified in Table I:

< 45Z >=
6

5
< 45X > −

1

5
< 45Y > (3.6b)

While the < 45X > VEV breaks SO(10) → SU(5), the < 45Z > VEV breaks SO(10) →

flipped SU(5). Alternatively, if the SO(10)→ SU(5) breaking occurs earlier by some other

VEV such as < 126
′
> as required later for the Majorana sector, the combined action of

< 45X > and < 45Z > will result in the breaking of SU(5)→ SU(3)c × SU(2)L × U(1)Y .

Since the D13 and D23 elements in (2.4a,b) have the same 10′ transformation property,

this suggests that we introduce a 45eX Higgs field and construct an explicitly complex-

symmetric dimension-6 tree diagram as shown in Fig. 1b, for which U(1)F charge conserva-

tion requires α+γ+b+2e = 0. We shall later give the four Dirac mass matrix contributions
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derived from D13 by use of Table I which confirms that D13 and D23 do have the same 10′

transformation property, i.e., the contributions to MU and MN vanish while those to MD

and ME are non-zero and equal.

The D12 element, on the other hand, appears to arise from a linear combination of 10′ and

new 126 VEV contributions for which (ME)12 � (MD)12. Rather than introduce another

new renormalizable diagram, we can make use of the fact that a 45Z Higgs develops a VEV

which vanishes for the charged lepton D12 diagram as seen from Table I. We then introduce a

new 45hZ Higgs field and construct the complex-symmetric dimension-6 tree diagram shown

in Fig. 1b. Note that detailed study showed that to reduce the number of contributing

diagrams the 10′ Higgs line should leave the diagram, or equivalently, the 10′∗ line should

enter the diagram, so U(1)F charge conservation requires β + γ − b+ 2h = 0.

The D11 element is dimension-8 or higher, and we leave it unspecified. The complex-

symmetric leading-order Yukawa diagrams which we wish to generate are then neatly sum-

marized by the ordering of the Higgs fields where all external lines enter the diagrams:

D33 : 163 −10− 163

D23 : 162 −10′ − 163

D32 : 163 −10′ − 162

D22 : 162 −126− 162

D13 : 161 −45X −10′ − 45X −163

D31 : 163 −45X −10′ − 45X −161

D12 : 161 −45Z −10′∗ − 45Z −162

D21 : 162 −45Z −10′∗ − 45Z −161

(3.7a)

In order to obtain a different set of diagrams and hence a different texture for the Majo-

rana matrix, we begin the M33 contribution with a dimension-6 diagram shown in Fig. 1c

by including a new 126
′d

Higgs which develops a VEV at the GUT scale in the SU(5) singlet
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direction, along with a pair of 1g Higgs fields. Here 2α + d+ 2g = 0. The nearly geometric

structure [8] for MR can then be generated by appending more Higgs fields to each diagram.

For M23 we introduce another 1′f Higgs field to construct a diagram with one 126
′d

, one 45eX,

one 1′f and two 1g fields with charge conservation demanding α + β + d + 2g + e+ f = 0.

The new 1′ field is needed in order to scale properly the Majorana matrix elements rela-

tive to each other. The remaining leading-order diagrams of the complex-symmetric Majo-

rana mass matrix follow by appending more 45eX, 45hZ and 1′f Higgs lines. The pattern is

made clear from the charge conservation equations: 2β + d + 2g + 2e + 2f = 0 for M22,

α + γ + d + 2g + e + h + 2f = 0 for M13, β + γ + d + 2g + 2e + h + 3f = 0 for M12, and

2γ + d + 2g + 2e + 2h+ 4f = 0 for M11.

In summary, the following Higgs representations have been introduced in addition to

those in (3.5a):

126
′d
, 45eX, 45hZ , 1g, 1′

f
(3.5b)

all of which generate massive VEVs near the GUT scale. In order to obtain CP-violation

in the quark and lepton mixing matrices, we allow the VEVs for 45X, 45Z, 1 and 1′ to be

complex, but the VEVs associated with the 10, 10′ ,126 and 126
′

representations can be

taken to be real without loss of generality as seen from our bottom-up results. Clearly, many

permutations of the Higgs fields are possible in the higher-order diagrams.

