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Abstract

The existence of sterile neutrino is hinted by simultaneous explanation of diverse

neutrino anomalies. We suggest that the quasi Goldstone fermions (QGF) arising

in supersymmetric theory as a result of spontaneous breaking of global symmetry

like the Peccei-Quinn symmetry or the lepton number symmetry can play a role

of the sterile neutrino. The smallness of mass of QGF (mS ∼ 10−3 − 10 eV) can

be related to the specific choice of superpotential or Kähler potential (e.g., no-

scale kinetic terms for certain superfields). Mixing of QGF with neutrinos implies

the R-parity violation. It can proceed via the coupling of QGF with the Higgs

supermultiplets or directly with the lepton doublet. A model which accounts for

the solar and atmospheric anomalies and the dark matter is presented.
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1 Introduction

All the experimentally known fermions transform non-trivially under the gauge group SU(3)×

SU(2) × U(1) of the standard model (SM). However there are experimental hints in the

neutrino sector which suggest the existence of SU(3)×SU(2)×U(1) - singlet fermions mixing

appreciably with the known neutrinos. These hints come from (a) the deficits in the solar [1]

and atmospheric [2] neutrino fluxes (b) possible need of significant hot component [3] in the

dark matter of the universe and (c) some indication of ν̄e − ν̄µ oscillations in the laboratory

[4]. These hints can be reconciled with each other if there exists a fourth very light (< O(eV))

neutrino mixed with some of the known neutrinos preferably with the electron one. The fourth

neutrino is required to be sterile in view of the strong bounds on number of neutrino flavours

coming both from the LEP experiment as well as from the primordial nucleosynthesis [5].

The existence of very light sterile neutrino demands theoretical justification since unlike

the active neutrinos, the mass of the sterile state is not protected by the gauge symmetry of

the SM and hence could be very large. Usually the sterile neutrino is considered on the same

footing as the active neutrinos and some ad hoc symmetry is introduced to keep this neutrino

light. Recently there are several attempts to construct models for sterile neutrinos which have

the origin beyond the usual lepton structure [6, 7, 8]. In particular in Ref. [6] we suggested

a possibility that supersymmetry (SUSY) may be responsible for both the existence and the

lightness of the sterile fermions.

One could consider three different ways in which supersymmetry can keep sterile states

very light.

(1) Combination of supersymmetry and the (continuous) R symmetry present in many super-

symmetric models may not allow a mass term for the light sterile state.

(2) Spontaneous breakdown of some other global symmetry in supersymmetric theory can lead

to massless fermions which form the superpartners of the Goldstone bosons.

(3) The spontaneous breakdown of the global supersymmetry itself would give rise to a massless

fermion, the goldstino.

The mechanism (1) and its phenomenological consequences were discussed in Ref. [6].

Mechanism (3) though appealing is not favoured phenomenologically in view of the difficulties

in building realistic models based on the spontaneously broken global SUSY. We discuss in

this paper implications of the mechanism (2) concentrating for definiteness on the simplest
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case of a global U(1)G.

The spontaneously broken global symmetries are required for reasons unrelated to the

existence of light sterile states. The most interesting examples being spontaneously broken

lepton number symmetry [9] and the Peccei-Quinn (PQ) symmetry imposed [10] to solve

the strong CP problem. The PQ symmetry arise naturally in many supersymmetric models.

Apart from solving the strong CP problem, this symmetry can also explain the smallness of the

µ-parameter [11, 12]. Phenomenologically consistent breaking of these symmetries generally

needs [13] Higgs fields which are singlets of SU(3) × SU(2) × U(1). In the supersymmetric

context this automatically generates massless sterile fermion. While the existence of these

quasi Goldstone fermions (QGF) is logically independent of neutrino physics, there are good

reasons to expect that these fermions will couple to neutrinos. Indeed, in the case of lepton

number symmetry the superfield which is mainly responsible for the breakdown of U(1)L

carries nontrivial U(1)L-charge and therefore it can directly couple to leptons if the charge

is appropriate. In the case of the PQ symmetry, U(1)PQ, this superfield could couple to the

Higgs supermultiplet. If theory contains small violation of R parity then this mixing with

Higgs gets communicated to the neutrino sector. Thus the occurrence of the QGF can have

implications for neutrino physics. We wish to discuss in this paper prospects for building

realistic models based on this mechanism.

