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Abstract

We discuss, in the context of N = 1 hidden sector supergravity models, constraints on the

parameters of a polynomial superpotential resulting from existing bounds on the reheating

temperature and on the amplitude of the primordial energy density fluctuations as inferred

from COBE. We present a specific two-parameter chaotic inflationary model which satisfies

these constraints and discuss a possible scenario for adequate baryon asymmetry generation.
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Recently, a great deal of attention has been devoted to possible implementations of

the inflationary scenario in supergravity/superstring models. Besides ensuring that there is

sufficient inflation to solve the initial condition problems of the standard cosmological model,

these models have to explain observational limits such as the magnitude of the energy density

perturbations required to explain the anisotropies in the Cosmic Microwave Background

radiation observed by COBE [1]. Furthermore, in supergravity cosmological models, the

reheating temperature should not exceed TRH <∼ 2.5× 108(100 GeV/m3/2) GeV [2], not to

generate an abundance of gravitinos which would photo-dissociate light elements produced

in primordial nucleosynthesis. In the context of superstring cosmology, inflationary models

have to face further problems such as the fate of the dilaton and moduli fields and the so-

called post-modern Polonyi problem [3]. Although many of these issues can be addressed

in a simple chaotic model where the dilaton plays the role of the inflaton and its potential

is dominated by quadratic and/or quartic self-couplings [4], this is not the case for the

dilaton potentials generated by the supersymmetry-breaking mechanisms currently preferred

in superstring-based models, i.e. gaugino condensation; moreover, these potentials appear

not to be sufficiently flat to allow inflation to occur [5].

In this letter, we study constraints on N = 1 supergravity chaotic inflationary mod-

els arising from the superstring, resulting from the abovementioned cosmological bounds.

Chaotic inflationary models [6] stand out as the most natural ones in what the initial condi-

tions for the onset of inflation are concerned, particularly in the context of supergravity and

superstring theories, where the natural scale for fields is the Planck scale. Realizations of

chaotic inflation in minimal and in SU(1, 1) N = 1 supergravity theories have been studied

in [7]. We discuss a specific model, with a two-scale chaotic inflationary sector, which could

originate from the existence of two gaugino condensation and/or gauge symmetry breaking

scales, that can accommodate in a satisfactory way the bounds on the reheating temperature

and energy density fluctuations. It follows from our analysis that, as first pointed out in Ref.

[8], a chaotic inflationary model requires more than one scale to reproduce the abovemen-

tioned constraints; this is essentially due to the fact that in chaotic models the slow roll-over

period occurs around the Planck scale and not, as in Refs. [8, 9], some orders of magnitude

below.

We shall assume that the inflaton is the scalar component of a gauge singlet super-

field, Φ, in the hidden sector of the theory. We start by splitting the superpotential in a

1



supersymmetry-breaking, a gauge and an inflationary part, as suggested in [8, 9]:

W = P +G + I. (1)

The scalar potential for the inflaton field is obtained from the superpotential I(Φ) as

V (φ) = exp(−|φ|2/M2) (|∂I/∂Φ +M−2Φ∗I |2 − 3M−2|I |2)
∣∣∣
Φ=φ

. (2)

with M = MP/
√

8π, where MP is the Planck mass. Requiring the cosmological constant to

vanish and that supersymmetry remains unbroken at the minimum of the potential, Φ = Φo,

leads to the following constraints on the superpotential:

I(Φo) =
∂I

∂Φ
(Φo) = 0. (3)

Consider the most general polynomial superpotential

I(Φ) =
∑
n=0

an

Mn−2
Φn, (4)

where the an are mass parameters. Dropping the linear and the non-renormalizable terms

(n > 3) in (4), the latter leading to too large tensor perturbations of the microwave back-

ground [10], we are left with

I(Φ) = Io + a Φ2 +
b

M
Φ3 , (5)

where Io is a constant and a and b are positive. The conditions (3), applied to the superpo-

tential of Eq. (5), give two solutions for φo, Io:

(φo, Io) = (0, 0); (6)

= (−2aM/3b, −4a3M2/27b2). (7)

We shall first consider the case φo = Io = 0. The inflaton potential (along the real φ

direction) is then given by

V (φ) = M2 exp (−φ2/M2)

4 a2

(
φ

M

)2

+ 12 a b

(
φ

M

)3

+ (a2 + 9 b2)

(
φ

M

)4

+ 4 a b

(
φ

M

)5

+ (a2 + 3 b2)