At this point a computer search was carried out to generate U(1)F charge assignments

leading to the fewest additional diagrams allowed by charge conservation. An especially

interesting charge assignment stood out for which

α = 9, β = −1, γ = −8

a = −18, b = −8, c = 2, d = −22, e = 3.5, f = 6.5, g = 2.0, h = 0.5
(3.8a)

One should note that since α+β+ γ = 0, the [SO(10)]2×U(1)F triangle anomaly vanishes,

whereas the [U(1)F ]3 anomaly does not. Simplicity then suggests that the U(1)F family sym-
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metry group can be global with a familon being generated upon its breaking. Alternatively,

the U(1)F group can be local and gauged if the [U(1)F ]3 anomaly is canceled by the addition

of several SO(10)-singlet fermions with appropriate U(1) charges, or perhaps better still, by

the Green-Schwarz mechanism [22] provided the model can be derived from string theory.

We intend to study this point at greater length elsewhere and do not commit ourselves here

to either possibility.

With the above charge assignments we can further greatly limit the number of permuta-

tions and eliminate other unwanted diagrams by restricting the U(1)F charges appearing on

the superheavy internal fermion lines. With the following minimum set of allowed charges

for the left-handed superheavy fermions FL and their mirror partners F c
L

FL : −0.5, 1.0, 2.0, 4.0, 4.5, −4.5, −7.5, 11.0, 12.5

F c
L : 0.5, −1.0, −2.0, −4.0, −4.5, 4.5, 7.5, −11.0, −12.5

(3.8b)

as determined by another computer program, we recover just the leading-order diagrams

listed in (3.7a) for the generic Dirac mass matrix together with the following uniquely-

ordered diagrams for the complex-symmetric Majorana mass matrix

M33 : 163 −1− 126
′
− 1− 163

M23 : 162 −1− 45X −1′ − 126
′
− 1− 163

M32 : 163 −1− 126
′
− 1′ − 45X −1− 162

M22 : 162 −1− 45X −1′ − 126
′
− 1′ − 45X −1− 162

M13 : 161 −45X −1′ − 1− 45Z −1′ − 126
′
− 1 − 163

M31 : 163 −1− 126
′
− 1′ − 45Z −1− 1′ − 45X −161

M12 : 161 −45X −1′ − 1− 45Z −1′ − 126
′
− 1′ − 45X −1− 162

M21 : 162 −1− 45X −1′ − 126
′
− 1′ − 45Z −1− 1′ − 45X −161

M11 : 161 −45X −1′ − 1− 45Z −1′ − 126
′
− 1′ − 45Z −1− 1′ − 45X−161

(3.7b)

Several other higher-order diagrams are allowed by the U(1)F charges given in (3.8a,b) and
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appear for D11, D22, M23 and M32 with the Higgs fields ordered as follows:

D11 : 161 −45X −1′ − 1− 10′ − 1− 1′ − 45X −161

D22 : 162 −45Z −10′∗ − 1′∗ − 162, 162 −1′∗ − 10′∗ − 45Z −162

M23 : 162 −45∗X −1′ − 1− 45Z −1′ − 126
′
− 1− 163

M32 : 163 −1− 126
′
− 1′ − 45Z −1− 1′ − 45∗X −162

(3.7c)

These corrections to M23 and M32 ensure that MR is rank 3 and nonsingular, so that the

seesaw formula [16] can be applied. Up to this point the contributions are all complex-

symmetric.