In the following section we elaborate upon the expected properties of the QGF, especially

their masses when SUSY is broken. Section 3 discusses various mechanisms of mixing of these

fermions with the active neutrinos. Explicit model based on the scenario presented in section

2 and 3 is given in section 4 and the last section presents our conclusions.

2 Quasi Goldstone fermions and their masses

In this section and subsequently, we will consider the following general superpotential

W = WMSSM +WS +Wmixing , (1)

where W is assumed to be invariant under some global symmetry U(1)G. As we outlined

in the introduction, this symmetry may be identified with the PQ symmetry, lepton number

symmetry or combination thereof. The first term in Eq. (1) refers to the superpotential of the

minimal supersymmetric standard model (MSSM). The second term contains SU(3)×SU(2)×
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U(1) singlet superfields which are responsible for the breakdown of U(1)G. The minimal choice

for WS is

WS = λ(σσ′ − f2
G)y , (2)

where σ, σ′ carry non trivial G-charges and fG sets the scale of U(1)G breaking. The last term

of Eq. (1) describes mixing of the singlet fields with the superfields of the MSSM.

In the supersymmetric limit the fermionic component of the Goldstone boson is massless.

In the case (2) this Goldstone fermion is contained in

S =
1
√

2
(σ − σ′) . (3)

However, SUSY breakdown results in generation of mass of the Goldstone fermion. In general,

this mass can be as big as SUSY breaking scale, mSUSY . Broken supersymmetry itself cannot

automatically protect the masses of QGF in Eq. (3) much below mSUSY . In fact, the mass

of QGF depends on the manner in which SUSY is broken and on the way how this breaking

is communicated to the singlet S. It also depends on the structure of superpotential and the

scale fG. In the below we identify theories which can allow for very light QGF (mS < 1

eV). As the case of special interest we will consider the mass of QGF and its mixing with the

electron neutrino:

mS ' (2− 3) · 10−3 eV

sin θes ' tan θes ' (2− 6) · 10−2 . (4)

These values of parameters allow one to solve the solar neutrino problem through the resonance

conversion νe → S [14].

One could consider different mechanisms for the QGF mass generation.

Let us note that in models with spontaneously broken global SUSY the QGF generically

acquire a mass of O(
m2
SUSY

fG
) [15]. But it can remain massless in spite of SUSY breaking (a) if

SUSY is broken by a D-term of the gauge field or (b) if the F-terms that break SUSY do not

carry any G-charges. The latter is exemplified by a simple generalization of Eq. (2):

WS = λ1(σσ
′ − f2

1 )y1 + λ2(σσ
′ − f2

2 )y2 .

SUSY is broken in this example if f2
1 6= f2

2 . For a minimum with the F-terms: Fσ = Fσ′ = 0,

the Goldstone fermion in Eq. (3) remains massless at the tree level in spite of the SUSY
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breakdown. As we noticed before this version has phenomenological problems and further on

we will concentrate on possibilities related to supergravity.

The mass of the QGF in supergravity theory is typically of the order of gravitino mass

m3/2 (= mSUSY ) [16, 17, 18]. For instance, the superpotential in Eq. (2) leads to mS ∼ m3/2

when generic soft terms of SUSY breakdown are allowed [16]. Howerver, the mass mS can be

much smaller for specific choices of 1) the superpotential and/or 2) soft SUSY breaking terms.

Let us consider these possibilities in order.

1). The superpotential

λ(σσ′ −X2)y + λ′(X − fG)3

is shown [17] to generate the tree level mass

mS ∼
m2

3/2

fG
(5)

as in the global case if the minimal kinetic terms of the fields are assumed. For commonly

accepted value of the PQ symmetry breaking scale, fG = fPQ = 1010 − 1012 GeV, one gets

from Eq. (5) mS ∼ (10− 103) eV. On the other hand, the value of mS in Eq. (4) desired for

explanation of the solar neutrino deficit requires fG ∼ 1016 GeV which can be related to the

grand unification scale. To identify fG with fPQ, one should overcome the cosmological bound

fPQ < 1012 GeV. The bound can be removed by axion mixing with some other Goldstone

boson in their kinetic terms [19] or by dilaton field driven to small values in inflationary

period [20]. In this case however, the axion cannot play the role of cold dark matter.

