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Abstract

A quantum kinetic formalism is developed to study the dynamical interplay of quantum and

statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD

processes. The approach provides the means to follow the quantum dynamics in both space-time and

energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and

gluons. Using a generalized functional integral representation and adopting the ‘closed-time-path’

Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-

Landau equation for a possible color background field, and Dyson-Schwinger equations for the

2-point functions of the gluon and quark fields. By exploiting the ‘two-scale nature’ of light-cone

dominated QCD processes, i.e. the separation between the quantum scale that specifies the range

of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statis-

tical binary interactions, the quantum-field equations of motion are converted into a corresponding

set of ‘renormalization equations’ and ‘transport equations’. The former describe renormalization

and dissipation effects through the evolution of the spectral density of individual, dressed partons,

whereas the latter determine the statistical occurrence of scattering processes among these dressed

partons. The renormalization equations and the transport equations are coupled, and hence must be

solved self-consistently. This amounts to evolving the multi-parton system, from a specified initial

configuration, in time and full 7-dimensional phase-space, constrained by the Heisenberg uncertainty

principle. This quantum-kinetic description provides a probabilistic interpretation and is therefore

of important practical value for the solution of the dynamical equations of motion, suggesting for

instance the possibility of simulating the multi-particle dynamics with Monte Carlo methods.
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1. INTRODUCTION

In this paper I attempt to formulate an approach towards a fundamental and consistent

description of the statistical properties of non-equilibrium quantum systems produced in

high-energy QCD processes, which allows to follow the quantum dynamics in time and

complete phase space starting from an initial configuration. It provides a flexible framework

for a systematic analysis of typical problems associated with the quantum dynamics of such

systems, including, e.g., multi-particle transport phenomena of gluons, quarks and hadrons,

or, critical dynamics of phase-transition phenomena and spontanous symmetry breaking,

or, quantum dissipation, entropy generation and multi-particle production.

More specifically, the intentions are aimed towards a practically applicable description

of the space-time evolution of a general initial system of gluons and quarks, characterized

by some large energy or momentum scale, that expands, diffuses and dissipates according to

the self- and mutual-interactions, and eventually converts dynamically into excited hadronic

matter and a final state hadron system by a “phase transition”. This scenario frames a

wide class of QCD processes of both fundamental and phenomenological interest. For

instance, the evolution of parton showers in the mechanism of parton-hadron conversion

in elementary high-energy processes (e+e−-annihilation into hadrons, deep-inelastic lepton-

nucleon scattering, or non-diffractive hadronic collisions), or, the description of formation,

evolution and freeze-out of a quark-gluon plasma in ultra-relativistic heavy-ion collisions,

or, the study of the dynamics of the QCD phase-transition from the deconfined, high-

temperature partonic phase to a low temperature hadronic phase with the simultanous

breakdown of chiral symmetry and the condensation of gluons and quarks in the vacuum,

as it occurred during the early evolution of the Universe.

In the present paper I will confine myself to the first stage, the high-energy quark-gluon

phase, and develop a quantum kinetic formalism that allows to describe both the dissi-

pative and dispersive dynamics of a multi-parton system in real time. This description is

exclusively based on the fundamental QCD Lagrangian and its firmly established princi-

ples. The second stage, the parton-hadron conversion and phase transition, on the other

hand, requires supplementary phenomenological input to model the details of the confine-

ment mechanism that are not known at present [1]. Such a phenomenological approach to

the real-time dynamics of parton-hadron conversion that models the transition within an

effective field theory description has been proposed recently in Ref. [2]. It is preferable,

however, to keep the fundamental description of the first stage distinct from the less under-

stood phenomenological aspects of the second stage, and therefore I will address the latter

in a separate paper.
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In general, the study of a high-energy multi-particle system and its quantum dynamics

involves three essential aspects: first, the aspect of space-time, geometry and the structure

of the vacuum; second, the quantum field aspect of the particle excitations; and third,

the statistical aspect of their interactions. These three elements are generally intercon-

nected in a non-trivial way by their overall dynamical dependence. Therefore, in order

to formulate a quantum description of the complex non-equilibrium dynamics, one needs

to find a quantum-statistical and kinetic formulation of field theory that unifies the three

aspects self-consistently. With this paper I take steps towards this goal by combining three

corresponding theoretical methods, namely, first, the closed-time-path (CTP) formalism

[3, 4, 5, 6, 7, 8] (for treating initial value problems of irreversible systems), second, the non-

local source theory [9, 10, 11] (for incorporating quantum fluctuations), and third, transport

theory based on Wigner function techniques [12, 13, 14] (for a kinetic description of inho-

mogenous non-equilibrium systems). In principle, a dynamical theory of non-equilibrium

multi-particle systems as the above mentioned, should be described by an exact quantum

kinetic theory of QCD. Over the past 10 years, elaborate works [15, 16, 17] have put great

effort into deriving a general QCD transport theory rigorously from first principles. Un-

fortunately, due to a number of unresolved problems arising from the complexities of the

non-abelian gauge structure of QCD, the derived gauge-covariant formalism remains an

academic theory up to date. It is of little practical value, unless it is boiled down to the

quasi-classical limit by a series of approximations yielding a mean-field description, which

however cannot describe the production of physical particles and their spectra.

I am less ambitous here in what concerns the generality, and instead put emphasis on ap-

plicability to realistic physical situations, in particular to the type of lightcone-dominated

processes that I classified above. This class of high-energy processes allows a clear dis-

tinction between a short-distance quantum field theoretical scale and a larger distance

statistical-kinetic scale. When described in a reference frame, in which the particles move

close to the speed of light, the effects of time dilation and Lorentz contraction separate the

intrinsic quantum motion of the individual particles from the statistical correlations among

them. On the one hand, the quantum dynamics is determined by the self-interactions of

the bare quanta, and by the possible presence of a coherent background field (or mean

field in the Hartree-Fock sense), in case one desires to go beyond a description in the pure

vacuum. This requires a fully quantum theoretical analysis including renormalization. On

the other hand, the kinetic dynamics can well be described statistical-mechanically by the

motion of the quasi-particles which arise from the ‘dressing’ of the bare quanta by their

self-interactions and by the background field, plus the binary interactions between these

quasi-particles. Such a distinct description of quantum and kinetic dynamics is possible,
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because the quantum fluctuations are highly concentrated around the light cone, occurring

at very short distances, and decouple to very good approximation from the kinetic evolu-

tion which is dictated by comparably large space-time scales. As mentioned, the natural

two-scale separation is just the consequence of time dilation and Lorentz contraction, and

is true for any lightcone dominated process. In fact, at asymptotic energies the quantum

fluctuations are exactly localized on the lightcone, and so the decoupling becomes perfect.

This observation is the key to formulate a quantum kinetic description in terms of par-

ticle phase-space densities, involving a simultanous specification of momentum space and

space-time, because at sufficiently high energy, the momentum scale ∆p of the individual

particles’ quantum fluctutions and the scale ∆r of space-time variations of the system of

particles satisfiy ∆p∆r ≫ 1, consistent with the uncertainty principle.

With this physical input and utilizing the aforementioned theoretical tools, the analysis

proceeds as follows. In the first step, covered in Sec. 2, I obtain, starting from the QCD

Lagrangian, the CTP generating functional for the gluon and quark Green functions, being

defined on a closed-time contour and incorporating initial state correlations. From the as-

sociated effective action, one gets the quantum dynamical equations of motion, which are

the CTP version of the Ginzburg-Landau equation and the Dyson-Schwinger equations. In

the second step, described in Sec. 3, I make the transition from quantum field description

to kinetic theory, by exploiting the two-scale nature of lightcone dominance, and more-

over, choosing a ghost-free axial gauge for the gluon fields. As a result one obtains from

the Dyson-Schwinger equations a set of kinetic equations, consisting of a renormalization

equation, that describes the quantum dynamics in terms of short-distance self-interactions

of gluons and quarks, plus a transport equation that describes the kinetic dynamics of re-

laxation and collision processes in terms of the statistical interactions of the renormalized,

dynamically dressed partons among each other. The renormalization equation and the

transport equations are coupled, and hence must be solved self-consistently. This amounts

to evolving the system under consideration from its initial configuration simultanously in

position- and momentum-space, constrained by the Heisenberg uncertainty principle. Fi-

nally, Sec. 4 closes with some concluding remarks, and the Appendices summarize, for each

of the above aspects, the technical details which are only indicated in the text.

The main findings can be summarized as follows. The dynamics of high-energy multi-

parton systems can, under reasonable conditions, be described in a semi-classical manner:

the partons can be considered as dressed quanta with a dynamical substructure and a

corresponding form factor arising from the self-interactions. The space-time evolution of a

system of many such dressed partons is then governed by their propagation along classical

trajectories and mutual binary collisions, as determined by their density, cross-sections and
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by quantum statistics. This emerging picture is of great practical value for formulating a

systematic calculation scheme − in a sense the space-time generalization of the ‘jet calculus’

[18, 19]. In Sec. 3.6, I outline such a scheme. One of the greatest advantages of this kinetic

description is that it provides a probabilistic interpretation of the time evolution in full

7-dimensional phase-space, which suggests the opportunity to simulate the multi-particle

dynamics as sequential Markov processes with Monte Carlo methods.

Finally let me comment on placing this work in relation to existing literature.

(i) The general ideas and techniques of the CTP functional integral formalism have orig-

inally been introduced mainly by Schwinger [3], Keldysh [4], and by Kadanoff and

Baym [5], more than thirty years ago. The most extensive review that sums up

the current state of the art is probably the work of Chou et al. [6], with diverse

exemplification of the wide class of physics applications. Further pedagogically ex-

cellent presentations have been published by Calzetta and Hu [7], and by Rammer

and Smith [8]. In the particular field of relativistic nuclear physics, the concepts

have been pragmatically applied , e.g., by Li and McLerran [20], and by Zhang and

Wilets [21]. Important contributions of fundamental studies have been made in the

last years by Danielewicz [22], and Mrowczinsky and Heinz [23]. The goal to establish

a quantum kinetic theory for QCD was pioneered by the ambitious efforts of Elze,

Gyulassy, Heinz, and Vasak [15, 16, 17], which resulted in a rigidly general, gauge

covariant formalism. However, the prize to pay is an intractable complexity that,

without specific physics input, is essentially of aestethic value without much practical

use. The new achievement of the present work from this perspective may be stated

as the adaption of the general CTP formalism, applied to QCD, but with focus on

situations where the multi-parton dynamics is characterized by a large energy scale

and can be described reliably within perturbation theory in a physical gauge.

(ii) The most related recent works from the viewpoint of attempting to tackle evolution

of multi-parton systems at high energy are probably the innovative works of McLer-

ran, Venugopalan, et al. [24], and of Makhlin [25], in which the issue of calculating

parton distributions in the context of ultra-relativistic nuclear collisions is addressed.

The former authors use a classical non-abelian field description of QCD to compute

coherent initial state properties of colliding large nuclei, whereas the latter focusses

on a quantum field description of final state correlations of produced particles. Both

approaches however do not attempt to address explicitly the space-time evolution of

the multi-parton ensemble emerging from the nuclear collision, which is the main goal

of the present paper.
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(iii) The key elements to address the space-time evolution are provided by the Wigner func-

tion techniques, which date back to Wigner’s work on transport phenomena [12], and

are reviewed in in e.g. [13, 14]. Although widely exploited in condensed matter and

plasma physics, these tools for quantum kinetics of many-body systems have hardly

been applied to describe high energy non-equilibrium dynamics in QCD. New in the

present work is the synthesis of quantum dynamics on the basis of the renormalization

group of QCD, and quasi-particle kinetics within relativistic transport theory. The

combination of these two aspects forms the foundation of the self-consistent treat-

ment that entails a thorough consideration of the renormalization problem, which is

commonly avoided in other applications (see however Ref. [7]).

(iv) The machinery of perturbative QCD for light-cone dominated high energy processes

is nowadays well founded. Most of the techniques used in the perturbative analysis

to describe the parton evolution, adopt the tools developed by Dokshitzer et al. [26],

Amati et al. [27], Mueller [28], and numerous others (for an overwiew see [29, 30]).

The new component here is the extension to incorporate a space-time description on

top of this formalism, which is commonly considered only in momentum space.

It is evident that this paper attempts to join theoretical tools and concepts from rather

different fields. Such a synthesis is necessarily a difficult task, and the the present initiative

should be viewed as a first step in this direction. However, I believe that it is a promising

approach towards a well founded and consistent description of the statistical properties of

non-equilibrium parton systems. From the phenomenological perspective, it is an inevitable

necessity to address this problem, since the experiments carried out at the HERA, RHIC

and LHC accelerators will penetrate increasingly the physics of high-density QCD, where

quark-gluon transport phenomena are of fundamental importance.

2. FUNCTIONAL FORMALISM

The aim is to describe the time evolution of a general non-equilibrium quantum system

consisting of an ensemble of quarks and gluons in phase space, starting from some given

inital state at time t0. Since I am interested in the state of the system at finite times t > t0,

without a priori knowledge of the asymptotic final state at t = ∞, the usual S-matrix

formalism of quantum field theory, based on in-out matrix elements, cannot be applied. For

initial value problems as I want to describe here, the appropriate approach is provided by

the functional integral formalism of the in-in generating functional for the Green functions

of quarks and gluons, also referred to as closed-time-path (CTP) Green functions. The CPT
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formalism is a powerful Green function formulation, originally introduced by Schwinger [3]

and Keldysh [4] for describing general non-equilibrium phenomena in field theory [5, 6,

7, 8]. In combination with the so-called non-local source theory and the loop expansion

techniques developed by de Dominicis and Martin [9], and Cornwall, Jackiw, and Tomboulis

[10], one obtains generalized Dyson-Schwinger equations which incorporate the initial state

correlations and provide a systematic treatment of the quantum correlations to any order in

h̄. Furthermore it allows to describe phase-transition phenomena and dynamical symmetry

breaking, issues that I will not address here, but which are of central interest when studying

the confinement dynamics, as intended to be presented elsewhere. In this Section, I will

first review the concept of the in-in generating functional and the effective action for the

CTP Green functions, and then derive the dynamical equations of motion. For additional

reading on these techniques I refer to the extensive review of Chou et al. [6] and to the

instructive work of Calzetta and Hu [7].

2.1 Preliminaries

Starting point is the QCD Lagrangian given in terms of the gluon fields Aµa and the

quark fields ψ, ψ (which are vectors in flavor space, ψ ≡ (ψu, ψd, . . .)),

L[Aµ, ψ, ψ] = −1

4
Fµν,aF

µν
a + ψi

[
(iγµ∂

µ − m̂)δij − gsγµA
µ
aT

ij
a

]
ψj + ξa(A

µ) , (1)

where Fµνa = ∂µAνa − ∂νAµa + gsfabcA
µ
bA

ν
c is the gluon field-strength tensor. The subscripts

a, b, c label the color components of the gluon fields, and gs denotes the color charge related

to αs = g2
s/(4π). The Ta are the generators of the SU(3) color group, satisfying [Ta, Tb] =

ifabcTc with the structure constants fabc. The indices i, j label the color components of the

quark fields and m̂ ≡ diag(mu,md, . . .). I will in the following exploit the fact that high

energies the quark current masses mf can be neglected, which corresponds to the chiral

limit where they are exactly zero.

In general the Lagrangian (1) must also include the Fadeev-Popov ghosts as independent

field degrees of freedom. However, I will work exclusively in a class of ghost-free gauges,

namely the so-called space-like axial gauges, which are defined by the gauge condition [31]

nµ A
µ
a(x) ≡ n · Aa = 0 , (2)

where nµ a constant four-vector in the x0 − x3 plane near the forward lightcone such that

n2 > 0. It may be parametrized, e.g., as nµ = (a + b, 0, 0, a − b), with the condition

n2 = 4ab ≪ 1. The associated gauge-fixing term is denoted by a function ξa(A
µ) which I

take as

ξa(A
µ) = − 1

2αn2
∂λ(n · Aa)∂λ(n ·Aa) . (3)
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Here α is the gauge parameter that specifies the type of axial gauge. In particular, I will

henceforth set α = 1 which is known as the planar gauge. In contrast to covariant gauges

where ξa(A) = −1/(2α)(∂ · Aa)2, the class of gauges (3) is well known to have a number

of advantages [26, 31]. First, the ghost fields decouple from the gluon field and drop out.

Second, the so-called Gribov ambiguity is not present in this gauge. Third, the gluon

propagator involves only the two physical transverse polarizations, which will simplify the

analysis considerably. Furthermore, it allows for a rigorous resummation of the perturbative

series at high energies in terms of the leading logarithmic contributions and consequently

leads to a simple probabilistic description of the perturbative parton evolution within the

(Modified) Leading Log approximation (MLLA) [26, 27, 32] in QCD.

The classical action corresponding to (1) is represented as

I[Aµ, ψ, ψ] = ≡ I(0)[Aµ] + I(0)[ψ,ψ] + I(int)[Aµ, ψ, ψ] , (4)

where

I(0)[Aµ] =

∫
d4xd4y

{
− 1

2
Aµa(x)

[
Dab

(0)µν(x, y)
]−1

Aνb (y)

}

I(0)[ψ,ψ] =

∫
d4xd4y

{
ψi(x)

[
Sij(0)(x, y)

]−1
ψj(y)

}

I(int)[Aµ, ψ, ψ] = −
∫
d4x

{
gs γµT

ij
a ψi(x)A

µ
a(x)ψj(x) + gs fabc[∂µAν,a(x)]A

µ
b (x)A

ν
c (x)

+ g2
s fabcfab′c′Aµ,b(x)Aν,c(x)A

µ
b′(x)A

ν
c′(x)

}
, (5)

with the kernels of the free parts I(0)[Aµ] and I(0)[ψ,ψ] given by

[
Dab

(0) µν(x, y)
]−1

= δab δ
4(x− y) ✷

µν
x

[
Sij(0)(x, y)

]−1
= δij δ

4(x− y) iγ · ∂x , (6)

where the quark current masses are set to zero here and in the following. The operator

✷
µν
x is a generalized D’Alembertian containing the remnant of the gauge fixing term of (1),

which for the gauge (3) with α = 1 reads

✷
µν
x ≡

(
gµν − nµ∂νx + nν∂µx

n · ∂x

)
✷x , (7)

with ✷x = ∂x · ∂x, ∂µx = ∂/∂xµ. The inverses of (6) are the free gluon and quark Feynman

propagators, i.e. the expectation values of the time-ordered products of the free fields

−i〈TAµ(x)Aν(y)〉(0) and −i〈Tψ(x)ψ(y)〉(0),

Dab
(0) µν(x, y) =

∫
d4k

(2π)4
e−i k·(x−y) δab

−dµν(k)
k2 + iǫ

, dµν(k) = gµν −
nµkν + nνkµ

n · k

Sij(0)(x, y) =

∫
d4p

(2π)4
e−i p·(x−y) δij

1

γ · p+ iǫ
. (8)
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It is noteworhty that the form of the gluon propagator 1 arises from the sum over the

two transverse gluon polarizations, dµν(k) =
∑
s=1,2 εµ(k, s) · ε∗ν(k, s), having the properties

[26, 31]

dµµ(k) = 2 , kµ d
µν(k) = − nν k2

n · k
k2→0−→ 0 , (9)

meaning that only the two physical polarization states propagate, with εµk
µ = 0. For

comparison, in the covariant Feynman gauge, dµν = gµν , dµµ = 4, and kµd
µν = kν 6= 0.

In going over from the classical action (4) to a quantum field formulation, the fields

become Heisenberg operators. Let me introduce a compact notation for the different field

degrees of freedom f : 2

φf := ( Aµ, ψ, ψ ) = ( Aµ, ψu, ψu, ψd, ψd, . . . ) , f = g, u, ū, d, d̄, . . . . (10)

The state of the system may be characterized by the Heisenberg field operator ΦH(x),

where ΦH ≡ ΦH [φf ] and x = (t, ~x). Its time evolution is determined by the Hamiltonian

H = H(0) +H(int) of the system (∂t ≡ ∂/∂t),

∂t ΦH(x) = i [H, ΦH(x)]− . (11)

Defining t = t0 as the initial point for the time evolution of the system, the associated

Heisenberg state vectors obey

|φ(t) 〉 = UJ(t, t0) |φ(t0) 〉 , (12)

where

UJ(t, t0) ≡ T exp

[
−i
∫ t

t0
dt′d3x′ J(x′)ΦH(x′)

]
(13)

T denotes the usual time ordering operator, and the external source J is understood as

a sum over sources for the various degrees of freedom. Note that the adjoint U †J(t, t0) =

T † exp
[
i
∫ t
t0
d4x′J(x′)ΦH(x′)

]
involves an anti-temporal ordering T †. In the absence of

external sources, the state vectors are time independent: |φ(t)〉 = |φ(t0)〉.
Upon switching from the Heisenberg picture to the interaction picture, the time evolu-

tion of the corresponding interaction picture field ΦI(x) is determined by the interaction

Hamiltonian H int alone,

∂t ΦI(x) = i
[
H(int), ΦI(x)

]

−
, (14)

1 The apparent singularity of dµν(k) at n · k ≃ k+ = 0 must be dealt with the usual iǫ-prescription, or

by taking the principal value.
2 Since the quarks and antiquarks are treated as massless here, the different quark flavors are, with

respect to the strong interaction, merely copies of each other.
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where ΦI is related to the Heisenberg ΦH field by

ΦI(x) = S(t, t0) ΦH(x) S†(t, t0) , (15)

and evolves explicitly in time through

S(t, t0) ≡ T exp

[
−i
∫ t

t0
dt′H(int)(t′)

]
. (16)

According to (12)-(16), at t = t0 the Heisenberg picture and the interaction picture

coincide, ΦH(t0, ~x) = ΦI(t0, ~x). Hence, the interaction picture field ΦI(x) can be expanded

at t0 in terms of a Fock basis of free particle states, the in-basis,

ΦI(x) =
∑

f=g,q,q̄

∫
d4p

(2π)4
θ(p0) (2π)δ(p2)

∑

s

(
e−ip·x af (p, s) + eip·x a†f (p, s)

)
(17)

|n(1), n(2), . . . , n(∞) 〉 =
∏

f

∏

i

1
√
n

(i)
f !