(
φ

M

)6

+ 2 a b

(
φ

M

)7

+ b2

(
φ

M

)8
 . (8)
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In the chaotic inflationary scenario, the scalar field starts rolling towards its minimum

at the origin from an initially large value beyond the Planck scale. During this process, the

domains of the Universe filled with a sufficiently homogeneous φ field expand according to

the Friedmann equation

H2 =
1

3M2

(
1

2
φ̇2 + V

)
, (9)

and the φ field evolves according to

φ̈+ 3Hφ̇ +
dV

dφ
= 0. (10)

In the region |φ| > few M , the field rolls down very slowly and the terms φ̇2 in (9) and

φ̈ in (10) can be neglected. In this region, the potential V (φ) can be approximated by

V (φ) ≈
b2

M6
φ8 exp (−φ2/M2). (11)

The total number of e-folds of inflation is given by

N ≡ ln
a(φe)

a(φi)
= −

1

M2

∫ φe

φi

V

V ′
dφ ≈

π

2M2
P

(
φ2
i − φ

2
e

)
. (12)

Hence, it is required that φi>∼6.4MP , for φe ≈MP , to get N>∼ 65.

After inflation, the field φ begins to oscillate about its minimum, thus reheating the

Universe. At minimum, the inflaton field has a mass

mφ = 2
√

2 a. (13)

Since the inflaton is hidden from the other sectors of the theory, it couples to lighter

fields with strength ∼ a/M , leading to a decay width

Γφ ∼
mφ

(2π)3

(
a

M

)3

, (14)

and a reheating temperature

TRH ≈

(
30

π2gRH

)1/4√
MΓ ∼

2

π2

(√
15

gRH

a3

M

)1/2

, (15)

where gRH is the number of degrees of freedom at TRH. Notice that, as Γφ << mφ, parametric

resonance effects [11] are not important in this case.
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As mentioned above, a severe upper bound on TRH comes from the requirement that

sufficiently few gravitinos are regenerated in the post-inflationary reheating epoch. Indeed,

once regenerated beyond a certain density, stable thermal gravitinos would dominate the

energy density of the Universe or, if they decay, have undesirable effects on nucleosynthesis

and light element photo-dissociation and lead to distortions in the microwave background.

This implies the following bounds3 [2, 14]:

TRH <∼ 2× 109, 6× 109 GeV for m3/2 = 1, 10 TeV. (16)

For our model, demanding that TRH be less than 2× 109 GeV then leads, for gRH ≈ 150,

to a bound on parameter a as

a

M
<∼ 3.7× 10−6. (17)

Further constraints on the parameters of the superpotential can be derived from the

spectrum of adiabatic density fluctuations, which is given, in terms of the potential, by [15]:

δH ≡

(
δρ

ρ

)
H

=
1

5
√

3πM3

V
3/2
?

V ′?
, (18)

where the subscript ? indicates that the right-hand side should be evaluated as the comoving

scale k equals the Hubble radius (k = aH) during inflation. For a sufficiently flat spectrum

and no significant generation of long wavelength gravitational waves, the central value of the

10◦ anisotropy observed by COBE is reproduced, provided [1]

δH ≈ 2.3× 10−5. (19)

Combining (18) and (19), we obtain for our model

δH ≈
1

5
√

3e π M

(6 a2 + 18 a b+ 13 b2)3/2

(3 a2 + 17 a b+ 18 b2)
, (20)

which, using the constraint on a derived above, Eq. (17), implies, in turn, a bound on

parameter b

b

M
<∼ 7.8× 10−4. (21)

3Fischler [12] suggested that heat-bath effects might greatly enhance the gravitino regeneration rate at

high temperature and thereby lower the bound on TRH , a claim that has since been questioned [13].
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For the other solution of Eq. (3), i.e. φo = −2aM/3b, Io = −4a3/27b2, we obtain the

same bounds on a and b, as expected.

Of course, our results would be modified if, instead of (16), there were stricter bounds

on the reheating temperature [12]. For instance, for TRH <∼ 106 GeV, we obtain:

a

M
<∼ 2.3× 10−8 ,

b

M
<∼ 7.8× 10−4. (22)

A realistic scenario for baryogenesis can be built considering the decay of the inflaton into

the matter field states in the gauge sector of the superpotential (1). As the coupling between

the inflaton and these states is only gravitational, the former will decay into the heaviest

states available [9], which will then generate the baryon asymmetry through decays into

quarks and leptons. The baryon-antibaryon number density will then be given essentially in

terms of the asymmetry following from inflaton decay:

nB−B̄ ≈ nφ δB , (23)

where δB is the baryon asymmetry generated per decay. The photon number density can

be given as a function of the inflaton density and the reheating temperature

nγ ≈
ρφ

TRH
≈

nφmφ

TRH
, (24)

so that, from (13), (16) and (17), the asymmetry can be expressed as

ξ ≡
nB−B̄
nγ

≈
TRH

mφ

δB ∼ 10−4 δB , (25)

which allows us to obtain the observed value, ξ ∼ 10−10, provided δB has a suitable value.