2). Another possibility to get very light S is based on the idea of no-scale supergravity [21].

The Kähler potential and the superpotential can be arranged in such a way that supersym-

metry breaking is communicated to the singlet S via a set of interactions. As the result, the

mass of S appears in one, two or even three loops.

Let us consider the following Kähler potential:

K = −3 ln(T + T ∗ − ZaZ
∗
a) + CiC

∗
i , (6)

where T is the moduli field appearing in the underlying superstring theory, Za and Ci are the

matter superfields which have the no-scale kinetic term (Z–sector) and the minimal kinetic

term (C–sector) respectively. The corresponding scalar potential at the Planck scale reads,

V = |Wi|
2 + {m0CiWi + h.c.}+m2

0|Ci|
2 + |Wa|

2 , (7)
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where m0 = O(m3/2). The tree-level masses of the fermionic components of the fields Za are

determined by the global supersymmetric results. Therefore, if the singlet fields triggering

U(1)G breaking are in the Z–sector, the QGF will be massless at tree level [18]. The QGF

will acquire the mass through the interactions with fields Ci having minimal kinetic terms,

and consequently, usual soft SUSY breaking terms. Moreover, S (or σ, σ′) may not couple to

Ci directly. It can interact with Ci via couplings with some other fields Za having no-scale

kinetic terms. In this case S will get the mass in two or larger number of loops.

Let us consider realizations of this idea in the context of the seesaw mechanism, when

σ, σ′ couple with right handed (RH) neutrinos N . Let us introduce the following terms in the

superpotential:

W =
mD

v2
LNH2 +

M

fG
NNσ , (8)

where we have omitted the generation indices. The first term in Eq. (8) produces the Dirac

masses of neutrinos, whereas the second one gives the Majorana masses of RH neutrino com-

ponents. The scale fG ∼ 1010 − 1012 GeV generates M ∼ 1010 − 1011 GeV required by the

HDM and atmospheric neutrinos.

(i) Suppose that only σ, σ′, y superfields belong to the Z–sector, whereas all other su-

perfields have minimal kinetic terms: N,H2, L ∈ C. Then SUSY breaking induces the soft

term

AN
M

fG
ÑÑσ (9)

which generates the mass of QGF in one loop (Fig. 1):

mS '
1

16π2

(
M

fG

)2

AN . (10)

This mechanism is similar to that of the axino mass generation by coupling of S with heavy

quarks [18, 22]. For AN ∼ O(m3/2) and (M/fG) ∼ 10−3, mS is in the keV range.

(ii) Let us suppose that not only σ, σ′, y but also N have the no-scale kinetic terms. In

this case AN = 0 at tree level, but non-zero AN will be generated in one loop (see Fig. 2)

by the soft breaking term related to usual Yukawa interaction LNH2: ADm
DL̃ÑH2, and by

the quartic coupling σÑL̃∗H∗2 which follows from |WN |2 term of the supersymmetric scalar

potential. As the result one has

AN ∼
1

16π2

(
mD

v2

)2

AD . (11)
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Correspondingly, mS appears in two loops (Fig. 2). Combining Eqs. (10) and (11) we get the

estimation of mS:

mS '
1

(16π2)2

ADM
3

v2
2f

2
G

mν . (12)

Here mν = (mD)2/M . For the HDM mass scale mν ' 3 eV, AD ' v2 ' 100 GeV and

fG ' 1012 GeV it follows from Eq. (12) that mS ' 3 · 10−3 eV can be achieved if the mass of

RH component is M ' 109 GeV.

In this version of model the left and right neutrino components have different kinetic terms

which may look unnatural.