Additional correction terms of higher order which need not be complex-symmetric can be

generated for the Dirac and Majorana matrix elements, if one allows additional superheavy

fermion pairs with new U(1)F charges. Such a subset which does not destroy the pattern

constructed above, but helps to improve the numerical results for the lepton masses and

mixings, consists of the following:

FL : 1.5, −6.0, −6.5

F c
L : −1.5, 6.0, 6.5

(3.8c)

The additional diagrams arising from this expanded set of superheavy fermions are:

D11: 161 −1− 126− 1− 1′ − 45X −161, 161 −45X −1′ − 1− 126− 1− 161

D11: 161 −1− 45∗Z −1− 1′ − 1− 126− 1 − 161,

161 −1− 126− 1− 1′ − 1− 45
∗
Z −1− 161

D11: 161 −1− 45∗Z −1− 1′ − 1− 10′ − 1− 1′ − 45X −161,

161 −45X −1′ − 1− 10′ − 1− 1′ − 1− 45∗Z −1− 161

D12: 161 −1− 126− 1− 1′ − 45
∗
X −162

D21: 162 −45∗X −1′ − 1− 126− 1− 161

D12: 161 −1− 126− 45
∗
Z −45X −1− 162

D21: 162 −1− 45X −45∗Z −126− 1− 161

D12: 161 −1− 45∗Z −126− 45X −1− 162 (3.7d)
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D21: 162 −1− 45X −126− 45
∗
Z −1− 161

D13: 161 −1− 126− 45
∗
Z −1′∗ − 1− 163

D31: 163 −1− 1′∗ − 45∗Z −126− 1− 161

D13: 161 −1− 45∗Z −126− 1′∗ − 1− 163

D31: 163 −1− 1′∗ − 126− 45
∗
Z −1− 161

D13: 161 −1− 45∗Z −1− 10′ − 45X −163

D31: 163 −45X −10′ − 1− 45∗Z −1− 161

M11: 161 −45X −1′ − 45∗Z −45∗Z −45X −1′ − 126
′
−

1′ − 45X −45∗Z −45∗Z −1′ − 45X −161

We thus have obtained the complete set of diagrams we shall consider for the evaluation

of the mass matrices. Any additional diagrams for a given MDirac or MR matrix element

allowed by the U(1)F family symmetry are of higher-order and will lead to noticeably smaller

contributions to that element than those arising from all the diagrams listed above.

IV. EVALUATION OF CONTRIBUTIONS to the MASS MATRICES

We now turn to the evaluation of the contributions to each matrix element at the SUSY

GUT scale. The renormalizable 3-point couplings times VEVs for the 10(5), 10(5̄), 10′(5̄′),

126(5), 126(45) and 126
′
(1) vertices contributing to MU and MN , MD and ME, MD and

ME, MU and MN , MD and ME, and MR, respectively, are labeled

g10vu, g10vd, g10′v
′
d, g126wu, g126wd, g126′w

′ (4.1a)

We shall assume the superheavy fermions all get massive at the same mass scale, so each

1, 1′, 45X or 45Z vertex factor can be rescaled by the same propagator mass M according

to

x ≡ g45Xu45X/M, z ≡ g45Zu45Z/M, s ≡ g1u1/M, s′ ≡ g1′u1′/M (4.1b)
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where we have introduced a convenient short-hand notation. In order to accommodate CP

violation, as noted earlier after (3.5b) we introduce the four phases

φx, φz, φ1, φ1′ (4.1c)

As a result we are led to introduce 14 independent parameters in order to explain the 15

quark and lepton masses and 8 quark and lepton mixing parameters.

The contributions for each diagram then follow by moving along each fermion line and

appending the above parameters together with the coupling coefficents spelled out in Table I.

Alternatively, one can use the detailed computational procedure of Mohapatra and Sakita

[23] which makes explicit use of the SU(5) decompositions of the SO(10) matrices and

fields. We have used both procedures for a check in our calculations and both agree. In

the expressions presented below, we have evaluated the Dirac (ψL)TC−1(ψc)L and Majorana

(ψc)L
TC−1(ψc)L matrix elements .