(
a†f (pi, si)

)n(i)
f

| 0 〉 , (18)

where the a†f (af ) are the corresponding creation (destruction) operators for the particle

types f = g, q, q̄ with definite momentum pi and spin si, and the n
(i)
f are the occupation

numbers of the particle states, and

af (pi, si) | 0 〉 = 0 , n
(i)
f = 〈n(i)

f | af (pi, si) a†f (pi, si) |n
(i)
f 〉 . (19)

Thus, a general multi-parton state |φ〉 at time t0 is given by a superposition of such states,

|φ(t0) 〉 =
∑

n(i)

C(n(1), n(2), . . . , n(∞)) |n(1), n(2), . . . , n(∞) 〉 , (20)

with scalar coefficients C. Alternatively, the initial state of the system at t0 can be charac-

terized by the statistical operator, or density matrix,

ρ̂(t0) = |φ(t0) 〉 〈φ(t0) | ( ρ̂0 )ij ≡ 〈n(i) | ρ̂(t0) |n(j) 〉 , (21)

which in the Heisenberg representation is time independent, but in the interaction picture

evolves with time according to

∂t ρ̂ = i
[
H(int), ρ̂

]

−
, (22)

so that

ρ̂(t) = S†(t, t0) ρ̂(t0)S(t0, t) , (23)

where S is defined by (16). For instance, a general density matrix that describes any form

of a single-particle density distribution at t0 is

ρ̂(t0) = N exp




∑

f, s

∫

Ω
d3x

∫
d3p

(2π)32p0
Ff (t0, ~x, p) a

†
f (p, s)af (p, s)



 , (24)

9



where Ω denotes the hypersurface of the initial values and Ff is a c-number function related

to the single-particle phase-space density of particle species f at ~x with four-momentum p,

and N a normalization factor.

2.2 The CTP generating functional

After these preliminaries let me turn now to describe the time development of the multi-

parton state from the initial state |φin〉 = |φ(t0)〉, continously through finite intermediate

times t0 < t < t∞, to some final state |φout〉 = |φ(t∞)〉 in the remote future (see Fig. 1).

In the usual S-matrix formalism of quantum field theory one calculates the in-vacuum to

out-vacuum amplitude Z[J ] = 〈0in|0out〉J , and from this, physical quantities corresponding

to in-out S-matrix elements of certain operators, assuming that the Fock space of the

asymptotic out-states is the same as for the in-states (Fig. 1a), as e.g. in scattering theory.

In the present case, however, the system evolves forward through finite points of time, and

so the asymptotic out-basis |φout〉 is not known before the solution to the problem. There

is an arrow of time, leading to an irreversible evolution. Moreover, in general |0in〉 6= |0out〉,
as for instance in the case of a phase transition or spontanous symmetry breaking where

in- and out-vacua are of different nature.

These problems can be overcome by using the CTP-formalism based on in-in rather

than in-out matrix elements [6, 11], but otherwise uses the familiar techniques of the path-

integral method for quantizing the theory. The in-in generating functional is defined as the

in-vacuum to in-vacuum amplitude Z[J, ρ̂] = Tr
∑
ϕ〈0in|ϕ〉J 〈ϕ|ρ̂|0in〉J , including possible

initial state correlations represented by the density matrix ρ̂ at t0, and a sum over a complete

set of states ϕ at t∞ (Fig. 1b). With reference to Appendix A, where the relevant concepts

are reviewed and applied to the case of QCD, I merely state here the resulting path-integral

representation for the in-in, or CTP generating functional. It is given by the following path

integral representation in 2-point source approximation:

ZP [Jµ, j, j,Kµν , k] = eiWP [Jµ,j,j,Kµν ,k]

=

∫
DAµαDψαDψα exp

[
i

(
I[Aµα, ψα, ψα] (25)

+ JαµA
µ
α + jαψα + j

α
ψα +

1

2
AµαK

αβ
µν A

ν
β + ψαk

αβψβ

)]
.

where I introduced a shorthand notation for the integration over the space-time variables

to be understood in the functional sense,

J φ ≡
∫

P
d4xJ(x) φ(x) , φK φ ≡

∫

P
d4xφ(x) K(x, y) φ(y) . (26)

The CTP generating functional (25) differs from the usual generating functional of QCD

in two essential aspects:
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First, it contains both, local sources (J, j, j) and non-local 2-point sources (K,k). The

former represent not only the usual external source contribution Jext(x), but also the source

term local source term K̃(x) for a possible dynamical background field present already at

initial point t = t0, that is, J = Jext + K̃, and similarly for j, j̄. The non-local sources

K(x, y), k(x, y), on the other hand, represent the 2-particle initial state correlations at

t = t0. Both these source contributions 3 stem from the general non-trivial density matrix

ρ̂(t0) that defines the initial ground state. In the usual field theory formulation both

these source terms are absent. As a consequence, the connected generating functional

WP = −i lnZP in (25) gives both the non-local connected Green functions gluons and

quarks, including initial state correlations (denoted by Dµν(x, y), respectively S(x, y)), as

well as possible local mean fields which physically can arise either through non-vanishing

external sources, or, in the case of gluons, may be generated dynamically by the system

itself depending on the initial conditions (denoted in the following by Ãµ(x)).

Second, the CTP functional ZP is defined on a closed-time path in the complex t-plane

(indicated by the subscript P ). This path P for the time integration is illustrated in Fig.

2a: the path goes forward from t0 to t∞ on the positive branch, and then back from t∞

to t0 on the negative branch. Accordingly the generalized time-ordering TP is defined such

that any point on the negative branch is understood at a later instant than any point on

the positive branch. This is not merely a mathematical trick to restore analogy with usual

quantum field theory, but provides the means to compute expectation values for physical

observables at finite time in contrast to the S-matrix formalism. The interpretation of this

closed-time path is simple: although for physical observables the time values are on the

positive branch, both positive and negative branches will come into play at intermediate

steps in a self-consistent calculation, corresponding to a quantum mixing of positive and

negative energy solutions. Therefore, in contrast to the usual path-integral formulation of

quantum field theory, the non-local 2-point Green functionsDµν(x, y) and S(x, y) for gluons

and quarks, respectively, come each in four different forms corresponding to the possible

time orderings αβ = ++,+−,−+,−− along the closed-time path P , as illustrated in Fig.

2b. In as much as the propagators Dµν(x, y) and S(x, y) can have values x and y on either

the positive branch or the negative branch on the contour P , it is convenient to represent

them 2×2 matrices G(x, y) ≡ Dµν , S with components Gαβ (a convention which holds for

any 2-point function defined along the closed-time path P ),

G(x, y) = −i 〈TPφ(x)φ†(y) 〉 ≡


 G++ G+−

G−+ G++



 ≡


 GF G>

G< GF̄



 , (27)

3 In the 2-point sources approximation, the actually infinite series of non-local n-point sources that

generate n-particle correlations, is truncated beyond n = 2 (c.f. Appendix A).
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where 〈. . .〉 ≡ 〈φ+, t0| . . . |φ−, t0〉 denotes the vacuum expectation value, if |φ, t0〉 = |0〉,
or else the appropriate ensemble average. The generalized time-ordering operator TP is

defined as TP A(x)B(y) := θ(x0, y0)A(x)B(y) ± θ(y0, x0)B(y)A(x), where the +(−) sign

refers to boson (fermion) operators, and θ(x0, y0) ≡ 1 (0) if x0 > y0 (x0 < 0) on P . Hence,

TP coincides with the usual temporal ordering T on the positive branch (t0 → t∞) of the

closed time path in Fig. 2, but represents anti-temporal ordering T † on the negative branch

(t∞ → t0). The notation on the right hand side expresses that GF is the usual Feynman

causal propagator, GF is the corresponding anti-causal propagator, and G> (G<) is the

correlation function for x0 > y0 (x0 < y0). Explicitly,

DF
µν(x, y) = −i 〈 T Aµ(x)Aν(y) 〉 D>

µν(x, y) = +i 〈 Aν(y)Aµ(x) 〉
D<
µν(x, y) = −i 〈 Aµ(x)Aν(y) 〉 DF

µν(x, y) = −i 〈 T †Aµ(x)Aν(y) 〉 , (28)

and

SF (x, y) = −i 〈 T ψ(x)ψ(y) 〉 S>(x, y) = −i 〈 ψ(y)ψ(x) 〉
S<(x, y) = −i 〈 ψ(x)ψ(y) 〉 SF (x, y) = −i 〈 T † ψ(x)ψ(y) 〉 . (29)

The CTP generating functional ZP = exp(iWP ), eq. (25), is the fundamental starting

point for deriving the dynamical equations of motion for both gluon mean field Ãµ, and

the dressed gluon- and quark propagators, Dµν and S, using the matrix representations

(27)-(29). Formally, this Green function formalism on the closed-time path is completly

analogous to usual quantum field theory, except that all propagators, self-energies, etc.,

are now 2× 2 matrices, as diagramatically represented in Fig. 3. Correspondingly, the

Feynman rules remain the same, but each propagator line of a Feynman diagram can be

either of the four components of the Green functions.

2.2 The CTP effective action

To proceed, it is convenient to work with the CTP effective action ΓP , the two-particle

irreducible vertex functional, which determines the equations of motion for the physically

relevant Green functions and the mean field, rather than with ZP or WP of (25) which

involve the sources J,K that do not have any immediate physical interpretation. The CTP

effective action ΓP is defined as the multiple Legendre transform of WP [6, 7], which with

respect to the 2-point source representation (25) is given by

ΓP [Ãµ,Dµν , S] = WP [Jµ, j, j,Kµν , k] −
(
Jµ Ã

µ + j ψ + j ψ

)

−
(

1

2
AµKµν A

ν − ψ k ψ

)
. (30)
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Note that ΓP reduces to the usual effective action for the one-particle irreducible vertex

functions in the limit of vanishing mean field Ãµ = 0 and absence of initial state correlations

K = k = 0. In the general case, one obtains

ΓP [Ãµ,Dµν , S] = Ĩ[Ãµ] − i

2
Tr
[
ln(D−1

(0)D) − D̃−1
(0)D + 1

]

+ i T r
[
ln(S−1

(0)S) − S̃−1
(0)S + 1

]
+ Γ

(2)
P [Ãµ,Dµν , S] . (31)

The first term is of order h̄0 and is given by the classical action (4) (and eq. (32) of

Appendix A) with

Ĩ[Ãµ] ≡ I[Aµα, ψα, ψα]

∣∣∣∣
Aµ

α=Ãµ, ψα=ψα=0
. (32)

The second and third terms are of order h̄1 and correspond to the gluon and quark con-

tributions in which the bare propagators Dµν
(0) and S(0) (8) are modified by the presence of

a local gluon mean field Ãµ leading to ‘mean field dressed’ propagators D̃µν
(0) and S̃(0) with

an effective screening mass µ̃ ≡ µ̃[Ãµ] (see Fig. 4). In analogy to (6):

(D̃−1
(0))

µν(x, y) = (D−1
(0))

µν(x, y) − µ̃µνg (x, y) δ4(x− y)

S̃−1
(0)(x, y) = S−1

(0)(x, y) − µ̃q(x, y) δ
4(x− y) . (33)

Thus, the effect of the mean field is to shift the pole in the bare Green functions (6) by a

dynamical mass function µ̃.

The last term Γ
(2)
P in (31) represents the sum of all two-particle irreducible graphs of or-

der h̄2, h̄3, . . . [10], with full propagators Dµν and S, dressed by both local mean field and

non-local self-interactions (see Fig. 4). As will become clear, the real (dispersive) part of

Γ
(2)
P contains the virtual loop corrections associated with the self-interactions of gluons and

quarks, whereas the imaginary (dissipative) part contains the real emission, absorption,

and scattering processes. In other words, Γ
(2)
P embodies all the interesting quantum dy-

namics that is connected with renormalization group, entropy generation, dissipation, etc..

Explicitly writing out the color indices, it is given by (see Fig. 5a)

Γ
(2)
P [Ãµ,Dµν , S] =

= −g
2
s

2
Tr

[ ∫
d4z1d

4z2 λ
aa′a′′
µµ′µ′′ Λ

b′′b′b
ν′′ν′ν(z2, z1; y) D

µ′ν′

a′b′ (x, z1)D
µ′′ν′′

a′′b′′ (x, z2)D
νµ
ba (y, x)

+

∫
d4z1d

4z2 γµT
a
ii′ Ξ

b
jj′ ν(z2, z1; y) D

µν
ab (x, z1)Si′j′(x, z2)Sij(y, x)

]
.(34)

Here Λνν′ν′′ and Ξν are the qqg and qqg vertex functions, respectively,

Λaa
′a′′

νν′ν′′(z1, z2; y) = λaa
′a′′

νν′ν′′ δ
4(y − z1)δ

4(y − z2) g[Ã
µ(y)] + O(g2

s)

Ξaij ν(z1, z2; y) = γν T
ij
a δ4(y − z1)δ

4(y − z2) g[Ã
µ(y)] + O(g2

s) , (35)
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with λaa
′a′′

νν′ν′′ and γµT
ij
a the corresponding bare vertices, and the function g[Ãµ] describes

the effect due to the presence of the gluon mean field Ãµ as compared to free space, where

g[0] = 1.

2.3 The self-consistent equations of motion

The dynamical equations of motion for the gluon mean field and the gluon and quark

Green functions in the absence of external sources are now as usual obtained from variation

of the effective action ΓP with respect to its variables, and setting the external sources to

zero. Hence by functional differentiation of ΓP (31) with respect to the gluon mean field

Ãµ one gets the Ginzburg-Landau equation [33]

δΓP

δÃµ(x)
=

δĨ [Ãµ]

δÃµ(x)
+ 2iTr





δ[D̃µν

(0)]
−1

δÃµ(x)
− 1

2

δ[S̃(0)]
−1

δÃµ(x)




 +
δΓ

(2)
P

δÃµ(x)
= 0 (36)

Similarly, the variation of ΓP with respect to the dressed propagators Dµν and S gives the

CTP version of the Dyson-Schwinger equations [34],

i
δΓP

δDµν(y, x)
= D−1

µν (x, y) − D̃−1
(0)µν(x, y) + Πµν(x, y) = 0 (37)

−i δΓP
δS(y, x)

= S−1(x, y) − S̃−1
(0)(x, y) + Σ(x, y) = 0 . (38)

Here Π and Σ are 2 × 2-matrices analogous to (27), representing the proper self-energy

parts of gluons and quarks. They are obtained by functional differentiation of the quantum

contribution Γ
(2)
P to the effective action (31),

2 i
δΓ

(2)
P

δDba
νµ(y, x)

= Πµν
ab (x, y) − i

δΓ
(2)
L

δSij(y, x)
= Σij(x, y) . (39)

From (34), one gets (c.f. Fig. 5b),

Πµν
ab (x, y) = −i g2

s

[ ∫
d4z1d

4z2 λ
µµ′µ′′

aa′a′′ Λ
b′′b′b
ν′′ν′ν(z2, z1; y) D

µ′ν′

a′b′ (x, z1)D
µ′′ν′′

a′′b′′ (z2, x) (40)

+

∫
d4z1d

4z2 γµT
a
ii′ Γ

b
jj′ ν(z2, z1; y) Sij(x, z1)Si′j′(x, z2)

]

Σij(x, y) = +i g2
s

∫
d4z1d

4z2 γµT
a
ii′ Γ

b
jj′ ν(z2, z1; y) D

µν
ab (x, z1)Si′j′(x, z2) . (41)

The Dyson-Schwinger equations (37), (38) can be brought into a more familiar form by

employing the expressions for the free propagators (6)

[
→
✷x, µρ + µ̃2

g(x, y)
]
Dρν
ab (x, y) = δab g

µν δ4P (x, y) −
∫

P
d4x′Πµ

σ, a,b′(x, x
′)Dσν

b′b(x
′, y)

Dρν
ab (x, y)

[
←
✷y, µρ + µ̃2

g(x, y)
]

= δab gµν δ
4
P (x, y) −

∫

P
d4x′Dµ

σ, a,b′(x, x
′)Πσν

b′b(x
′, y)(42)
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and

[
iγ·
→

∂ x − µ̃q(x, y)
]
Sij(x, y) = δijδ

4
P (x, y) +

∫

P
d4x′ Σik(x, x

′)Skj(x
′, y)

Sij(x, y)
[
−iγ· ←∂ y − µ̃q(x, y)

]
= δijδ

4
P (x, y) +

∫

P
d4x′ Sik(x, x

′)Σkj(x
′, y) , (43)

where ∂µx = ∂/∂xµ, ✷
µν
x is defined by (7), the time integrations on the right hand sides

are understood along the contour P , and the generalized δP -function is defined on the

closed-time path P (Fig. 2) as

δ4P (x, y) :=






+δ4(x− y) if x0 and y0 from positive branch

−δ4(x− y) if x0 and y0 from negative branch

0 otherwise

. (44)

Let me emphasize once more the essential difference to usual quantum field theory: the eqs.

(42) and (43) are matrix equations and represent four equations, one for each of the four

correlators (28), respectively (29). In the limiting case where correlations among different

partons vanish, one has G> = G< = 0, and because GF = GF †, one recovers the standard

Dyson-Schwinger equations in terms of the Feynman propagators alone. The first equation

in (42), respectively (43), describes the change of the propagators in the argument x,

whereas the second equation describes the change in y of the adjoint propagators (adjoint ‘†’
means hermitian conjugate with simultanous exchange of the arguments). A diagrammatic

representation of these Dyson-Schwinger equations for the fully dressed Green functions

Dµν(x, y) and S(x, y) is shown in the previous Fig. 4.

Let me summarize the considerations of this Section. The CTP generating funcional

ZP involving a initial state correlations of the form (21), described by the density matrix ρ̂

at t = t0, yields infinite hierarchy of n-point Green functions, defined along the closed time

path. As explained in Appendix A, the truncation of this hierarchy beyond n > 2 assumes

that the dynamics may be described to sufficient accuracy by a possible local gluon mean-

field and the non-local 2-point Green functions of gluons and quarks, and that higher order

correlators are negligible. The resulting CTP effective action may then be represented by

a systematic loop expansion corresponding to an expansion in powers of h̄. Considering

the pure quantum regime with zero mean field, yields a coupled set of equations of motion

for the gluon and quark propagators, which are 2× 2 matrices containing the four possible

time orderings of their arguments x and y. The solution of these dynamical equations then

boils down to the evaluation of expectation values involving the propagators and vertex

functions, e.g. by using perturbation theory [7, 10].

15



3. QUANTUM KINETIC THEORY

Within the 2-point source approximation to the full theory in terms of 2-point Green

functions, the resulting CTP Dyson-Schwinger equations (42), (43) ) contain the quantum

dynamics in terms of the dressed gluon and quark propagators Dµν and S. Even with

the neglect of higher-order correlators, the equations of motion are non-linear, non-local

integrodifferential equations, generally not solvable in closed form. To make progress, one

needs to supply reasonable physical input that allows to make realistic approximations for

multi-parton systems of interest.

First of all, I will confine myself for the remainder of the paper to the pure quantum

dynamics of gluons and quarks, when a gluon mean field is absent. That is, I choose the

homogenous initial condition Ãµ(x) = 0 at t0, which in the absence of external sources

implies that Ãµ will remain zero at all times t > t0,

δΓP

δÃµ(x)
= 0 , Ãµ(x) = 0 (45)

Consequently, in (31), the classical part Ĩ[Ãµ] = 0 (see also eq. (32) of Appendix A), and

µ̃g = µ̃q = 0, so that the mean-field propagators reduce to the bare propagators,

D̃µν
(0)(x, y) = Dµν

(0)(x, y) , S̃µν(0)(x, y) = S(0)(x, y) . (46)

This step however is not an approximation, but merely serves as a simplification in order

not to overburden the following analysis. The more general case including a dynamical

gluon background field causes in principle no severe additional complexities, and will be

addressed elsewhere.

The essential approximation now is based on the ‘two-scale’ nature of high-energy QCD,

as mentioned in the introduction. The dynamical evolution of a multi-parton system can

- in a reference frame where the partons move with highly relativistic velocities - be char-

acterized by two different time- (or length-) scales, separated by time dilation and Lorentz

contraction effects: a quantum field theoretical scale ∆rqua and a statistical-kinetic scale

∆rkin. This is illustrated in Fig. 6a. The quantum length scale ∆rqua, measures the spa-

tial range of quantum fluctuations, associated with the partons’ self-interactions, and thus

specifies the Compton wavelength λc ≡ µ−1
gq of dressed partons. These gluon emission and

absorption processes, embodied in the self-energy, dress up the bare propagators and allow

to describe partons as quasi-particles with finite spatial extent, but with a dynamical sub-

structure. This is nothing but the underlying philosophy of the usual parton description

in QCD. The kinetic length scale ∆rkin, on the other hand, measures the range of binary

interactions between these quasi-particles. These scattering processes may be described
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on a semi-classical level, provided the local density of the quasi-particles is smaller than a

critical density where the particles begin to overlap and the separation between quantum

and classical regimes breaks down. Quantitatively one has to require that the mean free

path λmf of particles is large compared to the radiative corrections to the Compton wave-

length λc. The crucial point is, that with increasing energy scale the latter range becomes

increasingly short-range, concentrated around the lightcone (see Fig 6b). Hence, in most

physical situations at high energies, the quantum and the kinetic scales separate to very

good approximation, and in the asymptotic limit exactly. It is important to stress that

both quantum and kinetic scales define the microscopic regime of a semi-classical particle

description. It is to be distinguished from the macroscopic domain of the dynamics of the

bulk parton matter, characterized by comparably large space-time distances of the order

n−1/3, or n/(∂rn), where n(r) is the density of quasi-particles. In this regime the system

may be described by, e.g., hydrodynamical evolution, which is however beyond the scope

of this paper.