(iii) Finally we consider the case where all chiral superfields belong to the Z–sector. This

so-called strict no-scale model [23, 24] has only one seed of SUSY breakdown (i.e. gaugino

mass). In this case AD = 0 at tree level and non-zero AD is generated in one loop by gaugino

exchange. Correspondingly, mS appears in three loops (Fig. 3) and its estimation can be

written as

mS '
α2

(4π)5

m1/2M
3

v2
2f

2
G

mν . (13)

Here α2 and m1/2 are the SU(2) fine structure constant and gaugino mass respectively. For

mν ' 3 eV, m1/2 ' v2 ' 100 GeV, and fG ' 1012 GeV, one gets from Eq. (13) mS ' 3 · 10−3

eV with a value of M ' 1010 GeV.

A contribution to the mass of the QGF can follow also from interactions, Wmixing, which

mix S with usual neutrinos (section 3).

3 Neutrino-QGF mixing

We now discuss possible ways which lead to mixing of the QGF with neutrinos. Such a mixing

can occur only in the presence of either explicit or spontaneous violation of the R parity

conventionally imposed in the MSSM [25]. Indeed, the Higgs field which breaks U(1)G may

belong either to R even or odd superfield depending upon the nature of the U(1)G. If it belongs

to R even (i.e. Higgs like) superfield then the corresponding QGF is R odd and its mixing with

neutrinos implies the R-violation. In contrast, if the QGF is R even, e.g. similar to the right-

handed neutrino, then its scalar partner is R odd and the R symmetry gets broken together

with the U(1)G symmetry. The first alternative is realized when the U(1)G is identified with

the PQ symmetry. On the other hand, the lepton number symmetry containing right-handed
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neutrino like superfield would provide an example of the second alternative. We discuss both

these cases in turn.

1. PQ symmetry. The supersymmetric theories with Peccei-Quinn symmetry may contain

a term

λH1H2σ, (14)

with σ being a superfield transforming non-trivially under the PQ symmetry. If the axionic

superfield, S, predominantly consists of the field σ, the vacuum expectation value (VEV)

〈σ〉 ∼ fPQ would be large ∼ 1010 − 1012 GeV. Since this VEV generates the parameter

µ = λ〈σ〉 of the MSSM through the interaction (14), one would need to fine tune λ in order to

understand the smallness of µ. The coupling of axionic supermultiplet S to Higgs superfield

is then given by

WHS =
µ

fPQ
H1H2S . (15)

The smallness of µ can be understood if σ couples to Higgs through non-renormalizable

term [11]

λH1H2
σ2

MP

, (16)

where MP is the Planck scale mass. In this case, µ = λ 〈σ〉
2

MP
is naturally about the weak scale.

Since fPQ ' 〈σ〉, the axionic coupling following from Eq. (16) can be written as

WHS = 2
µ

fPQ
H1H2S . (17)

Alternatively, the σ may acquire a small VEV ∼ m3/2 and the scale of the PQ symmetry

may be set by some other field which would predominantly contain the axionic multiplet [12].

The µ-parameter is naturally of the order m3/2 in this case. As long as the field σ transforms

non-trivially under PQ symmetry, it will contain a small admixture ∼ 〈σ〉/fPQ of the axionic

field S. The interaction in Eq. (14) results in the following coupling

WHS ∼ cµ
µ

fPQ
H1H2S , (18)

cµ being O(1).

It follows from Eqs. (15,17,18) that the axionic coupling to the Higgs superfield is insensitive

to mechanism of implementation of the PQ symmetry. We can therefore consider the following
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generic mixing term

Wmixing = cµ
µ

fPQ
H1H2S + µH1H2 + εLH2 . (19)