Leading-Order Dirac Matrix Diagrams of (3.7a):

D33: 163 −10− 163

MU
33 = MN

33 = g10vu, MD
33 = ME

33 = g10vd

D23: 162 −10′− 163

D32: 163 −10′− 162

MD
23 = MD

32 = ME
23 = ME

32 = g′10v
′
d

D22: 162 −126− 162 (4.2a)

(MU
22, M

N
22) = (1, −3)g126wu, (MD

22, M
E
22) = (1, −3)g126wd

D13: 161 −45X −10′ − 45X −163

D31: 163 −45X −10′ − 45X −161

MD
13 = MD

31 = ME
13 = ME

31 = −3g10′v
′
dx

2e2iφx
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D12: 161 −45Z −10′∗ − 45Z −162

D21: 162 −45Z −10′∗ − 45Z −161

MD
12 = MD

21 = −4g10′v
′
dz

2e2iφz , ME
12 = ME

21 = 0

Leading-Order Majorana Matrix Diagrams of (3.7b):

M33: 163 −1− 126
′
− 1− 163

MR
33 = g126′w

′s2e2iφ1

M23: 162 −1− 45X −1′ − 126
′
− 1− 163

M32: 163 −1− 126
′
− 1′ − 45X −1− 162

MR
23 = MR

32 = 5g126′w
′xs2s′ei(φx+φ1+φ1′ )

M22: 162 −1− 45X −1′ − 126
′
− 1′ − 45X −1− 162

MR
22 = 25g126′w

′(xss′)2e2i(φx+φ1+φ1′ )

M13: 161 −45X −1′ − 1− 45Z −1′ − 126
′
− 1− 163 (4.2b)

M31: 163 −1− 126
′
− 1′ − 45Z −1− 1′ − 45X −161

MR
13 = MR

31 = 30g126′w
′xzs2s′2ei(φx+φz+2φ1+2φ1′)

M12: 161 −45X −1′ − 1− 45Z −1′ − 126
′
− 1′ − 45X −1− 162

M21: 162 −1− 45X −1′ − 126
′
− 1′ − 45Z −1− 1′ − 45X −161

MR
12 = MR

21 = 150g126′w
′x2zs2s′3ei(2φx+φz+2φ1+3φ1′ )

M11: 161 −45X −1′ − 1− 45Z −1′ − 126
′
− 1′ − 45Z −1− 1′ − 45X−161

MR
11 = 900g126′w

′(xzss′2)2e2i(φx+φz+φ1+2φ1′)

Higher-Order Diagrams listed in (3.7c) from Minimal Set:

D11: 161 −45X −1′ − 1− 10′ − 1− 1′ − 45X −161

MD
11 = ME

11 = −3g10′v
′
d(xss

′)2e2i(φx+φ1+φ1′)



–18– FERMILAB–Pub–95/236–T

D22: 162 −45Z −10′∗ − 1′∗ − 162, 162 −1′∗ − 10′∗ − 45Z −162

MD
22 = ME

22 = −3g10′v
′
dzs
′ei(φz−φ1′ ) (4.2c)

M23: 162 −45∗X −1′ − 1− 45Z −1′ − 126
′
− 1− 163

M32: 163 −1− 126
′
− 1′ − 45Z −1− 1′ − 45∗X −162

MR
23 = MR

32 = 30g126′w
′xzs2s′2ei(−φx+φz+2φ1+2φ1′ )

Higher-Order Diagrams of (3.7d) from the Expanded Set:

D11: 161 −1− 126− 1− 1′ − 45X −161, 161 −45X −1′ − 1− 126− 1− 161

(MU
11, M

N
11) = (2, −6)g126wuxs

2s′ei(φx+2φ1+φ1′ )

(MD
11, M

E
11) = (−2, 6)g126wdxs

2s′ei(φx+2φ1+φ1′ )

D11: 161 −1− 45∗Z −1− 1′ − 1− 126− 1 − 161,

161 −1− 126− 1− 1′ − 1− 45
∗
Z −1− 161

(MU
11, M

N
11) = (3, −9)g126wuzs

4s′ei(−φz+4φ1+φ1′ )

(MD
11, M

E
11) = (−3, 9)g126wdzs

4s′ei(−φz+4φ1+φ1′ )