To exemplify this concept, consider the simple case of a parton in a Lorentz frame in

which it moves with large momentum k+ ≡ E + kz (k+ 2 ≫ k2 ≫ 1 GeV2) nearly with the

speed of light along the forward lightcone, x+ ≡ t + z. The quantum fluctuations around

this parton’s classical trajectory stem from its self-interaction with the gluon radiation

field, corresponding to gluon emissions and reabsorptions, that smear out its energy over

an interval ∆E ∼ k2/k+. It may thus be pictured as an unstable particle with a typical

life-time ∆τp ∼ 1/∆E. On the one hand, in the direction parallel to the lightcone, the

parton’s intrinsic fluctuations decouple from the soft vacuum fluctuations with ∆τv ∼
1/k+ ≪ ∆τp ∼ k+/k2 [35]. On the other hand, in transverse x⊥-direction, the partonic

fluctuations have a small spatial extent of ∆r⊥ ∼ 1/k⊥ ≪ 1 GeV−1. Therefore, on kinetic

scales ∆kin > µ−1, the parton appears as a dressed particle which can be considered quasi-

classically as an extended object with a small transverse size ∆r⊥ and a comparably long

life-time ∆τp − a quasi-particle. On quantum scales, however, the dressed parton has a

substructure, determined by its surrounding cloud of gluons that it emits and reabsorbs

due to its quantum nature.

In this spirit I will classify the parton dynamics with respect to elementary and quasi-

particle excitations, referring to them by the terms bare and dressed partons, respectively:

(i) bare partons are to be understood as pointlike, massless quanta in the absence of

radiative self-interactions, i.e. before renormalization.

(ii) dressed partons, on the other hand, are dressed by the quantum self-interactions

with their radiation field, which renormalize their masses and couplings.

In the field-theoretical parton language, a dressed parton with its dynamically generated
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renormalized mass can be described (in a frame where it moves close to the speed of light)

as a bare quantum which is surrounded by a virtual cloud of other bare gluons and quark-

antiquark pairs with which it emits and absorbs. Hence, kinetic space-time scales, a dressed

parton can be visualized as a quasi-particle, i.e. an extended object with a dynamical

substructure that is determined by the short-distance quantum fluctuations.

3.1 Definition of quantum and kinetic space-time scales

The realization of the two space-time scales, short-distance quantum and quasi-classical

kinetic, allows to reformulate the quantum field theoretical problem as a relativistic many-

body problem within kinetic theory. The key element is to establish the connection between

the quantum-theoretical Green functions and the kinetic particle description in terms parton

phase-space densities. In particular, the aim is to describe the evolution of a multi-parton

ensemble, given at time t0, with a certain spatial and a momentum distribution, by exploit-

ing the ‘two-scale’ nature of high-energy QCD. As explained before, this requires a choice

of Lorentz frame, in which the quanta move very fast and the typical momentum scale of

their binary interactions and associated radiative processes is sufficiently large, such that

the corresponding interaction times are small compared to the mean free time in between

mutual collisions. For example: Imagine a high-energy reaction has produced an initial

configuration of materialized partons (e.g. a hadronic or nuclear collision with
√
s >∼ 100

GeV per hadron). If t0 denotes the earliest point of time in the lab frame, when the parton

densities have evolved to satisfy ∆p∆r ≫ 1, where 1/∆p measures the scale of the partons’

intrinsic quantum motion and ∆r the space-time variation of the system of partons, then,

for times t > t0, an approximate incoherent treatment of quantum dynamics and kinetic

evolution is justified, as has been shown by McLerran and Venugopalan [24].

With this physical scenario in mind, now suppose, space-time is discretized into cells,

with their size chosen intermediate between quantum and kinetic scales such that the sep-

aration between the two scales is optimal [7]. Then the correlation between different cells

will be negligible, and only when two space-time points corresponding to the arguments of

the propagators or self-energies lie in the same cell, the 2-point correlation will contribute

(as explained in Appendix B). Consequently, in a given cell, one can by construction neglect

spatial inhomogenities of the local gluon and quark densities of the multi-parton system.

Within each cell, one may therefore describe the short-distance quantum dynamics analo-

gously as in vacuum or homogenous media, whereas inhomogenities of the spatial parton

distribution and relaxation phenomena associated with binary collisions become apparent,

as one moves from cell to cell. In continous space-time, corrections to this discretized

picture can be taken into account by a systematic expansion in terms of gradients of the
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spatial inhomogenities of the parton distributions (eq. (64) below).

In order to quantify this concept, let me clearly specify quantum and kinetic domains

with respect to the cellular space-time. It is important to realize that both quantum

and kinetic scales are of dynamical, ‘internal’ nature, i.e. determined by the multi-parton

evolution itself. The classification of the two scales only makes sense in the presence of

self- and mutual interactions. However, the class of high-energy parton systems addressed

here is characterized by two corresponding ‘external’ scales: first, the large energy scale of

the reaction that produces the initial system of large momentum partons, and second, the

initial local density of partons in phase-space that depends on the type of reaction. The

first property implies a large characteristic momentum transfer q2⊥ ≡ (k1−k′1)2 of scattering

processes (k1k2 → k′1k
′
2) and radiative processes (k1 → k′1k

′
2). The second property, on the

other hand, is related to the mean free path λmf and mean free time τmf of partons in

between subsequent scatterings. If the latter are large compared to the typical space-time

extent 1/q⊥ of the the scattering- and radiation processes, then an incoherent treatment

of the binary collisions among partons, and of the partons’ propagation with associated

quantum fluctuations, is applicable. This condition may be characterized by the invariant

mass scale µgq, defined such that

q2⊥ > µ2
gq > λ−2

mf . (47)

The parameter µ2
gq can be interpreted as defining the minimum virtuality of a dressed

parton, or correspondingly, its maximum size, or Compton wavelength, λc = µ−1
gq , such

that the applicability condition of the parton description is ensured. Consequently, the size

of each space-time cell must be chosen large enough that the spread of the dressed partons’

intrinsic quantum motion is localized inside its four-dimensional volume, but smaller than

the mean free path of dressed partons in between scatterings. Accordingly, I define the cell

size ∆rµ ≡ ∆r0∆3r by

µ−4
gq < ∆rµ ≡ µ−4(r) ≪ Λ−4

QCD , (48)

where ΛQCD ≃ 0.25 GeV is the QCD renormalization scale. For example, a cell size ∆r <∼ 0.1

fm allows to resolve particles with energy-momentum >∼ 2 GeV. One can then characterize

the kinetic space-time evolution of the system by a velocity profile of cells i, located around

the points rµi , with four-dimensional cell volume in its restframe

Ω(ri) =

∫

r′∈Ω
d4r′ =

∫ r0i +∆r0

2

r0i−
∆r0

2

dr0
∫ ~ri+

∆~r
2

~ri−
∆~r
2

d3r′ ≃ µ−4 . (49)

19



Each cell carries a total momentum

Pµ(ri) :=

Ngq∑

j=1

kµj

∣∣∣∣∣∣
(r0

j
,~rj)∈Ω(ri)

(50)

and a total invariant virtuality (the incoherent sum of parton virtualities),

Q2(ri) :=

Ngq∑

j=1

k2
j

∣∣∣∣∣∣
(r0j ,~rj)∈Ω(ri)

, (51)

where the sums are over all dressed partons j inside the cell i, i.e. those that are during

a time slice ∆r0 = µ−1 contained within ∆3r = µ−3 around space-time point ri. The

corresponding local four-flow velocity is uµ(ri) = Pµ/P 0. This cellular space-time picture

is illustrated in Fig. 7a.

The validity of the above cell picture is controlled by the condition that the different

scales are well separated:

P+ 2(ri) ≫ Q2(ri) ≥ µ2(ri) ≫ Λ2
QCD , (52)

where Pµ = (P+, P−, ~P⊥), P± = P0 ± P3, P⊥ =
√
P 2

1 + P 2
2 with P+ (P−) the light-

cone momentum (energy), P 2 = P+P− − P 2
⊥, and the normalization of a cell state |P 〉

is 〈P |P ′ 〉 = 2P+ (2π)3δ3(~P − ~P ′). On the basis of (52) and in terms of these lightcone

variables, the four-momentum of a parton j can be characterized by only two variables,

namely, its lightcone momentum k+
j = xjP

+ with fraction xj of the total cell momentum,

and its off-shellness (invariant virtuality) k2
j = k+

j k
−
j − k2

j⊥ ≡M2(kj). Its lightcone energy

is k−j = (k2
j + k2

j⊥)/k+
j ≃ 0 (k+ 2 ≫ k2 >∼ k2

⊥), and one has therefore

kj = (k+
j , k

2
j ) = (xjP

+, k2
j )

d4kj
(2π)4

(2π) δ+
(
k2
j −M2(kj)

)
=

1

16π2

dxj
xj

dk2
j .

(53)

The requirement (52) together with (48) hence translates to the parton level as k+ 2
j ≫

k2
j ≥ µ2(ri), for all partons j within a given cell around ri.

Q2(ri) ≥ k2
j ≥ µ2

gq ≥ µ2(ri) . (54)

Since λc = µ−1
gq characterizes the maximum size of dressed partons, the ratio µ4(ri)/µ

4
gq

determines the minimum fraction of volume occupied by dressed partons in the cell. The

quantum and kinetic space-time regions can now be defined as

∆rqua = [P+ −1, µ−1] , ∆rkin = [µ−1, Λ−1
QCD] . (55)

For large P+ and Q2, quantum and kinetic length scales are well separated and the

parton phase-space densities Ff may be locally represented as a convolution of the kinetic,
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statistical density of dressed partons Nf of type f = g, q, with the quantum theoretical

spectral density Pf of each dressed parton describing the intrinsic density of bare parton

states as its quantum substructure, as depicted in Fig. 7b:

Ff (ri, k) = Ff (ri, k
+, k2) ≡ Nf

(
ri, P

+, µ2
gq

)
⊗ Pf

(
ri, k

+, k2
)
, (56)

where the convolution of the statistical density Nf of dressed partons at the scale µ2
gq with

the spectral density Pf , is defined as the average over the local space-time volume Ω(ri)

around ri of the densities,

Nf ⊗ Pf ≡ 1

Ω(ri)

∫

Ω(ri)
d4r′

∫
dy

y
Nf

(
r′, yP+, µ2

gq

)
Pf
(
r′,

x

y
, k2
)
, (57)

with Ω(ri) ≃ µ(ri)
−4, P+ = P+(ri), k

+ = xP+, z = x/y (0 ≤ z ≤ 1), and

Nf (r, yP
+, µ2

gq) =
dNf

d4r d ln y
δ(k2 − µ2

gq) (58)

Pf
(
r, z, k2

)
=

∑

f ′=g,q

Pf ′

f =
∑

f ′=g,q

∫ k2

µ2
gq

dk′2
dnf

′

f

d ln z dk′2
. (59)

This ansatz describes the multi-parton system on the basis of treating each individial dressed

parton as a composite particle of type f with a substructure of number of bare quanta

nf
′

f of type f ′, weighted locally with the total number of dressed partons Nf in a space-

time cell. The spectral density P characterizes the intrinsic structure of a dressed parton

state, whereas the quasi-particle density N describes the correlations and scatterings among

those dressed partons. As will become clear later, the spectral densities Pf can indeed be

identified with the QCD parton structure functions. The crucial quantities that control

the cellular resolution in space-time of the partons’ substructure are the characteristic cell

size µ−1(ri), and the minimum resolvable virtuality µ2
gq ≥ µ2 of dressed partons in the

cell, or alternatively, the fractional space-time volume occupied, ∆Ω/Ω = µ4/(Ngqµgq)
4,

that determines how dense a cell may populated without the partons overlapping. Hence,

the validity of the kinetic approximation, based on the separation of quantum and kinetic

scales, is controlled by the choice of these quantities, which need not be constant but rather

may be taken as space-time dependent, i.e. variable from cell to cell chosen such that the

resolution is optimal. A convenient choice would be, for instance,

µ(ri) ≃ µgq (60)

which I will adopt in the following for lucidity, keeping in mind that µgq is not a free external

parameter, but rather is to be understood as a dynamical, possibly space-time dependent

quantity, which in principle should be determined self-consistently from screening effects. I

will not address this latter issue here.
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3.2 Wigner transformation and the kinetic equations of motion

Let me proceed, referring to Appendix B for details, by introducing center-of-mass and

relative coordinates of two space-time points x and y,

r ≡ 1

2
(x + y) , s ≡ x − y , (61)

in terms of which one can express any 2-point function W (x, y) ≡ Dµν , S,Πµν ,Σ, as

W (x, y) = W

(
r +

s

2
, r − s

2

)
= W (r, s) , (62)

and introduce its Wigner transform W (r, k) as [12]

W (x, y) =

∫
d4k

(2π)4
e−i k · s W (r, k) , W (r, k) =

∫
d4s ei k · s W (r, s) , (63)

i.e. one Fourier-transforms with respect to the relative coordinate s being the canonical

conjugate to the momentum k. In the cell picture of space-time, the coordinate r is the

cell index that labels the kinetic space-time dependence O(∆rkin), whereas s measures the

quantum space-time distance O(∆rqua), as illustrated in Fig. 8. In homogenous systems,

such as the vacuum, translation invariance dictates that the dependence on r drops out

entirely, and the Wigner transforms then coincide with the momentum-space Fourier trans-

forms of the Green functions and self-energies. In general, spatial inhomogenities can be

systematically accounted for by performing an expansion in terms of gradients ∂r ≡ ∂/∂rµ:

W (r + s, s) ≃ W (r, s) + s · ∂rW (r, s) + O[(s · ∂r)2] . (64)

For quasi-homogenous, or moderately inhomogenous systems, such that s · ∂rW ≪W , the

correlations between different cells will be small so that the propagators and self-energies

accordingly vary only slowly with r. One may then truncate the series (64) after the second

term, and convert the quantum field equations of motion (42) and (43) into a set of kinetic

equations by first performing the Wigner transformation (63) for all Green functions and

self-energies, and then taking for (42) and (43) the sum and difference of the two adjoint

equations in their transformed representation.

This procedure (see Appendix B) yields two distinct equations for each of the Wigner

transforms Dµν and S with rather different physical interpretations, which I will refer

to as renormalization equation and transport equation, respectively. The renormalization

equations are obtained as
(
k2 − 1

4
∂2
r

)
Dµν
ab (r, k) = − dµν(k) δab 1̂P +

1

2

(
{Π , D}+

)µν

ab
+

i

4
Gµν (−)
ab (65)

1

2
{γ · p , Sij(r, p)}+ = δij 1̂P − i

2

(
[γ · ∂r , S]−

)

ij
+

1

2

(
{Σ , S}+

)

ij
+

i

4
F (−)
ij ,
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where dµν(k) is given by eq. (8), ∂2
r ≡ ∂r ·∂r, and [A,B]− ≡ AB−BA, {A,B}+ ≡ AB+BA.

The transport equations are found in the form

k · ∂r Dµν
ab (r, k) = − i

2

(
[Π , D]−

)µν

ab
+

1

4
Gµν (+)
ab (66)

1

2
{γ · ∂r , Sij(r, p)}+ =

i

2

(
[γ · p , S]−

)

ij
− i

2

(
[Σ , S]−

)

ij
+

1

4
F (+)
ij .

In (65) and (66) the self-energies Π and Σ are explicitly given by (40), (41), and the

operator functions G and F , on the right hand sides, which include the effects of spatial

inhomogenities to first order in the gradient expansion (64), are 4

Gµν (−) =
[
∂λkΠµ

σ , ∂
r
λD

σν
]

−
−
[
∂λr Πµ

σ , ∂
k
λD

σν
]

−
, Gµν (+) =

{
∂λkΠµ

σ , ∂
r
λD

σν
}

+
−
{
∂λrΠµ

σ , ∂
k
λD

σν
}

+

(67)

F (−) =
[
∂λpΣ , ∂rλS

]

−
−
[
∂λrΣ , ∂pλS

]

−
, F (+) =

{
∂λpΣ , ∂rλS

}

+
−
{
∂λr Σ , ∂pλS

}

+
. (68)

For completness, I note that the equations for quark Green functions can formally also be

brought in a more familiar quadratic form, similar to the equations for the gluon Green

functions, which exhibits the mass- and drift-term on the left hand side of the renormal-

ization and transport equation, respectively:

(
p2 − 1

4
∂2
r

)
Sij(r, p) = (γ · p+ Σ) δij 1̂P +

1

2

( {
Σ2 , S

}

+

)

ij
+

i

4
A(+)
ij − 1

8
B(−)
ij

p · ∂r Sij(r, p) =
1

2
(γ · ∂r) δij 1̂P − i

2

( [
Σ2 , S

]

−

)

ij
+

1

4
A(−)
ij +

i

8
B(+)
ij ,(69)

where Σij = δijΣ, and

A(±) =
1

2

(
(γ · p+ Σ) (F (−) + F (+)) ± (F (−) −F (+)) (γ · p+ Σ)

)

B(±) =
1

2

(
(γ·

→

∂r) (F (−) + F (+)) ± (F (−) −F (+)) (γ·
←

∂r)

)
. (70)

As will be seen in the following, the renormalization equations (65) express the nor-

malization conditions imposed by unitarity and renormalization group due to the quantum

self-interactions, and redefine the bare quanta in terms of renormalized quasi-particles. The

transport equations (66) on the other hand describe the kinetic space-time evolution of the

system of quasi-particles and their binary collisions.

The kinetic approximation of trading the Green functions G(x, y) with their Wigner

transforms G(r, p), means in the picture of cellular space-time, that inside a given cell

carrying the space-time coordinate r = (t, ~r) as a label, G(r, p) equals the translation

4 Note, ∂µ
r ≡ ∂/∂kµ acts on a function f(r, k) as the derivative with respect to the space-time coordinate,

whereas ∂µ
k ≡ ∂/∂kµ and ∂µ

p ≡ ∂/∂pµ refer to the variation of four-momentum.
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invariant Fourier transform G(p) of G(x − y), but outside of the cell it is zero. In another

cell r′, the Wigner function G(r′, p′) is determined by a different translation invariant G(p′).

Hence, when looking at the short-distance quantum fluctuations within a given space-time

cell around r = (r0, ~r), one may approximate the spatial distribution of partons as being

homogenous and constant over the cell volume, and describe the short-range quantum

dynamics in a tranlation-invariant manner. With the same accuracy of approximation, one

can neglect in the quantum regime binary parton collisions, provided the mean-free-path

λmf = (σgq Fgq)
−1 in terms of the parton-parton cross-sections σgq and the local density

Fgq, is large compared to the spatial spread of the quantum fluctuations which is typically

of the order of 1/
√
p2. Hence, the essential requirement p2 ≫ λ−2

mf can always be realized,

if the particle energies are sufficiently large.

On the basis of these considerations, I first study the quantum theoretical aspects em-

bodied in the renormalization equations (65) to obtain the renormalized gluon and quark

propagators, and from this determine the momentum dependence of the phase-space den-

sities Fgq, eq. (56), associated with the variation of the parton structure functions. Subse-

quently, I will investigate the transport theoretical aspects of the statistical kinetic dynam-

ics, described by transport equation (66), which determines the space-time variation of the

phase-space densities Fgq in terms of renormalized, dressed partons.

3.3 The ‘physical representation’ and strategy of solution

Within the kinetic approximation, the goal is to obtain the best possible approximation

to the complete propagators G = Dµν , S, starting from the corresponding free Wigner

transformed Green function. The ‘free-field’ solutions of the four types of correlators in

(27)-(29), namely GF , G>, G<, GF , are in their most general form given by [6]

DF
(0)µν(r, k) = −dµν(k)

[
1

k2 + iε
− 2πi F(0) g(r, k) δ(k

2 − µ2
gq)

]

D>
(0)µν(r, k) = − 2πi (−dµν(k))

[
θ(+k0) + F(0) g

(r, k)
]
δ(k2 − µ2

gq)

D<
(0)µν(r, k) = − 2πi (−dµν(k))

[
θ(−k0) + F(0) g

(r, k)
]
δ(k2 − µ2

gq)

DF
(0)µν(r, k) = +dµν(k)

[
1

k2 − iε
− 2πi F(0) g

(r, k) δ(k2 − µ2
gq)

]
, (71)

where dµν(k) is defined by (8), and

SF(0)(r, p) =
+1

γ · p+ iε
+ 2πi F(0) q(r, p) δ(p

2 − µ2
gq)

S>(0)(r, p) = + 2πi F(0) q(r, p) δ(p
2 − µ2

gq)

S<(0)(r, p) = − 2πi
[
1 − F(0) q(r, p)

]
δ(p2 − µ2

gq)

SF(0)(r, p) =
−1

γ · p− iε
+ 2πi F(0) q(r, p) δ(p

2 − µ2
gq) . (72)

24



The scalar functions F(0) g
and F(0) q are the free-field analogues of (56) with the spectral

densities Pf replaced by unity, F(0) f (r, k) = Nf (r, k) ⊗ 1, i.e. the phase-space densities

of gluons and quarks that measure the number of non-interacting quanta in a phase-space

element d3rd4p at a given time t = r0. Their presence is a direct consequence of the CTP

formulation which incorporates initial state correlations due to a non-trivial density matrix

ρ̂(t0), eq. (21), corresponding to F (t0, ~r, p) 6= 0, as opposed to the usual quantum field

theory description, where ρ̂(t0) = |0〉〈0| and F (t0, ~r, p) vanishes. It is evident that in this

latter case G> = G< = 0 and GF = GF † at all times, so that the dynamics is describe by

the Feynman propagators GF alone.