Here we also have included the explicit R violating coupling LH2. The superpotential (19)

leads to the following mass matrix in the basis (ν, S, h1, h2):
0 0 0 ε

0 m0
S cµv sinβ/fPQ cµv cosβ/fPQ

0 cµv sinβ/fPQ 0 µ

ε cµv cos β/fPQ µ 0

 , (20)

where v ≡
√
v2

1 + v2
2 is the weak scale, tan β ≡ v2/v1 and v1,2 are the VEV’s of H1,2. In

matrix (20) we have included also the direct axino mass m0
S that can be generated by the

mechanisms of section 2. We have neglected the contribution from the interactions with the

gauginos in Eq. (20). In general gauginos mix with Higgsino through v1,2. This mixing will

not change the qualitative results which follow from Eq. (20). Moreover, the mixing can be

small if the gaugino mass is chosen much larger than the µ-parameter. Gauginos will also mix

with neutrinos through the VEV of sneutrino field which may arise due to the presence of the ε

coupling in Eq. (19) and soft SUSY breaking terms. This mixing generates [26] neutrino mass

of order g2〈ν̃〉2/m1/2 (g is the SU(2) coupling constant). For m1/2 > 100GeV and 〈ν̃〉 < 10

keV, this contribution is much smaller than m0
S ∼ 10−3 eV which can result from the radiative

corrections.

Block diagonalization of the matrix (20) leads to the following effective mass matrix for

the neutrino and the axino, (ν, S): 0 −cεv sinβ/fPQ

−cεv sinβ/fPQ m0
S − c

2µv2 sin 2β/f2
PQ

 . (21)

If m0
S = 0 in Eq. (21), the QGF mass, mS = (2−3)·10−3 eV can be obtained for the marginally

allowed value of the PQ scale:

fPQ ≈ v

√
µ sin 2β

mS

<
∼ 4 · 109 GeV . (22)

In this case, however, axions cannot provide the cold dark matter of the Universe. Note

that the lightest supersymmetric particles cannot be cold dark matter either because of their

instability due to the R-parity violation or due to their decay into the lighter axino. For
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fPQ > 1010 GeV the QGF mass generated via µ-term is too small for the MSW solution. For

fPQ ∼ 1011 GeV, mS ≈ 10−5 eV is in the region of “just-so” solution of the solar neutrino

problem. The axion can however serve as cold dark matter provided fPQ ∼ 1012 GeV. In this

case, the seesaw contribution to mS is very small and one needs a non-vanishing mass m0
S.

If m0
S is the dominant contribution to the mass of S, mS ' m0

S, one obtains from Eq. (21)

for the ν − S mixing

tan θνs ∼
cµεv sinβ

m0
SfPQ

. (23)

Then the desired value, tan θνs ∼ (2−6) ·10−2 eV (4), can be obtained if the R parity breaking

parameter ε equals

ε =
m0
SfPQ tan θνs
cµv sinβ

≈ (2− 6) · 10−16 fPQ

sinβ
. (24)

For fPQ ∼ 1012 GeV one has ε ∼ 0.1 MeV. In general, the appropriate range of ε is (10−3 −

10)MeV. It can be generated as a radiative correction: ε ∼ h2m3/2/16π
2. Alternatively, ε

may arise through the coupling of the product LH2 to some fields carrying non zero lepton

number. In this case the required smallness of ε may be understood in analogy with that of

µ-parameter.

2. Lepton number symmetry. Let us identify U(1)G with the lepton number symmetry.

Unlike in the previous case, it is possible now to couple the QGF directly to neutrino through

the term

hLH2σ . (25)

This is analogous to Eq. (14) but now the scalar component of σ is R odd and its VEV breaks

R parity. Electroweak symmetry breaking v2 6= 0 leads through the term (25) to the direct

coupling between QGF and neutrino. Note that σ is similar to the RH neutrino components.

Just as the interaction in Eq. (14) generates the µ, the interaction (25) generates the parameter

ε. Thus it is possible to correlate the origin of ε to the breaking of lepton number symmetry.

The smallness of ε may be due to (i) fine tuning of h or (ii) smallness of the VEV of σ or due

to (iii) occurrence of the non-renormalizable coupling analogous to that in Eq. (16). All these

possibilities lead to the following effective coupling of ν to QGF:

Wmixing = cε
ε

fL
LH2S + εLH2 , (26)
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where fL denotes the scale associated with the spontaneous breaking of the lepton number

symmetry and cε is a parameter of order unity. The mass matrix generated by Eq. (26) is 0 cεεv sinβ/fL

cεεv sinβ/fL m0
S

 . (27)

and the desired νe − S mixing can be obtained for ε ' 0.1 MeV and fL ∼ 1012 GeV.