D11: 161 −1− 45∗Z −1− 1′ − 1− 10′ − 1− 1′ − 45X −161,

161 −45X −1′ − 1− 10′ − 1− 1′ − 1− 45∗Z −1− 161

(MD
11, M

E
11) = (−7, −3)g10′v

′
dxzs

4s′2ei(φx−φz+4φ1+2φ1′ )

D12: 161 −1− 126− 1− 1′ − 45
∗
X −162

(MU
12, M

N
12) = (1, −15)g126wuxs

2s′ei(−φx+2φ1+φ1′ )

MD
12 = ME

12 = −3g126wdxs
2s′ei(−φx+2φ1+φ1′ )

D21: 162 −45∗X −1′ − 1− 126− 1− 161

(MU
21, M

N
21) = (1, 9)g126wuxs

2s′ei(−φx+2φ1+φ1′ )

(MD
21, M

E
21) = (1, 9)g126wdxs

2s′ei(−φx+2φ1+φ1′ )

D12: 161 −1− 126− 45
∗
Z −45X −1− 162

(MU
12, M

N
12) = (2, −90)g126wuxzs

2ei(φx−φz+2φ1)

MD
12 = 12g126wdxzs

2ei(φx−φz+2φ1), ME
12 = 0
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D21: 162 −1− 45X −45∗Z −126− 1− 161

(MU
21, M

N
21) = (1, −27)g126wuxzs

2ei(φx−φz+2φ1)

(MD
21, M

E
21) = (1, −27)g126wdxzs

2ei(φx−φz+2φ1)

D12: 161 −1− 45∗Z −126− 45X −1− 162 (4.2d)

(MU
12, M

N
12) = (1, 45)g126wuxzs

2ei(φx−φz+2φ1)

(MD
12, M

E
12) = (−3, 9)g126wdxzs

2ei(φx−φz+2φ1)

D21: 162 −1− 45X −126− 45
∗
Z −1− 161

(MU
21, M

N
21) = (2, 54)g126wuxzs

2ei(φx−φz+2φ1)

MD
21 = −4g126wdxzs

2ei(φx−φz+2φ1), ME
21 = 0

D13: 161 −1− 126− 45
∗
Z −1′∗ − 1− 163

(MU
13, M

N
13) = (2, −18)g126wuzs

2s′ei(−φz+2φ1−φ1′ )

MD
13 = −4g126wdzs

2s′ei(−φz+2φ1−φ1′ ), ME
13 = 0

D31: 163 −1− 1′∗ − 45∗Z −126− 1− 161

(MU
31, M

N
31) = (1, 9)g126wuzs

2s′ei(−φz+2φ1−φ1′ )

(MD
31, M

E
31) = (1, 9)g126wdzs

2s′ei(−φz+2φ1−φ1′ )

D13: 161 −1− 45∗Z −126− 1′∗ − 1− 163

(MU
13, M

N
13) = (1, 9)g126wuzs

2s′ei(−φz+2φ1−φ1′ )

(MD
13, M

E
13) = (1, 9)g126wdzs

2s′ei(−φz+2φ1−φ1′ )

D31: 163 −1− 1′∗ − 126− 45
∗
Z −1− 161

(MU
31, M

N
31) = (2, −18)g126wuzs

2s′ei(−φz+2φ1−φ1′ )

MD
31 = −4g126wdzs

2s′ei(−φz+2φ1−φ1′ ), ME
31 = 0

D13: 161 −1− 45∗Z −1− 10′ − 45X −163

MD
13 = ME

13 = −3g10′v
′
dxzs

2ei(φx−φz+2φ1)
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D31: 163 −45X −10′ − 1− 45∗Z −1− 161

MD
31 = −4g10′v

′
dxzs

2ei(φx−φz+2φ1), ME
31 = 0

M11: 161 −45X −1′ − 45∗Z −45∗Z −45X −1′ − 126
′
−

1′ − 45X −45∗Z −45∗Z −1′ − 45X −161

MR
11 = (900)2g126′w

′(xzs′)4e4i(φx−φz+φ1′ )

An interesting observation which can be drawn from the Majorana contributions in (4.2b)

is that the matrix in leading order has a geometrical texture as given in (2.4c) with

MR
22 '

5

6

√
MR

11M
R
33 (4.3)

provided x ' z. In fact, this observation served as an important guide in our construction of

the Majorana neutrino matrix and suggested the relative roles played by the 45X and 45Z

Higgs fields.