More suitable for practical purposes, one may employ instead of the set GF , G>, G<, GF ,

an equivalent set of the retarded (advanced) propagators GR (GA) plus the correlation

function GC . The latter are directly connected with physical observable quantities, and are

commonly referred to as physical representation [6]. The functions GR, GA, GC are obtained

via the relations

GR = GF − G> = G< − GF , GA = GF − G< = G> − GF ,

GC = GF + GF = G< + G> . (73)

Because the fourth possible linear combination GF−G>−G<+GF is always identically zero,

the three physical functions GR, GA, GC form a complete alternative set that eliminates

the overdetermination of the set GF , G>, G<, GF . The ‘free-field’ forms of GR, GA and GC ,

corresponding to the ones of (71) and (72) are

D
R (A)
(0)µν(r, k) =

−dµν(k)
k2 ± iεk0

S
R (A)
(0) (r, p) =

1

γ · p± iεp0

DC
(0)µν(r, k) = −2πi (−dµν(k))

[
1 + 2F(0) g(r, k)

]
δ(k2 − µ2

gq) (74)

SC(0)(r, p) = −2πi (γ · p)
[
1 − 2F(0) q(r, p)

]
δ(p2 − µ2

gq) ,

where +(−) in the denominators corresponds to theR (A). Generally speaking, the retarded

and advanced functions characterize the quantum nature of parton states, whereas the

correlation function describes the phase-space occupation of these states.

The preceding relations (73) are generally valid for any 2-point function defined on the

closed-time path, and hence apply to not only to the free-field case, but also to the full

Green functions G = Dµν , S, as well as to the self-energies E = Πµν ,Σ. In matrix form,

the correspondance between the representation (27) in terms of G (E), and the physical

representation denoted by Ğ (Ĕ), is given by a unitary transformation U , being a 2×2

25



matrix with Umn = 1/
√

2 for mn = 11, 21, 22 and U12 = −1/
√

2:

Ğ = U G U−1 =



 0 GA

GR GC



 , Ĕ = U−1 E U =



 EC ER

EA 0



 . (75)

where, in subtle contrast to (73),

EA = EF + E> = −E< − EF , ER = EF + E< = −E> − EF ,

EC = EF + EF = −E< − E> . (76)

The great advantage of this physical representation is that the dependence on the partons’

phase-space densities Fg and Fq is essentially carried by the correlation functions GC ,

whereas the dependence of the retarded and advanced functions, GR, GA, is weak. In the

free-field case, this separation of correlations is exact, as is evident from (74), such that

the retarded and advanced functions do not depend at all on Fg, Fq. In fact, even in the

general case of interacting fields, this advantagous property becomes very suggestive when

rewriting the renormalization and transport equations, (65) and (66), in generic form for

the individual Green function components,

{
G−1

(0) , G
R −GA

}

+
= −2

(
k2 − 1

4
∂2
r

) (
GR −GA

)
= {δE , P}+ + {Γ , δG}+(77)

[
G−1

(0) , G
C
]

−
= −2i k · ∂r GC =

[
EC , δG

]

−
+
[
δE , GC

]

−

+
i

2

( {
EC , P

}

+
+
{
Γ , GC

}

+

)
, (78)

where

δG ≡ ReG =
1

2

(
GR +GA

)
δE ≡ ReE =

1

2

(
ER + EA

)

P ≡ ImG = i
(
GR −GA

)
Γ ≡ ImE = i

(
ER − EA

)
(79)

are the real and imaginary components of the retarded and advanced Green functions and

self-energies, whereas

GC = G< + G> EC = −(E< + E>) (80)

are the real correlation functions and corresponding self-energies. The physical significance

of the (77) and (78) is the following: Eq. (77) determines the state of a dressed parton with

respect to their virtual fluctuations and real emission (absorption) processes, corresponding

to the real and imaginary parts of the retarded and advanced self-energies. Eq. (78), on the

other hand characterizes the correlations mong different dressed parton states, and the self-

energies appear here in two distinct ways. The first two terms on the right hand side account
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for scatterings between quasi-particle states, i.e. dressed partons, whereas the last two terms

incorporate the renormalization effects which result from the fact that the dressed partons

between collisions do not behave as free particles, but change their dynamical structure

due to virtual fluctuations,as well as real emission and absorption of quanta. For this

reason ER(A) are called radiative self-energies, and EC is termed collisional self-energy. As

shown by Kadanoff and Baym [5], the imaginary parts of the retarded and advanced Green

functions and self-energies (79) are just the spectral density P, giving the probability for

finding an intermediate multi-particle state in the dressed parton, respectively the decay

width Γ, describing the dissipation of the dressed parton. The general solution for P is

given by

P(r, k) =
Γ

k2 − δE + (Γ/2)2
≡ ∆PδE + ∆PΓ , (81)

where the second form in terms of the ‘wavefunction’-renormalization (∆PδE ) due to virtual

fluctuations, and the dissipative parts (∆PΓ) due to real emission (absorption) processes,

will prove convenient later 5 . The spectral density P satisfies the sum rule [6, 5]

1 =
1

P+

∫
dk+

2π k+
T++ P(r, k+, k2) =

1

P+

∫
dk+

2π
k+ P(r, k+, k2) , (82)

which is an implicit consequence of unitarity, and requires that the total lightcone mo-

mentum of the spectral density of the internal bare partons must be equal to the dressed

partons’ momentum. For example, in the ‘free-field’ case, i.e. in the absence of interactions,

one has ∆PδE = δ(1 − k+/P+) and ∆PΓ = 0 with k2 = µ2
gq, so that P → P(0) describes a

single ‘on-shell’ parton state

P(0)(r, k
+, k2) = δ(k2 − µ2

gq) δ

(

1 − k+

P+

)

, (83)

on the ‘mass-shell’ k2 = µ2
gq, and carrying the total lightcone energy k+ = P+ 6 . This is

nothing but the fact that the presence of a pole in the Green function means the presence

of a particle, stable if it occurs for real k2, unstable if it occurs for complex k2, as in

the Breit-Wigner formula (81). The generalization of (83) to the case of interactions, in

which, as advocated before, a dressed parton may be visualized as a substructured particle

with a fluctuating number of bare quanta intermediately present in its wavefunction, is

straightforward. A dressed parton has now a “blurred” mass shell, because its internal

excitations fluctuate due to virtual and real emission (absoprtion) processes of its bare

5 This formula holds for both, space-like (k2 < 0) and time-like (k2 > 0) momenta. If is k2 space-like

then the imaginary part ∆PΓ vanishes, so that P is purely real. On the other hand, if k2 is time-like then

both ∆PδE and ∆PΓ contribute, and so P is complex.
6 Note that for the choice (60), the fraction z = x/y in the defining equation for P (59) reduces to z = x.
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daughter partons. The spectrum of these quantum excitations will have a finite extension

around µ2
gq, described by the real part δE of the self-energy, with a width Γ, described by

the imaginary part and being inversely proportional to the life-time of the particular parton

state. Hence, one may write formally instead of (83),

P(r, k) = δ

(
k2 − M2(r, k+, k2)

)
, M2 = δE − Γ2

4
, (84)

where δE and Γ are given in terms of the real and imaginary parts of the retarded and

advanced self-energies (79). This representation serves to maintain the analogy with the

free-field case, for which one has an immediate intuition. However, instead of a simple

mass-shell condition, the argument of the δ-function now expresses a non-trivial functional

dependence of the spectrum on k+, k2 and, in general, on space-time r. The solution of

this implicit equation determines the spectral density P, which is subject of Sec. 3.4.

Once the spectral density is known, the correlation function GC is given by the generic

expression [5]

GC(r, k) = −2πi [1 ± 2N (r, k)] ⊗ P(r, k) = −2πi [1 ± 2F (r, k)] δ
(
k2 − M2(r, k)

)
,

(85)

where +(−) is for gluons (quarks). It reduces to the free-field form, when P is replaced

by P(0), eq. (83), so that GC(0) = −2πi [1 ± 2N ] δ(k2 − µ2
gq) = −2πi

[
1 ± 2F(0)

]
δ(k2 −

µ2
gq) becomes an ‘on-shell’ distribution, as in eqs. (74). The theoretical basis for the

previous, more physically motivated, ansatz (56) for the parton phase-space distributions

F , becomes evident now: It is the logical generalization of the free-field forms (74) to include

renormalization effects and dissipation in terms of non-trivial spectral densities, or parton

structure functions, which embody the underlying quantum dynamics. In this sense the

Wigner functions F are the quantum kinetic extension of the classical particle phase-space

distributions.

Following this strategy, I will now proceed on the basis of the factorized ansatz (56)

for the gluon and quark densities Ff in terms of the quasi-particle distributions Nf with

the spectral densities Pf , i.e. the presumption that the separation between quantum and

kinetic scales allows a distinct treatment of the intrinsic quantum fluctuations of dressed

partons and the kinetic correlations among them. In contrast to (74), the poles of the

retarded and advanced Green functions are shifted by the real and imaginary parts of the

self-energies ER(A), and in the expression for the correlation functions, the δ-function is

replaced by the spectral density P. Introducing the scalar functions for the Π̂ for the gluon

and Σ̂ for the quark self-energies through

Πµν
ab = δab

(
kµkν − gµν k2

)
Π̂ Σij = δij p

2 Σ̂ , (86)
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instead of (74) one has now

DR (A)
µν (r, k) =

−dµν(k)
k2
(
1 − Π̂R(A)

) SR (A)(r, p) =
γ · p

p2
(
1 − γ · p Σ̂R(A)

) (87)

DC
µν(r, k) = −2πi (−dµν(k)) [1 + 2Ng(r, k)] ⊗ Pg(r, k)

= −2πi (−dµν(k)) [1 + 2Fg(r, k)] δ
(
k2 − M2

g(r, k)
)

SC(r, p) = −2πi (γ · p) [1 − 2Nq(r, p)] ⊗ Pq(r, p)
= −2πi (γ · p) [1 − 2Fq(r, p)] δ

(
p2 − M2

q(r, p)
)
. (88)

The two-step strategy that I will follow in the next Sections is then:

1) In Sec. 3.4, the renormalization equations (65) will be solved for the retarded (advanced)

Green functions

(
D−1
R(A)

)µν
ab

(r, k) =
(
D−1

(0)R(A)

)µν
ab

−
(
ΠR(A)

)µν
ab(

S−1
R(A)

)

ij
(r, p) =

(
S−1

(0)R(A)

)

ij
−
(
ΣR(A)

)

ij
, (89)

which determine the spectral densities Pg and Pq in terms of the radiative self-energies

Π
R(A)
µν and ΣR(A).

2) In Sec. 3.5 the transport equations will be solved for the correlation functions

Dµν
C ab(r, k) = −Dµµ′

Raa′

[ (
D−1

(0)C

)µ′ν′

a′b′
− (ΠC)µ

′ν′

a′b′

]
Dν′ν
A b′b

SC ij(r, p) = −SR ii′

[ (
S−1

(0)C

)

i′j′
− (ΣC)i′j′

]
SA i′j , (90)

which determine the parton phase-space distributions Fg and Fq by the collisional self-

energies ΠC
µν and ΣC , in conjunction with the spectral densities Pg and Pq.

3.4 Quantum dynamics and renormalization equations

As advocated above, when addressing renormalization effects and dissipative quantum

dynamics, it is appropriate to focus on the retarded and advanced propagators and the

imaginary parts of the self-energies, which embody the short-distance propagation of quan-

tum fluctuations. Furthermore, on quantum scales, one can neglect the r-dependence, and

thus ignore in this regime the functions G and F in eqs. (65) and (66). Then, by perform-

ing the transformation of the Wigner transformed Green functions Dµν , S and self-energies

Πµν , Σ to the physical representation via (75), one obtains simplified equations for the
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retarded (advanced) functions (c.f. Appendix B). The renormalization equations reduce to

the following form:
(
k2 − 1

4
∂2
r

)
D
µν R(A)
ab (r, k) = − dµν(k) δab +

1

2

(
ΠR(A)DR(A) + DR(A) ΠR(A)

)µν

ab

1

2

{
γ · p , SR(A)

ij (r, p)
}

+
= δij +

1

2

(
ΣR(A) SR(A) + SR(A) ΣR(A)

)

ij
(91)

To solve the equations (91), it is suggestive in view of (74), to parametrize the renormalized,

‘dressed’ propagators DR
µν , S

R on account of their Lorentz structure as [26, 27]

D
µν R(A)
ab (r, k) = δab

−dµν(k)
k2 (1 − Π̂R(A)(r, k))

≡ ∆g(r, k
2, κk) δab

−dµν(k)
k2 ± iεk0

+ . . .

S
R(A)
ij (r, p) = δij

γ · p
p2 (1 − γ · pΣ̂R(A)(r, p))

≡ ∆q(r, p
2, κp) δij

γ · p
p2 ± iεp0

+ ∆̃q(r, p
2, κp) δij

γ · n
n · p + . . . , (92)

where dµν(k) = gµν − (nµkν + nνkµ)/(n · k) as before, the scalar self-energy functions Π̂R,

Σ̂R are defined by (86), and κ implicitly accounts for the dependence of ∆g and ∆q on the

coordinate r, which is conjugate to k+. The function κ is of the order of the large lightcone

momentum k+ squared (c.f. Appendix C)

κ2
k ≡ (n · k)2

n2
≃ k+ 2 , n2 ≪ 1 . (93)

The renormalization functions ∆g (∆q) account for the modifications of the ‘bare’ propa-

gators (74) due to the self-interactions embodied in Π (Σ). The third function ∆̃q turns

out to be proportional to ∆q (c.f. Appendix C). They are normalized in accord with the

condition (54), such that

∆g(r, k
2, κp)

∣∣∣
k2=µ2

gq

= ∆q(r, p
2, κp)

∣∣∣
p2=µ2

gq

= 1 , (94)

meaning that a gluon or quark is considered as a maximally dressed particle (in the sense

of the applicability of (54)), corresponding to the invariant scale µgq, which may be called

the dressed partons mass-shell.

It is well known [26] that other contributions to the propagators in (92), indicated by the

dots, are strongly suppressed 7 in lightcone-dominated processes Q2 → ∞ by inverse powers

of Q2. In fact, this feature is the very foundation of the QCD parton description within the
7 Note the benefit of the employed gauge nµAµ = 0 for the gluon field, eq. (3): by suitable choice of

the vector nµ such that n2
≪ 1, one can concentrate the short-distance quantum fluctuations to arbitrary

proximity around the lightcone, n2
→ 0, i.e. κk → ∞, corresponding to the asymptotic linit k+

→ ∞. In

this regime the leading log singularities of the propagators give the dominant contributions and the dotted

terms in (92) and (96) can be neglected because they do not generate leading logs.
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(modified) leading log approximation (MLLA) [26, 27], where the renormalization problem

reduces to a multiplication of the bare propagators and vertices by scalar functions. That

is, as depicted in Fig. 9, with respect to the Wigner transforms of the self-energies (40)

and (41),

Π
µν R(A)
ab (r, k) = −g

2
s

2

∫
d4k′

(2π)4i
faa′cλµµ′σ(−k,−k + k′, k′)D

στ R(A)
cd (r, k′)

Λτν
′ν

db′b (−k′, k − k′, k)D
µ′ν′R(A)
a′b′ (r, k − k′) (95)

− g2
s Nf

∫
d4k′

(2π)4i
γµT

a
ln S

R(A)
nn′ (r,−k′ + k) Ξbn′l′ ν(−k′ + k, k, k′)S

R(A)
ll′ (r, k′)

Σ
R(A)
ij (r, p) = g2

s

∫
d4k′

(2π)4i
γσT

c
ii′ S

R(A)
i′j′ (r, p − k′) Ξdj′j τ (p− k′, p, k′)D

στ R(A)
cd (r, k′) ,

one can represent the qqg- and ggg vertex functions Γ, respectively Λ, eq. (35), as multi-

plicative renormalization functions,

Γµaij (r; p1, p2, k3) = γµ T aij Vqqg(r; p
2
1, p

2
2, k

2
3 , κ1, κ2, κ3) + . . .

Λabcµνλ(r; k1, k2, k3) = fabc gµλ kν Vggg(r; k
2
1, k

2
2 , k

2
3 , κ1, κ2, κ3) + . . . , (96)

where kν is understood as the momentum associated with the intermediate of the three

gluon virtualities, i.e. kν = k2 ν if k2
1 < k2

2 < k2
3 , etc.. Analogous to (94), the normalization

conditions are

Vqqg(r; p
2
i , κi)

∣∣∣
p2

i
=µ2

gq

= Vggg(r; k
2
i , κi)

∣∣∣
k2

i
=µ2

gq

= 1 (97)

Employing these definitions in the renormalization equations (91) and the expressions

for self-energies given by (40) and (41), and differentiating the inverse of the propagators

D
R(A)
µν and SR(A) with respect to the gluon and quark virtuality, respectively,

∂

∂k2

(
−dµν(k) [DR(A)(r, k)]−1

µν

)
= 1 − ∂

∂k2
Π̂R(A)(r, k)

∂

∂p2

(
γ · p [SR(A)(r, p)]−1

)
= 1 − ∂

∂p2
Σ̂R(A)(r, p) (98)

one obtains the following determining equations for the momentum dependence of the scalar

self-energy functions (86), Π̂R(A) and Σ̂R(A) to order g2
s in terms of the renormalization

functions ∆g and ∆q,

k2 ∂

∂k2
Π̂R(A)(r, k) =

g2
s

2
CA (2πi)

∫
d4k′

(2π)4i

∫ r0+1/(2µ)

r0−1/(2µ(r))
dτ T (k′τ)

× ∂∆g(r, k
′)

∂k′ 2
∂

∂k′′ 2

(
V 2
ggg(r; k

2, k′2, k′′2, κk, κk′ , κk′′)∆g(r, k
′′)

)
× Uggg (k′, k′′, n)

− g2
s TrNf (2πi)

∫
d4p′

(2π)4i

∫ r0+1/(2µ)

r0−1/(2µ)
dτ T (p′τ) (99)
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× ∂∆q(r, p
′)

∂p′ 2
∂

∂p′′ 2

(
V 2
gqq(r; k

2, p′2, p′′2, κk, κp′ , κp′′)∆q(r, p
′′)

)
× Uqqg (p′, p′′, n)

p2 ∂

∂p2
Σ̂R(A)(r, p) = − g2

s CF (2πi)

∫
d4p′

(2π)4i

∫ r0+1/(2µ)

r0−1/(2µ)
dτ T (p′τ) (100)

× ∂∆q(r, p
′)

∂p′ 2
∂

∂k′′ 2

(
V 2
qqg(r; p

2, p′2, k′′2, κp, κp′ , κk′′)∆g(r, k
′′)

)
× Uqgq (p′, k′′, n) ,

plus terms O(n2) which can be neglected for n2 ≪ 1. The constants CAδab = facdfbcd =

Ncδab, TRδab = Tr(T a · T b) = 1
2δab, CF δij = (T a · T a)ij = N2

c−1
2Nc

δij, arise from summing

over color indices, and Nf is the number of quark flavors. The time integral
∫
dτ on

the right hand sides extends over the finite time slice µ−1 ≡ µ−1(r) of the space-time

cell around r, weighted by the function T [36], which incorporates the relation between

momentum and space-time as constrained by the uncertainty principle: it limits the range

of virtualities k
′ 2 such that within the finite time interval ∆r0 = µ−1 only those fluctuations

k → k′k′′ are resolvable that are sufficiently short-living, with proper life-time τ0 ≃ 1/k′ and

γτ0 ≃ k+/k′ 2 < ∆r0. Finally, the functions Uf ′f ′′f (k′, k′′, n) represent the squared matrix

elements for the virtual decay processes k → k′k′′.

In the cellular space-time picture, the momenta of partons in a given cell around r are

per design limited by the condition (54), such that

P+ 2(r) ≥ k+ 2 ≥ k2 ≥ µ2
gq ≥ µ2(r) . (101)

As explained in Appendix C, by employing this condition and introducing the fractional

lightcone momenta of the daughter partons in the process k → k′k′′,

zk′ ≡ z =
k′+

k+
, zk′′ ≡ 1 − z =

k′′+

k+
, (102)

d4k′ =
π

2
dk

′ 2dk
′′ 2 dz θ

(

k2 − k
′ 2

z
− k

′′ 2

1 − z

)

. (103)

the integrals (99) and (100) are readily evaluated to leading log accuracy. Solving for the

renormalization functions ∆g, ∆q, and taking κk = k+ 2, κp = p+2 from (93), the result is

(c.f. Appendix C):

∆g(r, k
2, k+ 2) = exp

{

−
∫ k+ 2

k2

dk
′ 2

k′ 2

∫ 1

0
dz A(r, z, k

′ 2)

(
1

2
γggg (z, ǫ) + γqqg (z, ǫ)

)}

∆q(r, p
2, p+2) = exp

{

−
∫ p+ 2

p2

dp
′ 2

p′ 2

∫ 1

0
dz A(r, z, p

′ 2) γqgq (z, ǫ)

}

, (104)

where

A(r, k2, z) ≃ αs
(
(1 − z)k2

)

2π
θ

(
zk2

k+
− µ(r)

)

(105)
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is the effective local coupling strength 8 averaged over a cell centered around r of space-

time extent Ω(r) ≃ ∆4r, and αs(q
2) = b ln

(
q2/Λ2

QCD

)
]−1, b = 11Nc − 2Nf . The function

A(r, z, k2) reflects the fact that in cellular space-time the relevant quantum fluctuations

are restricted by the uncertainty principle, as embodied in the θ-function term: k2 ≤ µ2 =

1/(∆r)2, k0 ≤ 1/∆r0, with ∆r0 = k+/k2.