Let us give an example of models which leads to the mixing term of Eq. (26). Consider the

U(1)L charge assignments (1,−1,−3) for the fields (σ, σ′, L) respectively. All other fields are

taken neutral. The relevant part for the U(1)G invariant superpotential is given as follows:

W = λ(σσ′ − f2
L)y +

δε

M2
P

LH2σ
3 , (28)

where the first term breaks the lepton symmetry and generates majoron supermultiplet of

Eq. (3). The second term in Eq. (28) generates the effective interaction displayed in Eq. (26)

with cε = 3√
2

and ε ∼ δε
M2
P
f3
L. Thus specific choice for the lepton charges allows one to correlate

ε to the scale fL. In particular, for δε ∼ 0.1 and fL ' 1012 GeV, one has ε ∼ 1MeV.

3. PQ as the lepton number symmetry. If both Higgs and leptons transform non-trivially

under the U(1)G symmetry then the latter can play a dual role of the PQ symmetry and the

lepton number symmetry as in Ref. [27]. In this case one can correlate the origin of ε and

µ to the same symmetry breaking scale fPQ. The neutrino coupling to QGF is given by the

combination of Eqs. (19) and (26):

Wmixing = µH1H2 + εLH2 (29)

+ cµ
µ

fPQ
H1H2S + cε

ε

fPQ
LH2S .

ThisWmixing generates the following effective mass matrix for ν and S which is the combination

of Eq. (21) and Eq. (27): 0 (cε − cµ)εv sinβ/fPQ

(cε − cµ)εv sinβ/fPQ m0
S − c

2
µµv

2 sin 2β/f2
PQ

 . (30)

According to Eq. (30) the ν − S mixing angle θνs is determined by

tan θνs ∼
(cµ − cε)εv sinβ

m0
SfPQ − c2

µµv
2 sin 2β/fPQ

. (31)
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The G-charge prescription (−1,−1, 1,−1,−2) for (H1, H2, σ, σ′, L) permits the following

U(1)G invariant superpotential:

W = λ(σσ′ − f2
PQ)y +

δµ

MP

H1H2σ
2 +

δε

M2
P

LH2σ
3 . (32)

It gives the terms displayed in Eq. (29) with cε = 3√
2
, cµ =

√
2.

4 Model

Let us put together the basic ingredients discussed in section 2 and 3 into a model which

simultaneously explains the solar, atmospheric and the dark matter problems. In principle

the sterile state, like axino, could mix with any of the neutrinos but the possibility of the νe−S

mixing which solves the solar neutrino problem seems most preferred phenomenologically. The

required range of the νe−S mixing and S mass is given in Eq. (4). The alternative possibility

of νµ−S mixing accounting for the atmospheric neutrino deficit conflicts with the cosmological

bound coming from the nucleosynthesis.

Let us consider the model with U(1)G = U(1)PQ broken at fPQ ∼ 1012 GeV in which the

mass of QGF is generated in two or three loops via the interaction with the RH neutrino

components (8) and the mixing is induced by the Le-coupling described by the superpotential

(32). To suppress the mixing of S with νµ,τ and to get pseudo-Dirac structure for νµ − ντ

system (needed to explain simultaneously the HDM and the atmospheric neutrino problem), we

suggest that U(1)G is generation dependent 1. Consider, for example, the following prescription

of U(1)G charges:

H1 H2 σ σ′ Le Lµ Lτ Ne Nµ Nτ

−1 −1 1 −1 −2 −1/2 3/2 0 3/2 −1/2
.

This choice gives rise to the desired phenomenological results. Specifically,

• The mixing angle (31) following from the superpotential (32) can fall in the required

range (4) if ε ∼ 1MeV and fPQ ∼ 1012 GeV.

• The above assignments lead to the following superpotential in the µ− τ sector:

W =
∑
α=µ,τ

mD
αLαNαH2 +

Mτ

fPQ
NτNτσ +

Mµτ

fPQ
NµNτσ

′ . (33)

These couplings generate the axino massm0
S in the MSW range as discussed in section 2.