V. QUANTITATIVE RESULTS for the SO(10) × U(1)F MODEL

Finally we attempt to select a set of values for the 14 input parameters of (4.1a,b,c)

which will accurately reproduce the input data in (2.1a,b) and (2.3a,b) used for our bottom-

up approach. As noted earlier, the minimal set of superheavy fermions and their mirror

partners found in (3.8b) yield unsatisfactory results: mu = mνe = 0, me = 0.006 MeV

and mνµ = mντ = 0.089 eV. The problem can be traced to the zero or tiny values of D11.

By expanding the set of superheavy fermions to include those in (3.8c), on the other hand,

excellent results can be found as shown below.

One particularly good numerical choice for the parameters at the SUSY GUT scale is

given by
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g10vu = 120.3, g10vd = 2.46, g10′v
′
d = 0.078 GeV

g126wu = 0.314, g126wd = −0.037, g126′w
′ = 0.8× 1016 GeV

g45Xu45X/M = 0.130, g45Zu45Z/M = 0.165, g1u1/M = 0.56, g1′u
′
1/M = −0.026

φx = 35o, φz = φ1 = φ1′ = −5o

(5.1)

which reduces the number of independent parameters from 14 to 12. In fact, the only

large phase angle is that for φx. As seen from (4.2a), this is in agreement with our earlier

conclusion from the bottom-up phenomenological results [8] that essentially only the Dirac

D13 and D31 matrix elements are complex. The mass matrices at the SUSY GUT scale are

then numerically equal to

MU =


−0.0010 − 0.0001i 0.0053 + 0.0034i −0.0013

0.0053 + 0.0034i 0.314 0

−0.0013 0 120.3

 (5.2a)

MD =


−0.0001 −0.0104 + 0.0004i −0.0029 − 0.0045i

−0.0077 + 0.0018i −0.036 0.078

−0.0033 − 0.0048i 0.078 2.460

 (5.2b)

MN =


0.0030 + 0.0003i −0.079− 0.051i 0.0038

0.048 + 0.031i −0.942 0

0.0038 0 120.3

 (5.2c)

ME =


0.0004 −0.0020 − 0.0010i −0.0023 − 0.0045i

0.0060 + 0.0031i 0.112 0.078

−0.0009 − 0.0037i 0.078 2.460

 (5.2d)

MR =


(−.069 + .640i)× 109 (−.141− .119i)× 1011 (.108 + .019i)× 1013

(−.141− .119i)× 1011 (.461 + .549i) × 1012 (−.393− .155i) × 1014

(.108 + .019i)× 1013 (−.393− .155i)× 1014 (.247− .044i)× 1016

(5.2e)

in units of GeV. By using the seesaw formula [16], we find for the light neutrino matrix at
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the SUSY GUT scale

MNeff ' −MN (MR)−1MNT

=


(.027− .238i)× 10−3 (−.109− .199i)× 10−2 (−.037 + .512i)× 10−2

(−.109− .199i) × 10−2 (−.232− .088i)× 10−1 (.258 + .435i)× 10−1

(−.037 + .512i)× 10−2 (.258 + .435i)× 10−1 −.001− .112i


(5.2f)

in electron-Volts. Again we emphasize the Dirac mass matrix elements appear in the form

ψTiLC
−1M(ψc)jL, while the Majorana matrix elements refer to (ψc)TiLC

−1M(ψc)jL with ψiL

and (ψc)jL each a member of one of the three families of 16’s. Identical contributions also

arise from the transposed Dirac matrices and the right-handed Majorana matrix. As such,

the true Yukawa couplings GY are just half the values of the gY ’s appearing in (4.1a,b).