The functions γ(z, ǫ) in (104) involve, at leading-log level, the standard DGLAP kernels

[26], carrying an explicit k+-dependence arising from the dependence on κ ≃ k+ 2,

γggg (z, ǫ) = 2CA

(
z

1 − z + ǫ(κk)
+

1 − z

z
+ z(1 − z)

)

γqqg (z, ǫ) =
1

2

(
z2 + (1 − z)2

)

γqgq (z, ǫ) = CF

(
1 + z2

1 − z + ǫ(κk)

)

(106)

where in the denominators the function ǫ appears,

ǫ(κk) =
k

′ 2n2

4(k · n)2
≃ k2

k+ 2
, (107)

which arises here as a consequence of the ∂2
r term in the renormalization equations (91),

after Fourier transfoming with respect to r− = r0 − r3 being the conjugate variable of k+.

It can be interpreted as manifestation of the indeterminancy principle, which determines

space-time uncertainty of the order of the cell size ∆r that is associated with the off-shellness

of the partons. The presence of ǫ effectively cuts off small-angle gluon emission when the

emitted gluon is soft, i.e. when zg = 1 − z → 0, by modifying the free gluon propagator

∝ 1/zg to the form 1/(zg + ǫ) when k/k+ = O(1), that is, in branching processes with large

space-time uncertainty. This ensures that the two daughter partons can be resolved as

individual quanta only if they are separated sufficiently by ∆r ∝ 1/k in position space, in

accord with the uncertainty principle. Note that ǫ can be neglected in the terms ∝ 1/(zg+ǫ)

in (106) for energetic gluon emission (zg → 1), but is essential in the soft regime (zg → 0).

The effect of ǫ has been shown [26, 27] to result in a natural regularization of the infra-red-

divergent behaviour of the branching kernels (106), due to destructive gluon interference

which becomes complete in the limit zg → 0.

As summarized in Appendix C, the renormalization functions ∆f are intimatly related

to the spectral densities Pg and Pq defined by (59) and (81),

Pg =
∑

f ′=g,q

Pf ′
g = i Tr

[
dµν (DR

µν − DA
µν)
]

8 In (105) one could imagine, instead of the θ-function θ(k2
−µ2), a smeared-out probability distribution,

e.g. ∝ exp(−k2/µ2), by choosing a more refined form for the function T under the time integral in eqs. (99)

and (100). The specific choice is ambigous at this level of calculation (see Ref. [36] for details).
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Pq =
∑

f ′=g,q

Pf ′
q = i Tr

[
SR − SA

]
(108)

where the Pf ′

f have the following solution,

Pf ′

f (r;x, k2) = δf
′

f δ(1 − x) δ
(
k2 − µ2

gq

)
∆f (r;µ

2
gq, k

+ 2)

+ ∆f (r, µ
2
gq, k

+ 2)
∑

f ′′

∫ k2

µ2
gq

dk
′ 2

k′ 2

∫ 1

0
dz

{
A(r, k2, z) γf

′′f ′

f (z, ǫ) Pf ′

f ′′

(
x

z
, k

′ 2; k
′ + 2

)

× ∆−1
f

(

r,
k

′ 2

z
, k

′ + 2

)}

. (109)

Comparing this expression with eq. (81), P = δ(k2−µ2)∆PδE+∆PΓ, one sees now that the

Sudakov formfactor ∆f together with the real emsission and absorption probabilities Wf ≡
∑
f ′′
∫
d ln k

′ 2dz Aγf
′′f ′

f Pf ′

f ′′ combine to play the role of the ‘wavefunction renormalization’

part ∆PδE and the dissipative part ∆PΓ. Equation (109) has a simple physical significance:

The first term on the right hand side represents the probability to find a dressed parton

of type f in the cell around space-time point r as a ‘classical’ particle, i.e., without any

other gluons or quarks present in its wavefunction, or spectral density. In accord with the

normalization (94), this means that it is propagating ‘on-shell’ with k2 = µ2
gq ≥ µ2(r), where

µ(r)−1 is the resolution size of the cell as explained in Sec. 3.1. Its fraction of the cell’s

lightcone energy is x = k+/P+(r) = 1. The probability for finding such a rare fluctuation

is suppressed by the functions ∆f (r, k
2, k+ 2), which becomes stronger with increasing gap

between µ2
gq and k2. The second term on the right hand side corresponds then to the adjoint

probability, that the parton is actually a dressed parton with a substructure, described by

the balance between real and virtual emission and absorption processes, while localized

within the cell around r. It is obvious, that the spectral densities of dressed partons,

introduced Sec. 3.3, are identical to the usual parton structure functions Pf , i.e. the

probability densities for finding a dressed parton f in an intermediate state containing

number of bare partons as virtual and real fluctuations.

From (109) with (104), and using the representation (56) of the parton densities Ff in

terms of the parton structure functions Pf ′

f , follows then the final form of the renormaliza-

tion equations,

k2 ∂

∂k2
Fg
(
r;x, k2

)
=

∫ 1

0
dz A(r; k2, z)

{ [
1

z
Fg

(
r;
x

z
, zk2

)
− 1

2
Fg
(
r;x, k2

)]
Γggg (z, ǫ)

+ 2Nf Fq
(
r;x, k2

)
Γgqq (z, ǫ) − Nf Fg

(
r;x, k2

)
Γqqg (z, ǫ)

}

p2 ∂

∂p2
Fq
(
r;x, p2

)
=

∫ 1

0
dz A(r; p2, z)

{ [
1

z
Fq

(
r;
x

z
, zp2

)
− Fq

(
r;x, p2

)]
Γqgq (z, ǫ)

34



+ Fg
(
r;x, p2

)
Γqqg (z, ǫ)

}
, (110)

which are the space-time generalization of the DGLAP evolution equations [26] that govern

the momentum dependence of the parton densities. The effective branching kernels Γf
′f ′′

f

[37] are related to the γf
′′

f by,

Γf
′f ′′

f = γf
′f ′′

f

(

1 − Ff ′

Ff ′ ± 1

)

, (111)

where the upper (lower) sign stands in the term in brackets is for gluons (quarks). It yields

a suppression, when the phase-space density Fg or Fq becomes large, so that the emission

processes f → f ′f ′′ are competed significantly by absorption processes f ′f ′′ → f . In the

limit Ff ′ ≫ 1, the detailed balance is established, in accord with the Bose-Einstein and

Fermi-Dirac statistics of the gluon, respectively quark densities. For instance, in thermal

equilibrium, F
(eq)
g(q) = (e−E/T ∓ 1)−1, so that Γ = γ(1 − eE/T ), which tends to zero as the

temperature T becomes large.

Eqs. (110) are the main result of this Section. They emerge as a direct consequence of

the renormalization equations (65) in the short-distance regime of virtual and dissipative

quantum fluctuations, and ensures unitarity conservation locally in each space-time cell.

They embody the Heisenberg uncertainty principle, expressing the fact that it is impossible

to localize soft partons in a given cell if their wavelength exceeds the cell size, which sets

the resolution scale. Last not least, they account for the balance between real emission and

absorption processes that, in tends to increase (decrease) the effective real emission rate of

gluons (quarks).

3.5 Kinetic dynamics and transport equations

With the dynamical structure of dressed partons quantitatively controlled by the above

renormalization equations (110), one is now in the position to address the kinetic space-

time evolution of the multi-particle system in terms of statistical binary scatterings among

these dressed partons. As explained in Sec. 3.1, in order to obtain quasi-classical trans-

port equations for the phase-space distribution functions F = N ⊗ P, two key conditions

have to be met: First, as before, the maximal space-time extension of relevant quantum

fluctuations, λc = µ−1
gq , is supposed to be smaller than the mean free path λmf between

scatterings. Second, the typical four-momentum transfer q⊥ ≡
√
|q2| in the scattering of

any two partons, is required to be larger than the inverse Compton wavelength λ−1
c = µgq.

That is (c.f. eq. (47)),

λmf > µ−1
gq , q2⊥ > µ2

gq = λ−2
c . (112)
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The first condition ensures that the quantum evolution, taken care of by the renormalization

equations, can be factorized from the scattering processes. The second condition guarantees

that the scattering is sufficiently hard, i.e., is of short range compared to the space-time

extent of the scattering partons’ intrinsic quantum motion, so that over the duration of the

scattering, the dressed partons can be treated as ‘frozen’ assemblies of bare particles that

represent their instantanous quantum state (the usual sudden approximation). These two

conditions are equivalent to the factorization assumption of the well established ‘QCD hard

scattering picture’ [38] for, e.g., high energy hadron-hadron collisions, where the colliding

hadrons are described as conglomerates of bare partons in terms of their structure functions.

The relation of this hard scattering picture to the present approach is its adoption to

multiple, internetted scattering processes in a system of stochastically colliding dressed

partons, each of them represented by their own structure function, or spectral density.

The two requirements (112) are the crucial points, which allow in the following to cast

the kinetic evolution into simple, probabilistic Boltzmann-type equations, which however

have to be solved self-consistently in conjunction with the renormalization equations (110).

Here is the key difference from other formulations [5, 39, 40] to include quantum effects

in a quasiclassical treatment of transport phenomena, in which one has only one type of

equation, a generalized Boltzmann equation, that contains local, classical part and a non-

local quantum contribution, containing the space-time history of memory effects. In the

present approach, this is translated to stochastically occurring (‘local’), hard parton-parton

scatterings, linked with the causal quantum evolution in between scatterings (‘non-local’),

accounting for renormalization and dissipation due to the previously occured scatterings.

The advantage is here, that while quantum effects are included in the multi-particle evolu-

tion, still a local (in space and time) picture can be maintained, where memory effects are

embodied effectively in the dressed partons’ structure function evolution.

To proceed, recall from Sec. 3.3, that the correlation functions DC
µν , S

C are the quan-

tities which are determined by the transport equations of the form (78) (explicitly given

in Appendix B, eqs. (167) and (168). On account of the presumed conditions (112), over

kinetic space-time scales λmf > λc, the quantum motion decouples, so that the correlation

functions are determined by the collsional self-energies ΠC
µν ,Σ

C , in conjunction with the

real parts of the retarded and advanced functions (c.f.(78)). This means that the collisional

self-energies are to be evaluated with the renormalized propagators (92) and vertices (96),

which were obtained from the retarded and advanced self-energies before.

Noting that from (73), one has

DC
µν = D>

µν + D<
µν SC = S> + S< , (113)
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the transport equations (66) now read (c.f. Appendix B),

k · ∂r Dµν >
<

ab (r, k) = − i

2

(
Π

>
< DA + ΠRD

>
< − D

>
< ΠA − DRΠ

>
<

)µν

ab
(114)

i
{
γ · ∂r , S

>
<

ij(r, p)
}

+
= −

( [
γ · p , S>

<

]

−

)

ij
+

(
Σ

>
< SA + ΣR S

>
< − S

>
< ΣA − SR Σ

>
<

)

ij
,

which can be rewritten as

k · ∂r Dµν >
<

ab (r, k) = −1

2

( {
Π>(r, k) , D<(r, k)

}

+
−
{

Π<(r, k) , D>(r, k)

}

+

)µν

ab

p · ∂r S
>
<

ij(r, p) =
1

2

( {
Σ>(r, p) , S<(r, p)

}

+
−
{

Σ<(r, p) , S>(r, p)

}

+

)

ij

.(115)

These equations correspond to what is usually termed the quasi-particle approximation.

In the cellular space-time picture, the characteristics of the statistical kinetic evolution of

the system are, per design, insensitive to the localized fluctuations associated with short-

distance quantum dynamics inside a space-time cell. To stress it more precisely, the space-

time variation can be considered homogenous over the range of the Compton wavelength

λc = µ−1
gq ≤ µ−1(r), so that GC(r, k)| ≫ |λ2

c∂
2
rG

C(r, p)| and the derivatives with respect

to r on the left hand side of the original eqs. (65) and (66) may be omitted. In the

present context, it emerges as the logical consequence, that the partons can be described on

kinetic space-time scales as quasi-particles, with the underlying quantum motion effectively

accounted for in the renormalized propagators and vertices.

The self energies Π
>
<
µν and Σ

>
< are obtained from the general expressions (40) and (41),

respectively. The lowest order non-vanishing contributions are the two-loop diagrams shown

in Fig. 10, which are proportional to h̄ and O(g4
s ). In terms of the renormalized correlators

D
>
< and S

>
< one finds:

Πστ >
<

ab (r, k) =

=
g4
s

2

∫
d4k′

(2π)4i

d4q

(2π)4i
faa′cλµµ′σ(−k, k − k′, k′)Dσσ′ >

<

cc′ (r, k′)

× fc′feλσ′ρλ(−k′,−q, q + k′)Dρρ′ >
<

ff ′ (r,−q) fe′f ′′d′λλ′ρ′τ ′(−q − k′, q, k′)Dτ ′τ >
<

dd′ (r, q + k′)

× fdb′bλτν′ν(−k′,−k + k′, k)Dµ′ν′ >
<

a′b′ (r, k − k′)

+
g4
s

6

∫
d4k′

(2π)4i

d4q

(2π)4i
vµσ

′µ′σ
ac′a′c (−k, q′, k − q − q′, q)Dστ >

<

cd (r, q)Dσ′τ ′ >
<

c′d′ (r, q′) (116)

× vτν
′τ ′ν

db′d′b (−q,−k + q + q′,−q′, k)Dµ′ν′ >
<

a′b′ (r, k − q − q′)

+g4
s Nf

∫
d4k′

(2π)4i

d4q

(2π)4i
faa′cλµµ′σ(−k, k − k′, k′)Dσσ′ >

<

cc′ (r, k′) γσ′T
c′

ln S
>
<

nn′(r,−q)

× γτ ′T
d′

n′l′ S
>
<

l′l(r, q + k′)Dτ ′τ >
<

d′d (r, k′) fdb′bλτν′ν(−k′,−k + k′, k)Dµ′ν′ >
<

a′b′ (r, k − k′)
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−g4
s 2Nf

∫
d4k′

(2π)4i

d4q

(2π)4i
γµT

a
li S

>
<

ln(r, k − k′) γνT
b
jn S

>
<

j′j(r, k
′)

× γτT
d
n′j′ S

>
<

l′n′(r, k
′ − q) γσT

c
i′l′ S

>
<

ii′(r, k
′)Dστ >

<

cd (r, q)

Σ
>
<

ij(r, p) =

= −g
4
s

2

∫
d4k′

(2π)4i

d4q

(2π)4i
γσT

c
ii′ D

σσ′ >
<

cc′ (r, k′)

× fc′feλσ′ρλ(−k′,−q, q + k′)Dρρ′ >
<

ff ′ (r,−q) fe′f ′′d′λλ′ρ′τ ′(−q − k′, q, k′)

× Dτ ′τ >
<

dd′ (r, q + k′) γτT
d
j′j S

>
<

i′j′(r, p − k′)

−g4
s Nf

∫
d4k′

(2π)4i

d4q

(2π)4i
γσT

c
ii′ D

σσ′ >
<

cc′ (r, k′)

× S
>
<

nn′(r,−q) γσ′T c
′

ln S
>
<

l′l(r, q + k′) γτ ′T
d′

n′l′D
τ ′τ >

<

d′d (r, k′)

× γτT
d
j′j S

>
<

i′j′(r, p − k′) (117)

+g4
s

∫
d4k′

(2π)4i

d4q

(2π)4i
γσT

c
il S

>
<

ll′(r, p − k′)Dλλ′ >
<

ee′ (r, q)

× γλT
e
l′m S

>
<

mm′(r, p − k′ − q) γτT
d
njD

στ >
<

cd (r, k′) ,

where λµρν(p1, p2, p3) and vµστνabcd (p1, p2, p3, p4) are the usual 3-gluon and 4-gluon vertices (c.f.

Appendix D, eq. (223)). The correlation functions D
>
<
µν , S

>
< are related to the phase-space

densities Fg, Fq by (88), i.e.,

D
>
<
µν(r, k) = −2πi (−dµν(k))

[
θ(±k0) + Fg(r, k)

]
δ
(
k2 − M2

g(r, k)
)

S
>
<(r, p) = −2πi (γ · p)

[
θ(±p0) − Fq(r, p)

]
δ
(
p2 − M2

q(r, p)
)
, (118)

where the signs +(−) refer to > (<) 9. As repeatedly stressed, the densities F are the distri-

butions of dressed partons, with their substructure represented in terms of corresponding

assemblies of bare partons, that satisfy the condition (54). Therefore, the functions F

can also be interpreted to measure the number of bare partons with dynamical invariant

masses k2 ≥ µ2
gq. Consequently, a binary collision of two dressed partons can be described

in terms of the above ‘hard scattering picture’ as a scattering of two bare partons, one out of

each assembly, picked statistically from the instantanous quantum state of the two dressed

partons, as given by their structure functions, or spectral densities. The four-momentum

transfer q2⊥ sets hereby the probing scale, so that k2 ≈ q2⊥. Therefore the energy spectra of

9 It must be mentioned that eq. (118) assumes a spin-symmetric form for the quark-antiquark spinor

products, which means a neglect of spin-polarization effects. As shown by Elze et al. [15], in general the

quark phase-space distribution does require at least an 8 × 8-matrix representation.
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partons emerging from these scatterings are - using eq. (84) - determined by

ω ≡ ±k0(r, k) = ω(0)

(

1 +
M2

g(r, k
+, k2)

2 ω(0)

)

E ≡ ±p0(r, p) = E(0)

(

1 +
M2

q(r, p
+, p2)

2 E(0)

)

, (119)

where k0 = 1/2(k+ + k−) ≃ k+/2, p0 ≃ p+/2, and ω(0) = ±
√
~k 2 + µ2

gq, E(0) =

±
√
~p 2 + µ2

gq. Accordingly, one can now write

ω = ±
√
~k 2 + q2⊥ θ(q

2
⊥ − µ2

gq) E = ±
√
~p 2 + q2⊥ θ(q

2
⊥ − µ2

gq) , (120)

and

Fg(r, k) δ(k
2 − q2⊥) =

1

2ω

[
Fg(r,~k) δ(k

0 − ω) + Fg(r,−~k) δ(k0 + ω)

]

Fq(r, p) δ(p
2 − q2⊥) =

1

2E

[
Fq(r, ~p) δ(p

0 − E) + F q(r,−~p) δ(p0 + E)

]
, (121)

which exhibits explicitly the particle-antiparticle character of the phase-space densities. In

particular, Fq(r, ~p) denotes the quark distribution and F q(r,−~p) the antiquark distribution.

Using the representations (118) for D
>
<
µν , S

>
< in the self-energies (117) and (116), and

substituting into the equations (115), gives the final form of the transport equations in the

kinetic regime (c.f. Appendix D),

k · ∂r Fg(r, k) = Ig(r, k) p · ∂r Fq(r, p) = Iq(r, p) , (122)

where

Ig(r, k) =
1

2

{
Π̂>(r, k) , Fg(r, k)

}

+
− 1

2

{
Π̂<(r, k) , Fg(r, k) + 1

}

+

Iq(r, p) =
1

2

{
Σ̂>(r, p) , Fq(r, p)

}

+
− 1

2

{
Σ̂<(r, p) , Fq(r, p) − 1

}

+
. , (123)

and the ‘hatted’ self-energy functions Π̂, Σ̂ stand for

Π̂
>
<(r, k) =

1

2i

∑

s=1,2

εµ(k, s)εν ∗(k, s) Π
>
<
µν(r, k)

Σ̂
>
<(r, p) =

1

2i

∑

s=1,2

[
ū(p, s)Σ

>
<(r, p)u(p, s) + v̄(p, s)Σ

>
<(r,−p) v(p, s)

]
. (124)

The collision terms Ig and Iq on the right hand side of (122) describe the balance of

gain and loss of partons in a phase-space element d3rd4k, or d3d4p, within a time slice

around r0. Their explicit form is obtained as explained in Appendix D, and emerges as the

result of applying the usual cutting rules [41] to the self-energies (116), (117) and averaging
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(summing) over initial (final) spin and color degrees of freedom (see Fig. 11). The resulting

structure of the collision terms is as follows:

Ia(r, p1) ≡
∑

bcd

(
− I(loss)

cd→ab(p1, r) + I(gain)
ab→cd(p1, r)

)

= −
∑

bcd

Cab Ccd

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4
(2π)4 δ4(p1 + p2 − p3 − p4)

×
{
Fa(1)Fb(2) |M(ab→ cd)|2 θ(q2⊥ − µ2

gq) [1 ± Fc(3)] [1 ± Fd(4)]

− [1 ± Fa(1)] [1 ± Fb(2)] |M(cd→ ab)|2 θ(q2⊥ − µ2
gq) Fc(3)Fd(4)

}
, (125)

Here the notation is Ff (i) ≡ Ff (r, pi) for the distribution functions of the parton species

f = g, q, q̄ with four-momenta pi = p, p2, p3, p4 at space-time point r = (r0, ~r). The

structure of the collision terms in conjunction with the equations (122) is such that the

squared matrix elements for the various scattering processes 12 → 34 (depicted in Fig. 11,

and explicitly given in Appendix D) are weighted by a distribution function Ff (i) for each

of the partons coming into the vertex and a factor (1 ± Ff ′(j)) for each of the outgoing

ones. The + sign is for gluons so that (1 + Fg) results in a Bose enhancement, and the −
sign refers to quarks and antiquarks with (1−Fq) indicating Pauli blocking. This is a direct

consequence of the quantum statistical difference between the gluon and quark propagators

(72) and (74). The factors Cab (Ccd) in front account for the identical particle effect, if

incoming (outgoing) partons are indistinguishable.