Although we shall not try to specify here how, in a concrete particle physics model, the

required value for δB could be produced radiatively, we stress that the asymmetry can be

created even though the reheating temperature is as low as or lower than the bound (16). We

also point out that, in models such as the ones discussed in Ref. [4] (see also [16]), the inflaton

(the dilaton, in that instance) is directly coupled to a GUT Higgs field and the mechanism

discussed above can be easily implemented. This GUT Higgs field can be endowed with a

suitable potential that may allow a subsequent period of inflation.

Of course, other scenarios could be envisaged to generate the baryon asymmetry, which

can be completely or fairly independent of inflaton decay, depending on whether or not
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this decay dilutes the generated baryon asymmetry (see e.g. the second reference in [4]).

An example is the Affleck-Dine mechanism [17], recently implemented in the context of

supergravity string-inspired models [18]. The main feature invoked in these models is that,

during inflation, supersymmetry-breaking soft terms, with mass terms of the order of the

Hubble parameter, are naturally induced [19]. Since the cosmology of string theories has

problems associated with the fate of the moduli fields, an additional period of late inflation

seems to be a rather natural way to avoid the problems associated with the presence of these

fields [20]. The possibility that this late period of inflation is related with baryon asymmetry

generation itself is certainly very appealing. In the context of our model, an Affleck-Dine

baryogenesis scenario like the one in [18] can also be constructed. Non-renormalizable terms,

together with soft supersymmetry-breaking terms arising from a second period of GUT

inflation, give rise, along some direction in the space of scalar fields that carry baryon and

lepton number (χ), such as squarks and sleptons, to the potential [18, 19]:

V (χ) ≈ c H2|χ|2 + a λ
H|χ|n

nMn−3
+ λ2 |χ|

2n−2

M2n−6
, (26)

where a and c are O(1) constants – “a terms” are important for B and L violation – and λ is

a coupling constant. This potential admits a non-trivial minimum |χ0| ≈
(
−c
n−1

)1/2
H
λ
Mn−3 ,

for c < 0. After the second period of inflation, when H ≈ m3/2, the field oscillates around χ0

and a baryon asymmetry such as (25) is generated, with δB given essentially by (χ0/MP )2

[18].

Finally, we comment on possible origins for the (two) scales of our model. Let us first

consider the possibility that these scales are induced by gauge symmetry breaking. In fact,

as suggested in Ref. [8], once gauge non-singlet fields, Ψ, acquire a v.e.v. along a D-flat

direction, thereby breaking the gauge symmetry, a v.e.v. for the massive gauge singlet fields

coupled to them will be induced; these v.e.v.’s then feed through to the inflationary sector

via couplings between the latter fields and the inflaton, leading to a superpotential of the

form [8]

I(Φ) = a M2 f

(
Φ

M

)
, (27)

where a = 〈Ψ〉2〈Ψ̄〉2/M3 and f(x) is a polynomial function. For 〈Ψ〉 ∼ 1016 GeV, we

obtain a ∼ 1010 GeV. Of course, for our model, at least two operators coupling Ψ and Φ

fields would be required, whose form is determined by e.g. discrete symmetries, which arise
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naturally in the context of string-inspired phenomenological models as a consequence of

the symmetries of the compactification manifold [21]. In fact, one hopes that these and/or

other symmetries present in the fundamental theory may also explain the absence of higher-

order non-renormalisable terms, which are not small in chaotic inflationary models, where

Φ ≥MP . Other possibilities for the origin of these scales is that there are two stages of gauge

symmetry breaking or that they arise from the supersymmetry-breaking sector, through the

gaugino condensation of two distinct subgroups of the hidden group E8.

Let us now summarize our results. We have shown that, in order to satisfy COBE data

and to keep the reheating temperature sufficiently low not to regenerate an excessive abun-

dance of gravitinos, chaotic inflationary models require at least two independent scales in the

superpotential. These scales, which can be related with the scales of gaugino condensation

and/or gauge symmetry breaking, are significantly below the Planck scale. We have also

analysed how inflaton decay can potentially explain the observed baryon asymmetry of the

Universe.
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