The masses at the GUT scale can then be found by calculating the eigenvalues of the

Hermitian product MM† in each case, while the mixing matrices VCKM and Vlept can be

calculated with the projection operator technique of Jarlskog [24]. After evolving these

quantities to the low scale, we find in the quark sector

mu(1GeV) = 5.0 (5.1) MeV, md(1GeV) = 7.9 (8.9) MeV

mc(mc) = 1.27 (1.27) GeV, ms(1GeV) = 169 (175) MeV

mt(mt) = 150 (165) GeV, mb(mb) = 4.09 (4.25) GeV

(5.3a)

where we have indicated the preferred values in parentheses. The mixing matrix is given by

VCKM =


0.972 0.235 0.0037e−i124o

−0.235 0.971 0.041

0.012 −0.039 0.999
−0.003i −0.001i

 (5.3b)

Note that Vcb = 0.041 and |Vub/Vcb| = 0.090 with the CP-violating phase δ = 124o, while

md/mu = 1.59 and ms/md = 21.3, cf. [12, 13]. These results should be compared with our

central starting input values given in (2.1a,b).
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In the lepton sector we obtain

mνe = 0.10 (?)× 10−4 eV, me = 0.43 (0.511) MeV

mνµ = 0.29 (0.25) × 10−2 eV, mµ = 103 (105.5) MeV

mντ = 0.12 (0.10) eV, mτ = 1.777 (1.777) GeV

(5.4a)

and

Vlept =


0.998 0.049 0.039e−i121o

−0.036 0.875 0.483

0.042 −0.482 0.875
−0.037i −0.002i

 (5.4b)

which should be compared with the input values in (2.3a,b). The heavy Majorana neutrino

masses are

MR
1 = 0.63× 109 GeV, MR

2 = 0.37× 1011 GeV, MR
3 = 0.25× 1016 GeV (5.4c)

The neutrino masses and mixings are in the correct ranges to explain the nonadiabatic solar

neutrino depletion with small mixing [5] and the atmospheric neutrino depletion with large

mixing [6]:

δm2
12 = 8.5× 10−6 eV2, sin2 2θ12 = 0.0062

δm2
23 = 1.4× 10−2 eV2, sin2 2θ23 = 0.71

(5.5)

For our analysis, the SUSY GUT scale at which the gauge and Yukawa couplings unify

was chosen to be Λ = 1.2× 1016 GeV. From (3.4a) and (5.2a,b,c,d) we find that g10 = 0.69.

It is interesting to note that if we equate the SO(10)-breaking and lepton number-breaking

VEV, w′, with Λ, we find g126′ = 0.67 ' g10. Taking into account the remark following

(5.2e), we note the true Yukawa couplings are G10 ' G126′ ' 0.33. If we further equate

g1 = g10 ' g126′, and u1 = Λ for the U(1)F -breaking VEV, we find M = 1.5× 1016 GeV for

the masses of the superheavy fermions which condense with their mirrors. These values are

all very reasonable.
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The 45X and 45Z VEVs appear at nearly the same scale, 2.8× 1015 and 3.5× 1015 GeV

respectively, if one assumes the same Yukawa coupling as above. On the other hand, if these

VEVs appear at the unification scale Λ the corresponding Yukawa couplings are smaller than

those found above. In either case, a consequence of their non-orthogonal breakings is that

SU(5) is broken down to SU(3)c × SU(2)L × U(1)Y at the scale in question. No further

breaking is required until the electroweak scale and the SUSY-breaking scale are reached.

VI. SUMMARY

Our starting point for this research has been based on the results obtained from a bottom-

up approach proposed previously by us to obtain mass matrices at the SUSY GUT scale

based on a complete set of data inputted at the low scales. In particular we have used

the known quark and charged lepton masses and CKM mixing matrix together with the

neutrino masses and mixings based on particular neutrino scenarios. The masses and mixing

matrices were evolved to the SUSY GUT scale where the mass matrices can be constructed

by use of Sylvester’s theorem. By varying the bases and the signs of the mass eigenvalues,

we looked for simple textures for the mass matrices such that each matrix element involved

as few SO(10) Higgs representations as possible. The neutrino scenario examined which

appeared to yield the simplest structure involved the MSW nonadiabatic depletion of the

solar electron-neutrinos together with the observed depletion of atmospheric muon-neutrinos

by oscillations into tau-neutrinos.