Eqs. (122) are the essential result of this Section. These Boltzmann-type equations are

the final form of the transport equations for the dressed partons with phase-space densities

F . The equations have a a drift term on the left hand side, and a collision term on the right

hand side, which balances the various processes by which a dressed parton may be gained or

lost in a phase-space element d3rd4p around time r0±∆r/2 = r0±1/(2µ). They describe the

dynamics of the multi-parton system on kinetic scales, due to statistical, binary collisions,

in which dressed partons appear as quasi-particles with a dynamical substructure, which

is described in terms of probabilities to find a parton as a state consisting of a number of

bare gluons and quarks of virtualities k2 > µ2
gq. These the underlying quantum fluctuations

are embodied in F = N ⊗ P through the spectral density, or parton structure function,

P and are determined by the renormalization equations (110). A scattering between two

dressed partons is therefore described as a ‘hard scattering’ determined by the probabilities

of finding in each of them a hard fluctuation with k2 ≃ q2⊥ > µ2
gq of the order of the

momentum transfer that sets the probing scale. This is expressed by the collision term

on the right hand side, in which the products of F ’s involve the convolution of spectral
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densities P, weighted with the squared matrix elements. A graphical illustration of this is

shown in Fig. 12.

3.6 A Monte Carlo calculation scheme

A practical calculation scheme to compute the evolution of a multi-parton system as

governed by the couled renormalization and transport equations may be outlined with the

following concrete example. Consider the collision of two large nuclei with mass number

A ≫ 1 at ultra-relativistic center-of-mass energy. Before their contact upon collision,

the approaching nuclei appear as two highly Lorentz contracted discs of coherently bound

gluons and quarks with a coherence length L0 = 1/µ0, where µ0 ≃ gs ρ⊥ with ρ⊥ =

Ngq/(πR
2
A) sets the scale of the typical space-like parton virtuality, and hence L0 their

characteristic transverse size. McLerran and Venugopalan [24] have shown that if A is

sufficiently large, the associated primeval parton distribution of the nuclei before, and

shortly after the collision can be calculated non-perturbatively from first principles in terms

of coherent quantum fields. Their conclusion is that, as long as the very early generation

of this parton matter distribution has ∆p∆r ∼ 1, it cannot be described by a kinetic

particle picture, which requires ∆p∆r ≫ 1. However, after a time t0 ≃ 1/µ0 passed the

nuclear contact, the parton matter has gone through a decoherence stage, so that the latter

condition is be satisfied, and a kinetic description can be matched to the complex coherent

evolution of the primeval matter. In other words, at time t0, one may proceed with a

probabilistic description of the parton dynamics in terms of the interplay between coherent

radiative evolution and incoherent binary interactions, as suggested in the present work.

At time t0, one starts from the initial multi-parton state, and the subsequent time

evolution of the partons’ phase-space densities Fgq(t, ~r, p
2, ~p) may be calculated by a Monte

Carlo procedure, using the advocated discretization of space-time with four-dimensional

cells of size ∆r = ∆t∆3r ≃ µ−4.

(i) The first step consists in evaluating, from the collision kernel of the transport equations

(122), the probabilities of scatterings among the initial partons within the time slice

∆t0 = µ−1(t0) ≡ µ−1
0 between t0 and t0 + ∆t0 for each cell centered around ~r. The

essential condition (112) provides the possibility of treating the scattering among

partons incoherently, and requires that the impact parameter bab of any two scattering

candidates a and b must satisfy bab < µ−1
0 , implying for the momentum transfer of

the scattering q2ab⊥ > µ2
0, where µ2

0 is the initial virtuality of the partons at t0, set

by the coherence length of the colliding nuclei. The primary parton scatterings a+ b

that occur within ∆t0 subject to this condition change the phase-space occupation of
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partons at t1 = t0 + ∆t0 in two ways: on the one hand their spatial profile is altered

due to gain and loss of deflected scatterers a′ and b′ in the spatial cells, and on the

other hand, the virtualities are reset from k2
a = k2

b = µ2
0 to k

′ 2
a = k

′ 2
b = q2ab⊥ > µ2

0.

(ii) In the next step one must now calculate the quantum fluctuations, virtual plus real

emission and absorption processes, that are triggered by the primary scatterings and

the change of virtualities from k2 to k
′ 2. That is, the parton structure functions

need to be evolved within ∆t0 according to the renormalization equations (110),

which account for the associated renormalization and dissipation. One then obtains

a spatial profile of new dressed partons, that defines the initial condition for the

further evolution, starting at t1. The procedure repeats, as before at t0, by evaluating

the scattering probabilities in the next time slice ∆t1 = µ−1(t1) between t1 and

t1 + ∆t1, now however subject to the modified incoherence condition, that for any

scattering of partons a and b their impact parameter must be bab < max(k2
a, k

2
b )
−1/2,

i.e. q2ab⊥ > max(k2
a, k

2
b ).

It is important to realize that the condition (112) of a well defined separation between

quantum and kinetic scales, imposes the crucial incoherence requirement for binary scat-

terings, and allows a ‘hard scattering’ picture, in which the quantum evolution and hard

scattering of evolving quanta factorize. The condition defines the range of validity for a

probabilistic description in terms of incoherently scattering particles, and is essentially the

uncertainty principle: the quasi-classical picture holds only, if the scattering partons may

be treated as well distinguishable, incoherent quasi-particles of size 1/
√
k2, meaning that at

least a ‘formation time’ of tk ≃ 1/
√
k2 must have been passed since their previous scatter-

ing, during which their quantum structure evolves with virtuality k2. A concrete example

of this scheme will be presented elsewhere.

4. CONCLUDING REMARKS

In this paper I have attempted to lay out a foundation to obtain from the fundamental

quantum field theoretical principles of QCD a self-consistent kinetic description for the

evolution of a high-energy system of self- and mutual interacting gluons and quarks. The

main result is a set of two distinct, but coupled equations that govern the time evolution of

the gluon and quark Wigner functions, the quantum analogues of the classical phase-space

densities:

(i) A renormalization equation, which describes the the momentum dependence of short-

distance quantum fluctuations due to the partons’ self-interactions. It defines the

42



state of a dressed parton as a quasi-particle with a renormalized mass and a decay

width, corresponding to virtual and real emission and absorption processes. The

solution of this equation describes, locally in space-time, the spectral density in terms

of bare partons that are associated with the quantum substructure of the state of

a dressed parton, and determines the partons’ structure functions as well as their

dynamical mass spectrum.

(ii) A transport equation, which describes the space-time evolution of the dressed par-

tons in the kinetic quasi-particle regime by means of mutual binary collisions. It

determines the time dependence of both the change of the spatial density and the

energy-momentum distribution of dressed partons due to elastic and inelastic colli-

sions. Accordingly, it redistributes not only the partons in space, but also modifies

their momentum spectrum and virtualities, which feeds back into the renormalization

equations.

Loosely speaking, the renormalization equation defines the state of dessed partons, whereas

the transport equation governs the occupation of these states. The self-consistent solution of

the equations provides the means to trace the dynamical development of the multi-parton

system in real-time and full 7-dimensional phase-space d3rd3pdp2, spanned by position,

momentum and invariant virtuality. It suggests a probabilistic, causal description, which

is predestined for numerical evaluation by using Monte Carlo simulation techniques.

The essential steps that lead to this kinetic framework may be summarized as follows:

a) the path integral quantization of the classical action, using the CTP formalism with

in-in boundary conditions, including initial state correlations at time t0 described by

the density matrix ρ̂(t0);

b) the 2-point source approximation, that allows to rewrite the CTP path integral as the

generating functional for a possible color background field, and for the 2-point gluon

and quark Green functions defined on the closed-time-path between t0 and t∞;

c) the derivation of the self-consistent equations of motion for mean field (Ginzburg-Landau

equation) and Green functions (Dyson-Schwinger equations);

d) the transition to kinetic theory by imposing the physics-motivated well defined sepa-

ration between the quantum scale that specifies the range of short-distance quantum

fluctuations and the kinetic scale that characterizes the range of inter-particle corre-

lations and stochastic binary interactions;
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e) the conversion of the Dyson-Schwinger equations for the Green-functions to the set of

renormalization and transport equations for the corresponding Wigner functions, on

the basis of the separation of quantum and kinetic scales and a cellular space-time

picture.

f) the calculation of the spectral density of bare partons, locally within the cells, from the

renormalization equations, which defines the state of dressed partons in terms of their

substructure, and the evaluation of the collision kernel of the transport equations,

which determine the statistical occurrence of scattering processes among these dressed

partons.

This quantum kinetic framework may be extended in straightforward manner to include

effects of a color background field, or gluonic mean field, that acts as a classical background

medium in which the partonic quanta evolve (e.g. in a QCD plasma, where it may be gen-

erated due to the bulk dynamics of soft gluon modes). This option has not been considered

in the present paper, however the framework incorporates this possibility by considering a

non-vanishing Ãµ instead of setting it to zero as in Sec. 3. The inclusion of such a mean field

would extend the set of renormalization and transport equations for the partons’ Wigner

functions, by coupling to the Ginzburg-Landau equation for the mean field. Qualitatively,

the effect would be twofold: first, the poles of the Wigner functions would be shifted by

a mean field generated mass µ(Ãµ), and second, the transport equations would acquire an

additional force term of Vlasov form.

The future extensions and applications are manifold. Most important at first, I believe,

is a detailed calculation for a specific situation where the concepts and formalism presented

here may be illustrated and checked for consistency. For instance, it would be desirable to

study a thermal (or close to thermal) parton system in this real-time description, and com-

pare it with the well known results in the imaginary-time formalism of finite-tempaerature

QCD. Such a project is planned to be carried out in the near future. On the other hand, the

probabilistic interpretation of the real-time evolution of rather general multi-parton system

offers the opportunity to simulate the dynamical development on the basis of the master

equations with Monte Carlo techniques on a computer [42].
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APPENDIX A:

The CTP formalism and the 2-point source generating functional

In this Appendix, I review the CTP functional formalism applied to the case of QCD.

For additional reading concerning the general techniques, I refer to the extensive literature

[3, 4, 5, 6, 7, 8]. In the in-in formulation of quantum field theory, mentioned in Sec. 2,

the generating functional is defined as the in-vacuum to in-vacuum amplitude Z[J, ρ̂] =

Tr
∑
ϕ〈0in|ϕ〉J 〈ϕ|ρ̂|0in〉J , including possible initial state correlations represented by the

density matrix ρ̂ at t0, and a sum over a complete set of states ϕ at t∞. In the Heisenberg

picture it is represented by

ZP [J, ρ̂] = Tr




 TP exp



i
∑

f

∫

P
d4xJf (x)φf (x)



 ρ̂




 , (126)

where f = g, u, ū, d, d̄, . . . specifies the gluon and quark field degrees of freedom, and φf =

(Aµ, ψ, ψ). The symbol P refers to the time integration along a closed-time path in the

complex t-plane as illustrated in Fig. 2: the path goes forward from t0 to t∞ on the positive

branch, and then back from t∞ to t0 on the negative branch. The generalized time-ordering

TP is therefore defined such that any point on the second branch is understood at a later

instant than any point on the first branch. Utilizing (13), eq. (126) can be rewritten as

ZP [J+, J−, ρ̂] = Tr
{
U †J−(t0, t)UJ+(t, t0) ρ̂(t0)

}
, (127)

where J+ (J−) is the source along the positive (negative) branch of Fig. 2a. In general

J+ 6= J−, so that ZP depends on two different sources. If these are set equal, one has

ZP (J, J, ρ) = Trρ̂, which is equal to unity in the absence of initial correlations, being a

statement of unitarity. The derivatives of ZP with respect to the sources generate the

n-point CTP Green functions

Gf1,...,fn
α1,...,αn

(x1, . . . , xn) =
δnZP [J+, J−, ρ̂]

δJf1α1(x1) . . . δJ
fn
αn (xn)

= (−i)n−1 Tr
{
TP φ

f1
α1

(x1) . . . φ
fn
αn

(xn) ρ̂
}
,

(128)

where αi = ±, and the indices fi label the type of the i-th field. The functional ZP can

be represented as a path integral by employing the relation between the Heisenberg and

interaction pictures (16). One imposes boundary conditions in terms of complete sets of

eigenstates of the Heisenberg fields ΦH at initial time t = t0,

ΦH(t0, ~x) |φ+(t0) 〉 = ΦI(t0, ~x) |φ+(t0) 〉 = φ+(~x) |φ+(t0) 〉
ΦH(t0, ~x) |φ−(t0) 〉 = φ−(~x) |φ−(t0) 〉 , (129)
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and in the remote future at t = t∞,

ΦH(t∞, ~x) |ϕ(t∞) 〉 = ϕ(~x) |ϕ(t∞) 〉 . (130)

Then, making use of the completeness of the eigenstates, one obtains from (127) the fol-

lowing functional integral representation for ZP ,

ZP [J+, J−, ρ̂] =

∫
Dφ+Dφ−Dϕ 〈φ−(t0) |U †J−(t0, t∞) |ϕ(t∞) 〉

× 〈ϕ(t∞) |UJ+(t∞, t0) |φ+(t0) 〉〈φ+(t0) | ρ̂ |φ+(t0) 〉 . (131)

At this point it is convenient to represent + and − by greek indices α, β, γ, . . . and to

introduce a 2×2 matrix σ as a ‘metric tensor’,

ταβ = ταβ = diag(1,−1) , α, β = ± (132)

and similarly higher rank tensors

uαβγ = δαβτβγ , vαβγδ = sign(α) δαβδβγδγδ , (133)

with the usual summation convention over repeated greek indices α, β, ... With this con-

vention one can generalize the classical action (4) to account for all four field orderings on

the closed-time path P :

I[φαf ] ≡ I[φ+
f ] − I∗[φ−f ] = I(0)[ταβA

α
µA

β
ν ] + I(0)[ταβψ

α
ψβ]

+ I(int)[uαβγψ
α
Aβµψ

γ , uαβγ(∂µA
α
ν )A

β
µA

γ
ν , vαβγδA

α
µA

β
νA

γ
µA

δ
ν ] ,(134)

where the correspondance with the terms I with the ones of (4) is obvious (the color indices

are suppressed here). Also, the following shorthand notation for the integration over the

space-time variables will be used in the functional sense,

J φ ≡
∫

P
d4xJ(x) φ(x) , φK φ ≡

∫

P
d4xφ(x) K(x, y) φ(y) . (135)

Returning to the functional integral (131), I now utilize the above conventions and exploit

the fact that the first two amplitudes are just the ordinary transition matrix elements in the

presence of J+ and J−, whereas the density matrix element incorporates the initial state

correlations at t0 at the endpoints of the closed-time path P , one obtains the path integral

representation for ZP in analogy to usual field theory [10, 11]

ZP [J+, J−, ρ̂] =

∫ ∏

f

Dφαf exp



i



 I[φαf ] +
∑

f

Jf, αφ
α
f







 N [ρ̂] . (136)

Here Dφαf ≡ Dφ+
f Dφ−f , and I suppressed the formal presence of the Fadeev-Popov deter-

minant associated with the gauge freedom, because for the class of ghost-free gauges (3) it
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is equal to unity. The functional N [ρ̂] is the density matrix element containing the initial

state correlations that may be represented by a non-local source functional K as follows:

N [ρ̂] = 〈φ+(t0) | ρ̂ |φ−(t0) 〉 ≡ exp



i
∑

f

Kf [φ+, φ−]



 (137)

When expanded functionally as

Kf [φ+, φ−] = Kf + Kf
αφ

α +
1

2
Kff ′

αβ φ
α
fφ

β
f ′ +

1

6
Kff ′f ′′

αβγ φαfφ
β
f ′φ

γ
f ′′ + . . . , (138)

eq. (136) becomes a functional of an infinite number of non-local sources [7], which however

contribute only at t = t0, corresponding to the initial state correlations,

ZP [J+, J−, ρ̂] ≡ ZP [Jα,Kαβ , . . .] (139)

=

∫ ∏

f, α

Dφαf exp



i



 I[φf ] +
∑

f

(
Jfαφ

α
f +

1

2
φαfK

ff ′

αβ φ
β
f + . . .

)





 ,

where the constant term Kf has been absorbed into the normalization and the local initial

state kernel Kf
α(x) has been combined with the external source term Jfα(x), i.e. Jfα ≡

Jfα +Kf
α.

The corresponding generating functional for the connected Green functions WP as given

as usual by the logarithm of ZP ,

WP [Jα,Kαβ,Kαβγ , . . .] = −i lnZP [Jα,Kαβ ,Kαβγ , . . .] . (140)

The functional derivatives of WP with respect to the local sources Jαf (x) define gluon

and quark mean fields φ̃αf (x) as the expectation values of the single field operators, which

can arise either through non-vanishing external sources, or, in the case of gluons, may be

generated dynamically by the system itself depending on the initial conditions. Similarly,

the variation of WP with respect to the non-local kernels Kαβ
ff ′(x, x

′),Kαβγ
ff ′f ′′(x, x

′, x′′), . . .,

give the the n-point Green functions Gαβff ′(x, x
′), Gαβγff ′f ′′(x, x

′, x′′), etc., for the different

particle species, which are the expectation values of products of n field operators. From

(139) and (140), one finds

δWP

δJfα
= φ̃αf

δWP

δKff ′

αβ

=
1

2

(
iGαβff ′ + φ̃αf φ̃

β
f ′

)

δWP

δKff ′f ′′

αβγ

=
1

6

(
Gαβff ′f ′′ + 3iGαβff ′ φ̃

γ
f ′′ + φ̃αf φ̃

β
f ′ φ̃

γ
f ′′

)
etc. (141)

One immediately recognizes the inifinite hierarchy of the Green functions, the complete

knowledge of which would correspond to the full solution of the theory. Clearly, in practice
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one must truncate this infinite series. In what follows, I will assume that all n-point sources

of order n ≥ 3 (i.e. the kernels Kαβγ etc., are neglegible and thus can be omitted. Such

an approximation is justified if the higher order correlations generated by the n ≥ 3 source

terms are comparably small and the quantum dynamics of the system can be sufficiently

well described by single-particle distributions corresponding to the 2-point functions. In

fact, this is the very hypothesis of the parton description of QCD at large energies, where

higher order correlations (‘higher twist’ effects) are kinematically suppressed by powers of

a large momentum scale Q−2 corresponding to an approximate factorization of dominant

short-distance 2-point correlations and larger distance 3-,4-,..-point correlations associated

with multi-particle effects, an approximation which becomes exact in the asymptotic limit

[26]. In this approximation the generating functional (139) then explicitly reads,

ZP [Jµ, j, j,Kµν , k] = eiWP [Jµ,j,j,Kµν ,k]

=

∫
DAµαDψαDψα exp

[
i

(
I[Aµα, ψα, ψα] (142)

+ JαµA
µ
α + jαψα + j

α
ψα +

1

2
AµαK

αβ
µν A

ν
β + ψαk

αβψβ

)]
,

which is the expression I stated in eq. (25) of Sec. 2.2. Since the present interest concerns

only cases where no external sources are present, one obtains from (142) the mean fields

and the 2-point functions for gluons and quarks by taking into account the fact in the

that absence of external sources the establishment of a local colored mean field can only

occur for the gluons, but not for quarks or antiquarks. Because of their bosonic character

gluons the production of gluons can lead to a dynamically generated coherent field acting

as a background medium, whereas the production of quarks and antiquarks occurs only in

pairs and cannot yield a coherent mean field. Furthermore, a physical gluon mean field is

determined the equality Ãµ+ = Ãµ− ≡ Ãµ. Hence, one gets from (142), using (141)

δWP

δJµα (x)
= Ãµ(x) ,

δWP

δjα(x)
=

δWP

δjα(x)
= 0

δWP

δKµν
αβ(x, y)

=
1

2

(
iDαβ

µν (x, y) + Ãαµ(x)Ãβν (y)
)

δWP

δkαβ(x, y)
= − i Sαβ(x, y) , (143)

where, as a reminder α, β = ±, not to be confused with color indices which I suppressed in

this Appendix.
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APPENDIX B:

From quantum field description to kinetic theory

In this Appendix I explain steps that lead from the Dyson-Schwinger equations (42),

(43) to the kinetic counterparts, the renormalization equations (65) and transport equations

(66). A well separation between quantum scale of short-distance fluctuations and the

statistical-kinetic scale, is the essential requirement for recasting the quantum theoretical

problem, formulated in terms of the 2-point Green functions G(x, y), into the much simpler

form of kinetic teory, employing Wigner transforms G(r, p). In the picture of cellular

space-time, constructed in Sec. 3.1, a clearly defined separation between the two scales

is controlled by the characteristic size of the space-time cells with volume Ω ≃ µ−4, by

choosing µ such that ∆rqua ≤ µ−1 < ∆rkin, i.e. the cell size is larger than the range of

short-distance quantum fluctuations, ∆rqua ≤ µ−1, but small compared to the mean-free

path of the quanta between their kinetic, statistical interactions, ∆rkin. This is illustrated

in Figs. 6 and 7. Therefore the correlation between different cells is negligible by design,

and the only relevant case is when the points x and y in the argument of G(x, y) lie in

the same cell. In the interior of each cell, one can then assume approximate translation

invariance, because large-distance inhomogenities of space-time are, by construction, not

resolvable within the small cell volume. Thus, for each individual cell, one can Fourier-

transform the Green functions over the cell volume, and use the common machinery of

propagator theory as for homogenous systems, or the vacuum. Specifically, one transforms

the Green functions G ≡ Dµν , S with respect to the relative coordinate s = x− y, whereas

the absolute coordinate r = 1
2(x+ y) serves as a cell label:

G(x, y) =

∫
d4p

(2π)4
e−i p · (x−y) G

(
x+ y

2
, x− y

)
=

∫
d4p

(2π)4
e−i p · s G (r, s) , (144)

where G(r, p) is called the Wigner transform of G(x, y), and similarly for the self-energies

E(x, y) ≡ Πµν ,Σ,

E(x, y) =

∫
d4q

(2π)4
e−i q · (x−y) E

(
x+ y

2
, x− y

)
=

∫
d4q

(2π)4
e−i q · s E (r, s) . (145)

If the separation between quantum and kinetic scales would be perfect (as in vacuum,

where ∆rkin = ∞), then the r-dependence would drop out and the Wigner transforms

reduce to the ordinary Fourier transforms G(p), E(q). In case of moderately inhomogenous

media, meaning that the Green functions and self-energies vary only slowly with r and

are strongly peaked around s = x − y, as I consider here, then one can expand the Green

functions G(x, y) = W
(
r + 1

2s, r − 1
2s
)

= W (r, s) in a series of gradients,

W (r + s, s) ≃ W (r, s) + s · ∂rW (r, s) + . . . , (146)
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and analogous for the self-energies E . The basic Dyson-Schwinger equations (42), (43)

remain the same in terms of the Wigner transforms, for example for the terms EG ≡ ΠµσD
σ
ν

or EG ≡ ΣS, one has

∫
d4x′E(x, x′)G(x′, y) =

∫
d4q

(2π)4
d4p

(2π)4

∫
d4x′ (147)

× e−i q · (x−x
′) E

(
x+ x′

2
, x− x′

)
e−i p · (x

′−y) G

(
x′ + y

2
, x′ − y

)
.