1One can introduce for this an additional horizontal symmetry, suggesting that U(1)G is generation blind.
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• The superpotential (33) leads to the mass matrix in (νµ, ντ , Nµ, Nτ) basis:

M =


0 0 mD

µ 0

0 0 0 mD
τ

mD
µ 0 0 Mµτ

0 mD
τ Mµτ Mτ

 . (34)

The above mass matrix gives rise to pseudo-Dirac neutrino with a common mass

mDM ∼
mD
µm

D
τ

Mµτ

. (35)

This mass can be in the eV range as required for the solution of the dark matter problem

by taking the values mD
µ ∼ 0.1 GeV, mD

τ ∼ 50 GeV and Mµτ ∼ 109 GeV. The mass

splitting is given by
∆m2

m2
DM

' 2

(
mD
µ

mD
τ

)(
Mτ

Mµτ

)
. (36)

Taking
(
Mτ

Mµτ

)
∼ 1, one reproduces both mixing and ∆m2 required to explain the atmo-

spheric anomaly.

The charge prescription,G(Ne) = 0, permits the bare mass termMNeNe or the non-renormalizable

term hNeNeσσ
′/MP which will produce Me ∼ 106 − 1018 GeV. The Dirac mass term is

generated by high-order non-renormalizable term: hLeNeH2σ
3/M3

P , and therefore, mD
e ∼

me(fPQ/MP )3 is negligibly small.

One can get more symmetric or regular charge prescription introducing more singlet fields

or a horizontal symmetry in addition to U(1)G.

The model presented above does not contain any mixing between νe and νµ,τ . Such mixing

can be induced, for example, by adding new Higgs field which could generate a Dirac mass

term meτνeNτ . This give rise to the νe − νµ mixing angle θeµ ∼
meτ
mµ

being in the range of

sensitivity of KARMEN and LSND [4] for meτ ∼ 30MeV,mµ ∼ GeV [6].

5 Conclusions

Simultaneous explanation of different neutrino anomalies hints to the existence of sterile neu-

trino. We have considered a possibility that the sterile neutrino is the quasi Goldstone fermion,

which appears as the result of spontaneous breaking of a global U(1)G symmetry in super-

symmetry theory. This global U(1)G symmetry can be identified with the PQ symmetry, the

lepton number symmetry or the horizontal symmetry.

12



The mass of QGF generated by SUSY breaking can be as small as 10−3 eV so that νe → S

resonance conversion solves the solar neutrino problem. In the supergravity theories such a

smallness of mS is related to special forms of superpotential and the scale of U(1)G breaking

fG
>
∼ 1016 GeV or to no-scale kinetic terms for certain superfields. In the last case, mS is

generated in two or three loops.

The mixing of QGF with the neutrinos implies spontaneous or explicit violation of the R

parity. QGF can mix with neutrino via interaction with Higgs multiplets (in the case of PQ

symmetry) or directly via coupling with the combination LH2 (in the case of lepton number

symmetry).

The U(1)G-symmetry being generation dependent can simultaneously explain the domi-

nance of QGF coupling with electron neutrino and pseudo-Dirac structure of νµ − ντ system

needed to explain the atmospheric neutrino problem and HDM.

The PQ breaking scale fPQ ∼ 1010 − 1012 GeV determines several features of the model

presented here. It provides simultaneous explanation of the parameters ε and µ and thus

leads to small R-parity violation required in order to solve the solar neutrino problem in our

approach. It also provides the intermediate scale for the RH neutrino masses which is required

in order to solve the dark matter and the atmospheric neutrino problem. Finally, it controls

the magnitude of the radiatively generated mass of the QGF and allows it to be in the range

needed for the MSW solution of the solar neutrino problem. Thus the basic scenario presented

here is able to correlate variety of phenomena.

If future solar neutrino experiments establish that the νe−S conversion is the cause of the

solar neutrino deficit then one might be seeing indirect evidence for the PQ like symmetry or

for that matter of SUSY itself.
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Fig. 1: One-loop diagram for the QGF mass. The solid lines are fermions and the dotted

lines are bosons. AN is the soft parameter of NNσ.
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Fig. 2: Two-loop diagram for the QGF mass. AD is the soft parameter of LNH2.
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