In this paper we have constructed an SO(10)× U(1)F model of the Yukawa interactions

which neatly reproduces the desired SO(10) textures for the quark and lepton mass matrices

for this preferred neutrino scenario. The observed features include the following:

(i) The Abelian U(1)F family symmetry group singles out a rather simple set of tree

diagrams which determines the texture of the generic Dirac and Majorana mass matrices,
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while the SO(10) group relates corresponding matrix elements of the up, down, neutrino

and charged lepton Dirac matrices to each other.

(ii) The dominant second and third family Yukawa interactions are renormalizable and

arise through couplings with Higgs in the 10, 10′ and 126 representations of SO(10). The

remaining Yukawa interactions are of higher order and require couplings of Higgs in the

126
′
, 1, 1′, 45X and 45Z representations which acquire VEVs near the SUSY GUT scale.

(iii) The Higgs which acquire high scale VEVs break the SO(10)×U(1)F symmetry down

to the SU(3)c×SU(2)L×U(1)Y standard model symmetry in two stages through the SU(5)

subgroup.

(iv) Although this non-minimal supersymmetric model involves several Higgs represen-

tations, the runnings of the Yukawa couplings from the GUT scale to the low-energy SUSY-

breaking scale are controlled mainly by the contributions from the 10, as in the minimal

supersymmetric standard model.

(v) The complete set of low scale VEVs which contribute to the fermion masses are

10(5), 10(5̄), 10′(5̄′), 126(5) and 126(45) in the SO(10)(SU(5)) notation. These Higgs

correspond to the minimum number required in SO(10) models which lead to the successful

Georgi - Jarlskog relations [3]. Most of these models, however, do not include neutrino mass

matrices.

(vi) In terms of 12 input parameters, 15 masses (including the heavy Majorana masses)

and 8 mixing parameters emerge. The Yukawa couplings and the Higgs VEVs are numeri-

cally feasible and successfully correlate all the quark and lepton masses and mixings in the

scenario which incorporates the nonadiabatic solar neutrino and atmospheric neutrino de-

pletion effects.

(vii) The right-handed Majorana neutrino matrix has a nearly geometrical texture lead-

ing to heavy Majorana neutrino masses spread over seven orders of magnitude as given in

(5.4c). In fact, it is the highly geometrical structure of the Majorana matrix which accounts
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for the nearly maximal mixing of the νµ and ντ , rather than sizable mixing in the Dirac

sector [25].

With the model as presented, the U(1)F current is anomalous, since the [U(1)F ]3 triangle

anomaly does not vanish. It is possible to cancel this anomaly, however, by the addition

of two SO(10) singlet neutral fermions, nL and (nc)L, both with U(1)F charges of -12. By

introducing another Higgs singlet representation which develops a GUT scale VEV, one can

arrange that one of the new neutrinos remains massless while the other becomes superheavy.

Alternatively, it is possible to cancel such an anomaly through the Green-Schwarz mechanism

[22] provided the model can be derived from string theory.

Studies are underway to examine what effects small mixings of such a light sterile neu-

trino with the three families of light neutrinos will have on the neutrino spectrum and will

be reported elsewhere. Work is also underway to construct a superpotential for the model

presented here.
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SU(5) VEV Directions Flipped SU(5)

Assignments 45X 45Y 45Z Assignments

u, d 1 1 1 d, u

uc 1 - 4 2 dc

dc - 3 2 - 4 uc

ν, ` - 3 - 3 - 3 `, ν

νc 5 0 6 ec

ec 1 6 0 νc

Table I. Couplings of the 45 VEVs to states in the 16.

Fig. 1. Tree-level diagrams for the (a) renormalizable and (b) leading-order nonrenormal-

izable contributions to the generic Dirac mass matrix and for the (c) 33 element of the

Majorana mass matrix.