The integrand will be significantly different from zero only if x′ lies within the same cell as

x and y, in which case 1
2 (x+ x′) ≃ 1

2(x′ + y) ≃ r. Therefore (147) reduces to

∫
d4x′E(x, x′)G(x′, y) =

∫
d4p

(2π)4

{
e−i p · (x−y) E (r, p) G (r, p) + ∆(r, p)

}
, (148)

where ∆(r, p) embodies the corrections to the ideal separation of cells. In terms of the

gradient expansion (146), the first order correction which is O(h̄), is given by

∆(r, p) =
i

2

∂E(r, p)

∂pµ

∂G(r, p)

∂rµ
− i

2

∂E(r, p)

∂rµ
∂G(r, p)

∂pµ

≡ i

2
[(∂pE) · (∂rG) − (∂rE) · (∂pG)] . (149)

In general, the convolution between two functions f and g is given by

∫
d4x′f(x, x′) g(x′, y) −→ exp

[
i

2

(
∂(f)
p · ∂(g)

r − ∂(f)
r · ∂(g)

p

)]
f(r, p) g(r, p) . (150)

The gradient expansion (146) corresponds to keeping only the first two terms in the Taylor

series of the exponential function, which gives the following set of conversion rules:

∫
d4x′f(x, x′) g(x′, y) −→ f(r, p) g(r, p) +

i

2
[(∂pf) · (∂rg) − (∂rf) · (∂pg)]

h(x) g(x, y) −→ h(r) g(r, p) − i

2
(∂rh) · (∂pg)

h(y) g(x, y) −→ h(r) g(r, p) +
i

2
(∂rh) · (∂pg)

∂µxf(x, y) −→ (−ipµ +
1

2
∂µr ) f(r, p)

∂µy f(x, y) −→ (+ipµ +
1

2
∂µr ) f(r, p) . (151)

If one applies these rules now to the Dyson-Schwinger equations (42) and (43), which upon

setting for simplicity the mean field contributions µ̃g = µ̃q = 0, read,

→
✷x, µρ Dρν

ab (x, y) = δab g
µν δ4P (x, y) −

∫

P
d4x′Πµ

σ, a,b′(x, x
′)Dσν

b′b(x
′, y)

Dρν
ab (x, y)

←
✷y, µρ = δab gµν δ

4
P (x, y) −

∫

P
d4x′Dµ

σ, a,b′(x, x
′)Πσν

b′b(x
′, y) (152)
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and

iγ·
→

∂ x Sij(x, y) = δijδ
4
P (x, y) +

∫

P
d4x′Σik(x, x

′)Skj(x
′, y)

−Sij(x, y) iγ·
←

∂ y = δijδ
4
P (x, y) +

∫

P
d4x′ Sik(x, x

′)Σkj(x
′, y) , (153)

one finds on the basis of the gradient expansion (146) a set of corresponding matrix equa-

tions for the Wigner transforms of the gluon and quark Green functions,
(

− k2 +
1

4

→

∂
2

r − ik·
→

∂ r

)
Dµν
ab (r, k) =

= dµν(k) δab 1̂P −
(

Π D

)µν

ab
− i

2

(
(∂kΠ) · (∂rD) − (∂rΠ

µσ) · (∂kDν
σ)

)µν

ab

Dµν
ab (r, k)

(
− k2 +

1

4

←

∂
2

r + ik·
←

∂ r

)
= (154)

= dµν(k) δab 1̂P −
(
D Π

)

ab
− i

2

(
(∂kD) · (∂rΠ) − (∂rD

) · (∂kΠ)

)µν

ab

and
(
γ · (p +

i

2

→

∂r)

)
Sij(r, p) = δij 1̂P +

(
Σ S

)

ij
+

i

2

(
(∂pΣ) · (∂rS) − (∂rΣ) · (∂pS)

)

ij

Sij(r, p)

(
γ · (p − i

2

←

∂r)

)
= δij 1̂P +

(
S Σ

)

ij
+

i

2

(
(∂pS) · (∂rΣ) − (∂rS) · (∂pΣ)

)

ij
,(155)

where

1̂P =





1̂ for F, F

0 for >, <
, (156)

recalling that G ≡ Dµν , S and the self-energies E ≡ Πµν , Σ each represent a 2×2 matrix

as defined by (27),

G =



 GF G>

G< GF



 , E =



 EF E>

E< EF



 . (157)

Adding the two equations of (154), respectively of (155), yield the imaginary parts as the

the passage to the renormalization equations stated in (65), whereas subtracting the two

equations of (154), respectively of (155), gives the real parts as the transport equations

(66). For the gluon Wigner functions one obtains
(
k2 − 1

4
∂2
r

)
Dµν
ab (r, k) = − dµν(k) δab 1̂P +

1

2

(
{Π , D}+

)µν

ab
+

i

4
Gµν (−)
ab

k · ∂r Dµν
ab (r, k) = − i

2

(
[Π , D]−

)µν

ab
+

1

4
Gµν (+)
ab , (158)

where [A,B]− ≡ AB −BA, {A,B}+ ≡ AB +BA, and

Gµν (−) =
[
∂λkΠµ

σ , ∂
r
λD

σν
]

−
−
[
∂λr Πµ

σ , ∂
k
λD

σν
]

−
, Gµν (+) =

{
∂λkΠµ

σ , ∂
r
λD

σν
}

+
−
{
∂λrΠµ

σ , ∂
k
λD

σν
}

+
.

(159)
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For the quark Wigner functions the corresponding equations read

1

2
{γ · p , Sij(r, p)}+ = δij 1̂P − i

2

(
[γ · ∂r , S]−

)

ij
+

1

2

(
{Σ , S}+

)

ij
+

i

4
F (−)
ij

1

2
{γ · ∂r , Sij(r, p)}+ =

i

2

(
[γ · p , S]−

)

ij
− i

2

(
[Σ , S]−

)

ij
+

1

4
F (+)
ij , (160)

where

F (−) =
[
∂λpΣ , ∂rλS

]

−
−
[
∂λr Σ , ∂pλS

]

−
, F (+) =

{
∂λpΣ , ∂rλS

}

+
−
{
∂λr Σ , ∂pλS

}

+
. (161)

The equations (160) for quark propagators can be formally brought in the same form as

(158) for the gluon propagators by multiplying the first equation of (155) with γ · (p+ i
2

←

∂r

)δli + Σli from the left, and the second equation of (155) by γ · (p− i
2

←

∂r)δjl + Σjl from the

right, and then adding and subtracting the resulting equations:
(
p2 − 1

4
∂2
r

)
Sij(r, p) = (γ · p+ Σ) δij 1̂P +

1

2

( {
Σ2 , S

}

+

)

ij
+

i

4
A(+)
ij − 1

8
B(−)
ij

p · ∂r Sij(r, p) =
1

2
(γ · ∂r) δij 1̂P − i

2

( [
Σ2 , S

]

−

)

ij
+

1

4
A(−)
ij +

i

8
B(+)
ij ,(162)

where the notation Σij = δijΣ is employed, and

A(±) =
1

2

(
(γ · p+ Σ̃) (F (−) + F (+)) ± (F (−) −F (+)) (γ · p+ Σ̃)

)

B(±) =
1

2

(
(γ·

→

∂r) (F (−) + F (+)) ± (F (−) −F (+)) (γ·
←

∂r)

)
. (163)

Due to the 2× 2 matrix character of the equations (158) and (160), (162), the four compo-

nents F,F ,>,< of the Green functions Dµν , S and self-energies Πµν ,Σ mix, so that each

of these equations actually represent a non-trivial coupled set of four equations. However,

as advertised in Sec. 3.3, in the physical representation (73),

Ğ =



 0 GA

GR GC



 , Ĕ =



 EC ER

EA 0



 , (164)

one has the great advantage that the retarded and advanced functions GR(A) are deter-

mined exclusively by the R and A components, and components, and only the equation

for GC involves a mixing with these. Omitting for lucidity the gradient terms G,F , the

equations (158) become in the physical representation a self-contained set for the retarded

and advanced functions,
(
k2 − 1

4
∂2
r

)
D
µν R(A)
ab (r, k) = − dµν(k) δab +

1

2

(
ΠR(A)DR(A) + DR(A) ΠR(A)

)µν

ab

k · ∂r Dµν R(A)
ab (r, k) = − i

2

(
ΠR(A)DR(A) − DR(A) ΠR(A)

)µν

ab
(165)
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and

1

2

{
γ · p , SR(A)

ij (r, p)
}

+
= δij − i

4

( [
γ · ∂r , SR(A)

]

−

)

ij
+

1

2

( {
ΣR(A) , SR(A)

}

+

)

ij

1

2

{
γ · ∂r , SR(A)

ij (r, p)
}

+
=

i

2

( [
γ · p , SR(A)

]

−

)

ij
− i

2

( [
ΣR(A) , SR(A)

]

−

)

ij
, (166)

plus a set of mixed equations for the correlation functions,
(
k2 − 1

4
∂2
r

)
D
µν >

<)
ab (r, k) = −1

2

(
Π

>
< DA + ΠRD

>
< + D

>
< ΠA + DRΠ

>
<

)µν

ab

k · ∂r Dµν >
<

ab (r, k) = − i

2

(
Π

>
< DA + ΠRD

>
< − D

>
< ΠA − DR Π

>
<

)µν

ab
(167)

with DC
µν = D>

µν +D<
µν , and,

{
γ · p , S>

<

ij(r, p)
}

+
= − i

2

( [
γ · ∂r , S

>
<

]

−

)

ij
+

(
Σ

>
< SA + ΣR S

>
< + S

>
< ΣA + SR Σ

>
<

)

ij

i
{
γ · ∂r , S

>
<

ij(r, p)
}

+
= −

( [
γ · p , S>

<
]

−

)

ij
+

(
Σ

>
< SA + ΣR S

>
< − S

>
< ΣA − SR Σ

>
<

)

ij
,(168)

with SC = S> + S<.

APPENDIX C:

The renormalization functions and the spectral densities of partons

In the following I explain in more detail the steps that lead from the determining

equation for the retarded self-energies Π̂ and Σ̂, eqs. (99), (100), to the solution for the

renormalization functions ∆g, ∆q, eqs. (104), and finally to the evolution equations for the

phase-space densities Fg, Fq, (110). I exemplify the procedure for the simpler case of the

quark self-energy. The case of the gluon self-energy is more eleborate, but conceptually

it is completly analogous. I confine myself here to the leading log approximation (LLA),

referring to Refs. [26, 27] for additional reading.

The quantity of interest is hence the quark self-energy Σij = δijp
2Σ̂, eq. (86), given by

(95). As explained in Sec. 2.1, when studying short-distance dynamics around the lightcone,

it is appropriate and most convenient to work in the planar axial gauge n ·A = 0, eqs. (2),

(3) with the constant vector nµ satisfying n2 ≪ 1. Parametrizing it as nµ = (a+b, 0, 0, a−b)
then requires n2 = 4ab ≪ 1. Without loss of generality, one may set b = 1 and a ≪ 1/4,

so that the scalar product of n with some four-vector q is n · q = q+ + aq− ≃ q+ with

q± = q0 ± q3, q
+q− = q2 − q2⊥ ≃ q2 ≪ q+ 2. Let me then proceed with eq. (100) for

the variation of scalar quark self-energy function Σ̂(r, p) of a quark with momentum p and
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virtuality p2 ≪ p+ 2, within a given space-time cell of volume Ω(r) = ∆r0∆3r = µ−4(r)

around r (c.f. Sec. 3.1):

p2 ∂

∂p2
Σ̂R(A)(r, p) = − g2

s CF (2πi)

∫
d4p′

(2π)4i

∫ r0+1/(2µ)

r0−1/(2µ)
dτ T (p′τ) (169)

× ∂∆q(r, p
′)

∂p′ 2
∂

∂k′′ 2

(
V 2
qqg(r; p

2, p′2, k′′2, κp, κp′ , κk′′)∆g(r, k
′′)

)
× Uqgq (p′, k′′, n)

with

κp =
n · p
n2

= p+ 2 +
1

2
(p2 − p2

⊥) ≃ p+ 2 (170)

and

Uqgq (p′, k′′, n) = −2
(p′ · k′′)(γ · n) + (p′ · n)(γ · k′′)

n · k′′ + O(n2) . (171)

Here, p is the four-momentum of the incoming quark which branches into p′ and k′′ of the

outgoing quark and gluon, respectively. Because n2 ≪ 1, the terms O(n2) are negligible

and will be omitted in the following.

The time integral
∫
dτ in (169) over the finite time slice µ−1 ≡ µ−1(r) of the space-time

cell around r, is weighted by the function T , satisfying

∫ ∞

0
dτ T (p′τ) = 1 , (172)

e.g. T = p′ exp(−p′τ), and the relation between momentum and space-time is determined

by the uncertainty constraint, which limits the range of virtualities p
′ 2 such that within

the finite time slice ∆r0 = µ−1 only those fluctuations k ↔ k′ + k′′ are resolvable that are

sufficiently short-living, with proper life-time τ0 ≃ 1/k′ and γτ0 ≃ k+/k′ 2 < ∆r0. (for

details see Ref. [36])

τ(p) = γ τ0(p) =
p+

p′ 2
<

1

µ(r)
, (173)

where τ0 ≃ 1/p′ is the proper life-time of the virtual parton, to be understood in the

averaged sense.

To perform the integral (169), the procedure is as follows. First, due to the kinematic

ordering condition p2 ≫ p
′ 2, k

′′ 2 in the LLA, the gluon momentum k′′ can be decomposed

as

k′′ = (1 − z) p −
(

1

2
− z

)
n

n · p p
2 + k′′⊥ + O(n2)

z =
p
′ +

p+
, k′′⊥ · p = k′′⊥ · n = 0 . (174)

Then one can rewrite (171) in the form

Uqgq (p′, k′′, n) = 2z (γ · p) + (1 − z + 2z2)
(γ · n)

(n · k′′) p
2 . (175)
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Next, one rewrites the the integration measure in (169) as

d4p′ =
π

2
dp

′ 2dk
′′ 2 dz θ

(

p2 − p
′ 2

z
− k

′′ 2

1 − z

)

, (176)

where the θ-function accounts for the aforementioned ordering of virtualities and acts as a

kinematic constraint that limits the integration range, such that

k
′′ 2 ≤ (1 − z)

(

p2 − p
′ 2

z

)

. (177)

Finally, to simplify the analysis, I approximate the τ integral by [36]

∫ r0+1/(2µ)

r0−1/(2µ)
dτ T (p′τ) ≈ θ

(
1

µ(r)
− p+

p′ 2

)

= θ

(
zp2

p+
r0 − µ(r)

)

, (178)

where µ(r) is characterizes the size of the space-time intervall of the localized quantum

fluctuations (c.f. Sec. 3.1, eq. (48). Using the above formulae, the integration over k
′′ 2

now gives

p2 ∂

∂p2
Σ̂R(A)(r, p) =

g2
s Cf
16π2

∫
dz

∫ zp2 ∫
d4p

′ 2

[

2z (γ · p) + (1 − z + 2z2)

(
p2 (γ · n)

(n · k′′)

)]

× V 2
qqg

(

r; p2, p′2, (1 − z)

(

p2 − p
′ 2

z

)

; p+ 2, zp+ 2, (1 − z)p+ 2

)

× ∆g

(

r; (1 − z)

(

p2 − p
′ 2

z

))
∂∆q(r, p

′)

∂p
′ 2

θ

(
zp2

p+
r0 − 1

)

.

Next one integrates over p
′ 2, which yields for the last two factors in (177) an ‘effective

vertex function’ under the remaining z-integral

V 2
eff ≡ g2

s

4π
V 2
qqg

(
r; p2, zp2, (1 − z)p2; p+ 2, zp+ 2, (1 − z)p+ 2

)
∆q(r; zp

2) ∆g(r; (1 − z)p2) ,

(179)

which in the LLA has been shown [26, 27] to generate the running of the coupling αs =

g2
s/(4π), in the present case however modified by the finite time slize effect,

V 2
eff = ∆−1

q (r; p2) αs
(
(1 − z)p2

)
θ

(
zp2

p+
r0 − 1

)

. (180)

Employing this identification, inserting the decomposition

Σ̂R(A)(r, p) = Σ̂1 (γ · p) + Σ̂2
p2(γ · n)

n · p , (181)

into (179), and solving for ∆q and ∆̃ in the parametrization of the self-energy (92)

∆q(r, p) =
1

1 + Σ̂1 + Σ̂2

∆̃q(r, p) = ∆q(r; p
2)

Σ̂2

1 + Σ̂1

(182)
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one finds the form of the quark renormalization function as stated in Sec. 3.5:

∆q(r, p
2, p+ 2) = exp

{

−
∫ p+2

p2

dp
′ 2

p′ 2

∫ 1

0
dz A(r, z, p

′ 2) γqgq (z, ǫ)

}

, (183)

where 10

A(r, p2, z) ≃ αs
(
(1 − z)p2

)

2π
θ

(
zp2

p+
− µ(r)

)

(184)

and

γqgq (z, ǫ) = CF

(
1 + z2

1 − z + ǫ(p+2)

)

, (185)

with

ǫ(p+2) =
p2n2

4(p · n)2
=

p2

p+2
≪ 1 . (186)

By repeating the same analysis for the gluon case one obtains

∆g(r, k
2, k+ 2) = exp

{

−
∫ k+ 2

k2

dk
′ 2

k′ 2

∫ 1

0
dz A(r, z, k

′ 2)

(
1

2
γggg (z, ǫ) + γqqg (z, ǫ)

)}

(187)

where

γggg (z, ǫ) = 2CA

(
z

1 − z + ǫ(k+ 2)
+

1 − z

z
+ z(1 − z)

)
, γqqg (z, ǫ) =

1

2

(
z2 + (1 − z)2

)
.

(188)

The renormalization functions ∆f (f = g, q) determine the form of the gluon and quark

structure functions Pf ′

f (r, p) defined in Sec. 3.1, eq. (59), as the spectral densities of the

parton phase-space-distributions Ff (r, p):

Pf ′

f (r;x, p2) = δf
′

f δ(1 − x) δ
(
p2 − µ2

gq

)
∆f (r;µ

2
gq, p

+2)

+ ∆f (r, µ
2
gq, p

+ 2)
∑

f ′′

∫ p2

µ2
gq

dp
′ 2

p′ 2

∫ 1

0
dz

{
A(r, p2, z) γf

′′f ′

f (z, ǫ) Pf ′

f ′′

(
x

z
, p

′ 2; p
′ +2

)

× ∆−1
f

(

r,
p
′ 2

z
, p

′ + 2

)}

. (189)

Because Ff = Nf ⊗ Pf , eq. (56), the variation of Ff (r, p) with the parton momentum

p (more precisely, with virtuality p2) therefore reflects the parton’s changing gluon-quark

substructure as dictated by the renormalization functions ∆g(q), also called the Sudakov

formfactor of a gluon (quark). This connection between ∆f and Ff emerges as follows.

Treating gluons and quarks on the same footing, the differentiation of ∆−1
f with respect to

p2, the incoming partons’s virtuality, yields

p2 ∂

∂p2
∆−1
f (r; p2, p+ 2) = −∆−1

f (r; p2, p+ 2)
∑

f ′′

∫
dz A(r; p2, z) γf

′f ′′

f (z, ǫ) , (190)

10A detailed derivation of the effective coupling function A(r, p2, z) can be found in Ref. [36].
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where the sum over f ′′ = g, q automatically fixes f ′ due to the symmetry properties of the

kernels γf
′f ′′

f under interchange of f ′ and f ′′ [26]. On account of the momentum sum rule

(82) for the parton structure functions P(r, p) = P(r;x, p2), i.e. the momenta p+ = xP+(r)

of all partons in a given cell around r add up to the total cell momentum P+(r), one has

1 =
∑

ff ′

∫
dx x Pf ′

f (r;x, p2) , (191)

and hence
∑

ff ′

∫
dx x p2 ∂

∂p2
Pf ′

f (r;x, p2) = 0 , (192)

and therefore can rewrite (185) in the following form:

[
p2 ∂

∂p2
∆−1
f (r; p2, p+ 2)

]
Pf ′

f (r;x, p2) + ∆−1
f (r; p2, p+ 2)

[
p2 ∂

∂p2
Pf ′

f (r;x, p2)

]

= −∆−1
f (r; p2, p+ 2)

∑

f ′′

∫
dz A(r; p2, z) γf

′f ′′

f (z, ǫ)
1

z
Pf ′

f ′′

(
r;
x

z
, zp2

)
.(193)

Employing eq. (190), then yields

∆−1
f (r; p2, p+ 2) p2 ∂

∂p2
Pf ′

f

(
r;x, p2

)
= (194)

∆−1
q (r; p2, p+ 2)

∑

f ′′

∫
dz A(r; p2, z) γf

′f ′′

f (z, ǫ)

{
Pf ′

f

(
r;x, p2

)
− 1

z
Pf ′

f ′′

(
r;
x

z
, zp2

)}
.

The final evolution equation for the parton phase-space densities Ff (r, p) is obtained by

(i) multiplying with ∆f , (ii) convoluting the resulting equation according to eq. (56) with

the local parton density Nf (r, p), i.e. the number of dressed partons in a given cell around

r, and, (iii) accounting for the competition between real emission and reverse absorption

processes [37], using the fact that the squared matrix-elements ∝ γbca are invariant under

reversal a→ bc and bc→ a. The extended result is:

k2 ∂

∂k2
Fg
(
r;x, k2

)
=

∫ 1

0
dz A(r; k2, z)

{ [
1

z
Fg

(
r;
x

z
, zk2

)
− 1

2
Fg
(
r;x, k2

)]
Γggg (z, ǫ)

+ 2Nf Fq
(
r;x, k2

)
Γgqq (z, ǫ) − Nf Fg

(
r;x, k2

)
Γqqg (z, ǫ)

}

p2 ∂

∂p2
Fq
(
r;x, p2

)
=

∫ 1

0
dz A(r; p2, z)

{ [
1

z
Fq

(
r;
x

z
, zp2

)
− Fq

(
r;x, p2

)]
Γqgq (z, ǫ)

+ Fg
(
r;x, p2

)
Γqqg (z, ǫ)

}
, (195)

where

Γf
′f ′′

f = γf
′f ′′

f

(

1 − Ff ′

Ff ′ ± 1

)

(196)
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represents the net emission probability, being a manifestation of the principle of detailed

balance between the rate of emission of parton f ′ from a parton f , and the rate of absorption

of a quantum f ′ in the phase-space proximity of parton f . The net rate Γf
′f ′′

f results in a

suppression when Fg or Fq becomes large, and thus reflect correctly the Bose-Einstein and

Fermi-Dirac statistics (+ for gluons, − for quarks). On the other hand, when Fg and Fq

are small compared to 1, the usual branching kernels γf
′f ′′

f are recovered.

APPENDIX D:

Derivation of drift term and collison kernel of the transport equations

This Appendix explains the derivation of the transport equations (110), (122) that

govern the kinetic, dispersive dynamics of dressed gluons and quarks. First of all, one

observes that from the matrix representation of the CTP Dyson-Schwinger equations (37),

(38) in terms of the Green functionsGF , GF , G>, G< and self-energies EF , EF , E>, E<, where

G ≡ Dµν , S and E = Πµν ,Σ, follow immediately the corresponding equations for the

retarded, advanced, and correlation functions GR, GA, GC and ER, EA, EC , as given by

(89):

(
D−1
R(A)

)µν
(r, k) =

(
D−1

(0)R(A)

)µν
−
(
ΠR(A)

)µν

S−1
R(A)(r, p) = S−1

(0)R(A) − ΣR(A) (197)

and

Dµν
C (r, k) = −Dµµ′

R

[ (
D−1

(0)C

)µ′ν′
− (ΠC)µ

′ν′
]
Dν′ν
A

SC(r, p) = −SR

[
S−1

(0)C − ΣC

]
SA (198)

for the quarks. It is convenient to introduce scalar and dimensionless self-energy functions

Π̂ and Σ̂ through

Πµν
ab (r, k) = δab

(
kµkν − gµν k2

)
Π̂(r, k) Σij(r, p) = δij p

2 Σ̂(r, p) , (199)

so that the propagators can be written as

D
µν R (A)
ab (r, k) = δab (−dµν(k))

1

π0 ± i π1
S
R (A)
ij (r, p) = δij (γ · p) 1

σ0 ± σ1
, (200)

and the correlation functions as

Dµν C
ab (r, k) = δab (−dµν(k))

−2i π2

π2
0 + π2

1

[1 + Fg] SCij (r, p) = δij (γ · p) −2iσ2

σ0 ± σ1
[1 − Fq] ,

(201)
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where dµν(k) is defined in (8), and Fg and Fq are the phase-space densities of dressed glu-

ons and quarks as defined by (56). This separation of real and imaginary contributions

uniquely determines the Green functions in terms of the three functions πi, respectively σi,

as can be shown rigorously [6]. The real parts correspond to the dispersive and wavefunc-

tion renormalization piece, whereas the imaginary parts give rise to dissipation and decay.

Formally,

π0 = k2 (1 − ReΠ̂) ReΠ̂ =
1

2

(
Π̂R + Π̂A

)

π1 = −k2 ImΠ̂ ImΠ̂ =
i

2

(
Π̂R − Π̂A

)
(202)

σ0 = p2 (1 − ReΣ̂) ReΣ̂ =
1

2

(
Σ̂R + Σ̂A

)

σ1 = −p2 ImΣ̂ ImΣ̂ =
i

2

(
Σ̂R − Σ̂A

)
, (203)

and

π2 =
i

2

(
Π̂< + Π̂>

)
σ2 =

i

2

(
Σ̂< + Σ̂>

)
. (204)

Next, recalling that the correlations among different dressed partons determine their mutual

interactions at kinetic space-time scales, one focuses on the correlation functions DC
µν and

SC . Noting that DA
µν = DR †

µν , SA = SR †, and employing the representations (88),

DC
µν(r, k) = −2πi (−dµν(k)) [1 + 2Fg(r, k)] δ

(
k2 − M2

g(r, k)
)

SC(r, p) = −2πi (γ · p) [1 − 2Fq(r, p)] δ
(
p2 − M2

q(r, p)
)
, (205)

where color indices are suppressed, eqs. (200)-(204) may be combined to write

− dµν(k) DC
µν(r, k) = (π0 + i π1)

−1 Hg − Hg (π0 − i π1)
−1 = − 2i

π2

π2
0 + π2

1

γ · p SC(r, p) = (σ0 + i σ1)
−1 Hq − Hq (σ0 − i σ1)

−1 = − 2i
σ2

σ2
0 + σ2

1

,(206)

where (c.f eq. (85))

Hg(r, k) = 1 + 2Fg(r, k) Hq(r, p) = 1 − 2Fq(r, p) . (207)

Hence, on account of (197) and (198) one finds

− dµν(k)
(
DC −1

(0) − ΠC
)

µν
= − (Hg π0 − π0 Hg) + i (Hg π1 + π1 Hg)

γ · p
(
SC −1

(0) − ΣC
)

= − (Hq σ0 − σ0 Hq) + i (Hq σ1 + σ1 Hq) . (208)

Then, by inserting the expressions (203), (204) for πi and σi, one obtains

Fg π0 − π0 Fg =
1

2

(
(1 + Fg) Π̂< + Π̂< (1 + Fg) − Fg Π̂> − Π̂> Fg

)
≡ Cg

Fq σ0 − σ0 Fq = −1

2

(
(1 − Fq) Σ̂< + Σ̂< (1 − Fq) + Fq Σ̂> + Σ̂> Fq

)
≡ Cq , (209)
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with the self-energies Π̂
>
< and Σ̂

>
< given by (116) and (117) together with (199). Finally, as

argued in Sec. 3.5, the presumed clear separation of quantum and kinetic space-time scales

allows one to treat the kinetic dynamics quasi-classically, by expanding both sides of (209)

in terms of h̄ and keeping only the lowest order contributions. The lowest order non-zero

terms on the right hand sides of (209) correspond then to the Born collision terms which

are of order h̄,

Cg(r, k) = (1 + Fg) Π̂< − Fg Π̂> + O(h̄3)

Cq(r, p) = − (1 − Fq) Σ̂< + Fq Σ̂> + O(h̄3) , (210)

whereas the lowest order non-zero terms on the left hand sides of (209) result in the classical

Poisson brackets which are also of order h̄,
(
Fg π0 − π0 Fg

)
(r, k) = −i

(
(∂rFg) · (∂kπ0) − (∂kFg) · (∂rπ0)

)

= −i
(
∂π0(r, k)

∂k2

)

k2=µ2
gq

(
k · ∂rFg(r, k) − 1

2
∂rk

2
0 · ∂kFg(r, k)

)
+ O(h̄3)

(
Fq σ0 − σ0 Fq

)
(r, p) = −i

(
(∂rFq) · (∂pσ0) − (∂pFq) · (∂rσ0)

)
(211)

= −i
(
∂σ0(r, p)

∂p2

)

p2=µ2
gq

(
p · ∂rFq(r, p) − 1

2
∂rp

2
0 · ∂pFq(r, p)

)
+ O(h̄3) ,

where as before ∂r = ∂/∂rµ, ∂k = ∂/∂kµ, etc., and the dot denotes a scalar product

of four-vectors. The latter equalities in these two equations are obtained by using the

fact that the solutions of the dressed partons’ energy spectra (119) are strongly peaked

around momentum transfers q2⊥ ≃ µ2
gq, i.e. k0(r,~k) ≃

√
~k 2 + µ2

gq and p0(r, ~p) ≃
√
~p 2 + µ2

gq,

because of the well known QCD specific logarithmic behaviour of the spectral densities

∝ αs ln(q2⊥/µ
2
gq), and the power law form of the scattering cross-sections ∝ α2

sq
−n
⊥ (n ≃ 4).

Finally, using ∂rk0 = ∂rp0 ≈ 0, and equating (209) and (211), one obtains the transport

equations of Boltzmann type, stated in Sec. 3.5, eqs. (115),

k · ∂r Fg(r, k) = Ig(r, k) p · ∂r Fq(r, p) = Iq(r, p) , (212)

where the Lorentz invariant collision terms I on the right hand side are defined by

Cg(r, k) = −i
(
∂π0(r, k)

∂k2

)

k2=µ2
gq

Ig(r, k)

Cq(r, p) = −i
(
∂σ0(r, p)

∂p2

)

p2=µ2
gq

Iq(r, p) . (213)

In (211) and (213), the derivatives with respect to the virtuality k2 are to be taken at µ2
gq,

which, according to (54) and (94), defines the scale at which a dressed parton appears as
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a quasi-particle, with the renormalization and dissipation effects taken into account in the

spectral densities Pg and Pq, eq. (109). Their form is determined by the renormalization

equations (110), and therefore the parton distributions F = N ⊗P contain implicitely the

short-distance quantum effects. The derivatives of π0 and σ0 are related to the renormal-

ization functions ∆g and ∆q, respectively, via the correspondence of the representations

(200) and (92), and one finds

− i

(
∂π0(r, k)

∂k2

)

k2=µ2
gq

= ∆−1
g (r, k2, k+ 2) |k2=µ2

gq
= 1

−i
(
∂σ0(r, p)

∂p2

)

p2=µ2
gq

= ∆−1
q (r, p2, p+ 2) |p2=µ2

gq
= 1 , (214)

where the latter equality results from the normalization condition (94).

The explicit forms of the collision integrals I is obtained by substituting the correlation

functions (205) into the two-loop expressions (116), (117) for the self-energies Π̂, Σ̂, and then

inserting those into eqs. (209). Applying the standard cutting rules [41] to the resulting

self-energies, as symbolically represented in Fig. 11, yields the different binary collision

processes ab ↔ cd by which a parton of type a may be gained or lost in a phase-space

element, namely gg ↔ gg, gg ↔ qq̄, gq ↔ gq, qq ↔ qq, qq̄ ↔ qq̄. The corresponding

collision integrals Ia may be compactly represented in the generic form of (125):

Ia(r, p1) ≡
∑

bcd

(
− I(loss)

cd→ab(p1, r) + I(gain)
ab→cd(p1, r)

)

= −
∑

bcd

Cab Ccd

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4
(2π)4 δ4(p1 + p2 − p3 − p4)

×
{
Fa(1)Fb(2) |M(ab→ cd)|2 θ(q2⊥ − µ2

gq) [1 ± Fc(3)] [1 ± Fd(4)]

− [1 ± Fa(1)] [1 ± Fb(2)] |M(cd→ ab)|2 θ(q2⊥ − µ2
gq) Fc(3)Fd(4)

}
, (215)

where the Fα(i) ≡ Fα(pi, r) denote the distribution functions of parton species α = a, b, c, d

and corresponding four-momenta pi = p1, p2, p3, p4 at space-time point r = (r0, ~r). As a

consequence of the representations (205), the squared matrix elements |M|2 for the pro-

cesses ab ↔ cd (which contain the 2 → 2 kinematics, color and spin structure, as given

below) are weighted by a distribution function Fα for each of the particles coming into

the interaction vertex and a factor [1 ± Fα] for each of the outgoing ones, with the + sign

refering gluons and the − sign to quarks and antiquarks. The factors Sab = (1+ δab)
−1 and

Scd ≡ (1 + δcd)
−1 account for the cases where the two incoming and/or outgoing partons
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are identical. Using the identities 11,

dµν(k) =
∑

s=1,2

εµ(k, s) · ε∗ν(k, s)

γ · p = 2p0

∑

s=1,2

u(p, s)u(p, s) = 2p0

∑

s=1,2

v(p, s) v(p, s) , (216)

finally, the squared matrix elements are obtained by evaluating the amplitudes illustrated

in Fig. 11, squaring those, averaging over initial colors and spins, summing over final colors

and spins, and summing over quark flavors. The resulting expressions are standard and

given by:

|M(gagb → gcgd)|2 =

=
g4
s

(8 · 2)2
∑

color, spin

∣∣∣∣
gττ ′faedfebc
(p1 − p4)2

λρτσ(−p1, p1 − p4, p4) λ
τ ′µν(p2 − p3,−p2, p3)

+
gττ ′faecfebd
(p1 − p3)2

λρτν(−p1, p1 − p3, p3) λ
τ ′µσ(p2 − p4,−p2, p4) (217)

+
gττ ′fdbefecd
(p1 + p2)2

λρµτ (−p1,−p2, p1 + p2) λ
τ ′νσ(−p3 − p4, p3, p4)

+ vρµνσabcd (p1, p2,−p3,−p4)

∣∣∣∣
2

|M(gagb → q̄iqj)|2 =

=
g4
s

(8 · 2)

Nf∑

f

∑

color, spin

∣∣∣∣uj(p4)

(
T aikT

b
kjγ · ε(p2)

γ · (p1 − p3)

(p1 − p3)2
γ · ε(p1)

)
vi(p3)

+ uj(p4)

(
T bikT

a
kjγ · ε(p1)

γ · (p2 − p3)

(p2 − p3)2
γ · ε(p2)

)
vi(p3) (218)

+ uj(p4)

(
ifabcT cij

εµ(p1)ε
ν(p2)γ

ρ

(p1 + p2)2
λµνρ(−p1,−p2, p1 + p2)

)
vi(p3)

∣∣∣∣
2

|M(gaqi → gbqj)|2 =

=
g4
s

(8 · 2)(3 · 2)

Nf∑

f

∑

color, spin

∣∣∣∣f
cabT cij

εµ(p1)ε
ν(p3)

(p1 − p3)2
λρµν(p1 − p3,−p1, p3) uj(p4)γ

ρui(p2)

− iT bikT
a
kj uj(p4)γ · ε(p1)

γ · (p2 − p3)

(p2 − p3)2
γ · ε(p3)ui(p2) (219)

− iT ailT
b
lj uj(p4)γ · εµ(p3)

γ · (p2 + p1)

(p2 + p1)2
γ · ε(p1)ui(p2)

∣∣∣∣
2

|M(qiqk → qjql)|2 =

=
g4
s

(3 · 2)2
Nf∑

f1,f2

∑

color, spin

∣∣∣∣T
a
ijT

a
kl uj(p4)γµui(p1)

1

(p1 − p4)2
ul(p3)γ

µuk(p2)

11 Note that in contrast to the standard normalization for fermions ∝
√

m/p0, here the normalization is

chosen commonly for both gluons and quarks ∝ 1/(2p0).
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− δf1f2 T
b
ilT

b
kj uj(p4)γνuk(p2)

1

(p1 − p3)2
ul(p3)γνui(p1)

∣∣∣∣
2

(220)

|M(qiq̄k → qj q̄l)|2 =

=
g4
s

3 · 2 · 2

Nf∑

f1,f2

∑

color, spin

∣∣∣∣δf1f4δf2f3 T
a
ijT

a
lk uj(p4)γµui(p1)

1

(p1 − p4)2
vk(p2)γ

µvl(p3)

− δf1f2δf4f3 T
b
ikT

b
li uj(p4)γνvl(p3)

1

(p1 − p3)2
vk(p2)γνui(p1)

∣∣∣∣
2

(221)

|M(q̄iqj → gagb)|2 =
64

9
|M(gagb → q̄iqj|2 . (222)

Here

λµρν(p1, p2, p3) ≡ (p1 − p2)
νgµρ + (p2 − p3)

µgρν + (p3 − p1)
ρgµν

vµστνabcd (p1, p2, p3, p4) ≡ fabefcde (gρνgµσ − gρσgµν) + facefbde (gρµgνσ − gρσgµν)

+ fadefcde (gρνgµσ − gρµgσν) , (223)

are the usual 3-gluon vertex function, and the 4-gluon vertex, respectively. The shorthand

notation suppressing spinor and polarizarion indices, u(p1) ≡ u(p1, s1)α, ε(p2) ≡ ε(p2, s2),

etc., is employed, and in (220) and (221), δff ′ is equal to 1, if the flavor of the two quarks

are of the same flavor, and is zero otherwise.
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FIGURE CAPTIONS

Figure 1:

Illustration of the difference of expectation values in the in-out and the in-in formalism,

corresponding to the time-ordered product of field operators.

a) In the usual S-matrix formalism with a trivial (diagonal) density matrix ρ̂(t0) = 1̂

and |0in〉 = |0out〉, it suffices to calculate 〈0out| . . . |0in〉, because of the symmetry of the

time paths (t0, t∞) and (t∞, t0).

b) In the general case of a non-trivial initial state with multi-particle correlations de-

scribed by ρ̂(t0) 6= 1̂, one must account for the complete time evolution on a closed-time-path

from t0 to t∞ and back to t0 by calculating 〈0in| . . . ρ̂|0in〉.

Figure 2:

a) The close-time-path in the complex t-plane for the evolution of operator expectation

values in an arbitrary initial state. Any point on the forward, positive branch t0 → t∞ is

understood at an earlier instant than any point on the backward, negative branch t∞ → t0.

b) The four different possible time orderings (t1, t2) in the arguments of the 2-point

Green functions G(x, y) = G(t1, ~x; t2, ~y), corresponding to GF , G>, G<, GF .

Figure 3:

Matrix representation of the CTP 2-point functions: a) The Green function G(x, y),

and b) the self-energy function Σ̂(x, y) ∝ [G(x, y)]2.

Figure 4:

Diagrammatic representation of the Green functions (i) G(0)(x, y), the of the bare prop-

agators, (ii) G̃(0)(x, y), including the effect of a mean field by dressing the bare propagators

with a dynamical mass, and (iii) G(x, y), the full propagators, dressed by both local mean

field and non-local quantum self-interactions (Dyson-Schwinger equations).

Figure 5:

a) Diagram of the function Γ
(2)
P , eq. (34), representing the sum of all two-particle

irreducible graphs of order h̄2, h̄3, . . ., with fully dressed propagators Dµν and S.

b) Illustration of the self-energies Πµν and Σ, eqs. (40) and (41), which derive from

Γ
(2)
P by functional differentiation with respect to Dµν and S.

Figure 6:

a) Classification of the different scales of relevance: (i) the quantum scale ∆rqua, of

the order of the spatial extent of quantum fluctuations associated with the ‘radiative’ self-

energies, and defining a dressed parton state as a quasi-particle; (ii) the kinetic scale ∆rkin,
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measuring the range of correlations and binary interactions between these quasi-particles,

with the ‘collisional’ self-energies; and (iii) the ‘macroscopic’ scale ∆rmac, where the dy-

namics can be described in terms of bulk thermodynamic variables or hydrodynamics.

b) The quality of separation of quantum and kinetic scales is controlled by the choice

of µ(r). Because the the multi-particle dynamics of the system in general may change

the scale of separation in space-time, one may choose µ(r) variable to optimize the kinetic

description.

Figure 7:

a) Illustration of the cellular space-time picture, with cell size chosen intermediate

between quantum and kinetic scales such that the separation between the two scales is

optimal, so that short-distance quantum correlation between different cells are negligible.

b) Representation of the partons’ phase-space densities F = N ⊗ P as a convolution

of the statistical density of dressed partons N with the spectral density P of each dressed

parton, describing its intrinsic density of bare parton states as its quantum substructure.

Figure 8:

In the cellular space-time picture, the ‘absolute’ coordinate r labels the kinetic space-

time dependenceO(∆rkin), whereas the ‘relative’ coordinate smeasures the quantum space-

time distance O(∆rqua).

Figure 9:

The ‘radiative’ self-energies in one-loop approximation, eqs. (95): a) the retarded

(advanced) gluon self-energies Π
R(A)
µν , b) the retarded (advanced) quark self-energies ΣR(A).

Figure 10:

The ‘collisional’ self-energies in two-loop approximation, eqs. (116) and (117): a) the

contributions to the gluon correlation functions Π
>
<
µν , b) the contributions to the quark

correlation functions Σ
>
<.

Figure 11:

Cutting the ‘collisional’ two-loop self-energies, gives the different binary 2 → 2 collision

processes, namely a) the gluon terms gg ↔ gg, gq ↔ gq, gg ↔ qq̄, and b) the quark terms,

qg ↔ qg, qq̄ ↔ qq̄, qq ↔ qq.
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Figure 12:

Illustration of the ‘hard scattering picture’, for the evolution of a multi-parton system

on the basis of the coupled renormalization and transport equations:

a) A dressed parton is described as a quasi-particle with a dynamical substructure,

corresponding to an instantanous state consisting of a number of bare gluons and quarks

(its radiative cloud). These the underlying quantum fluctuations are embodied in the spec-

tral densities, or parton structure functions, which are determined by the renormalization

equations.

b) A binary collision between two dressed partons is described as a statistically occurring

‘hard scattering’, determined by the local density of dressed partons, and convoluted with

their spectral densities at the ‘hard scattering scale’ of the order of the momentum transfer.

This is described by the transport equations.
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