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1. Introduction

Topological Field Theories (TFT’s) have been extensively studied during the past re-
cent years (see [1] and references therein). The topological sigma models first introduced
in [2] were motivated by the idea of the possibility of understanding gravity as a broken
phase of a topological theory. In particular, the string theory would be a broken phase
of a topological sigma model. This topological sigma model was obtained in [2] by the
so-called topological twisting of a N = 2 supersymmetric sigma model, where the internal
manifold was bidimensional (d = 2). This formalism requires the target manifold to be a
Kahler manifold (in order to have N = 2 supersymmetry). However, Witten showed that
the kahler condition could be relaxed to Hermitean target manifolds. In the present work
we introduce a technique to obtain topological sigma models different from that of twisting
a supersymmetric theory. This allow us to write topological actions in which the internal
manifold can have any dimension d = m and the target manifold can be any smooth man-
ifold (even a real manifold), what constitutes a considerable generalization. The condition
that we are going to impose from the begining is the localization of the correlators of the
theory on a certain moduli space M of instantons. Is for this reason that we have called
the theories so obtained Mathai-Quillen Topological Sigma Models (MQTSM). As we also
show, the topological sigma model of type A ([3,4]) and the topological quantum mechan-
ics ([5]) are particular cases of MQTSM. Mathai-Quillen [6] topological field theories has
been previously studied in [7] and [8]. Our approach is more field-theoretical and less
geometrical that the ones presented there.

In section two we introduce our definition of Mathai-Quillen Topological Sigma Mod-
els. In section three we will introduce a fermionic transformation ∇Q (closely related to
the transformation δQ associated to the topological charge Q present on any TFT) which
simplifies notably the study of the geometrical properties of the theory in the target space.
Important properties of ∇Q are discussed there. In section four we construct the most
general “basic” action of the MQTSM type and give the δQ-transformations of the fields.
We also comment there the topological character of the theory and discuss the observables
and correlators of MQ field theory (leading to intersection numbers on a moduli space of
instantons). In section five we apply our formulas to two known examples, the Topological
Quantum Mechanics ([5]) and the type-A Topological Sigma Models ([2,4]). Finally, in
section six we present our conclusions.

2. The Generalized Mathai-Quillen Topological Sigma Models.

In this section we will introduce the elements defining a Mathai-Quillen Topological
Sigma Model (MQTSM).

• First we introduce two smooth C∞ differentiable manifolds (one m-dimensional in-
ternal manifoldMI and one n-dimensional target manifoldMT ), together with a continuous
map X:

X : MI −→MT . (2.1)

Given an atlas ∪a(Ua, σ
µ
(a)) on MI and an atlas ∪A(UA, Xi

(A)) on MT , the functions Xi
A(σµa )

are C∞-functions in the σµ(a) coordinates (here Ua (UA) are the open subsets of a covering
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on MI (MT ) and σµ(a), µ : 1, ....,m (Xi
(A), i : 1, ....n) are a system of local coordinates on

Ua (UA)). From now on we will drop the covering indices a and A to simplify notation.
The functions Xi(σµ) (Xi : Um → Un, being Um and Un open subsets of Rm and Rn

respectively) give the coordinates of MI as immersed on MT . Further, we provide MI

and MT with Euclidean metrics gµν and Gij respectively. We will denote by Gij(X)
the restriction of the metric Gij to the submanifold Xi(MI) ⊂ MT . Under a change of
coordinates on MI (σ′µ = σ′

µ(σ)) the functions Xi(σ) behave as scalars:

X ′
i
(σ′) = Xi(σ) (2.2)

Under a change of coordinates in the target the functions Xi(σ) change as usual:

X ′
i
(σ) = X ′

i
(X(σ)) ∼ Xi(σ) + ξi(X(σ)) (2.3)

(where in the last step we have made the coordinate transformation infinitesimal).

• Our second important ingredient for MQTSM formalism (like in any other TFT
model) is the existence of a fermionic symmetry transformation δQ generated by a fermionic
operatorQ. By symmetry we mean that the action (S[Φ]), observables (O(Φ)) and measure
(DΦ) of the theory are invariant under Q:

δQ(S[Φ]) = δQ(DΦ) = δQ(O(Φ)) = 0 (2.4)

(here Φ denotes the field space of the theory). This fermionic operator is taken to be a
scalar on MI (this fixes the properties of Q under target changes of coordinates that will
be analyzed in the next section). Moreover, we take this operator to be nilpotent on the
field space Φ:

δ2
QΦ = 0 (2.5)

Finally, we demand the internal metric gµν(σ) to be invariant under Q:

δQgµν(σ) = 0 (2.6)

(in particular, this means that our model is not coupled to topological gravity).

• Our third request is that the action S[Φ] is taken to be Q-exact:

St[Φ] = tδQ(A[Φ]) ≡ tS[Φ] (2.7)

for some scalar functional A[Φ] (t is a c-number parameter). The previous equation has
an important consequence ([2]). The correlators of the theory are independent of the
parameter t:

< O1 . . .Op >t=

∫
[DΦ] O1(Φ) . . .O2(Φ)eiSt[Φ] (2.8)

−i
d

dt
< O1 . . .Op >t=< O1 . . .OpS[Φ] >t=< δQ(O1 . . .OpA[Φ]) >t= 0 (2.9)
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(in the last step we have used that Q is an exact symmetry of the quantum theory).
This observation is very important because allows us to compute correlators in the most
convenient value of t (typically one makes the limit t→∞ where the computation of the
path integral reduces to the semiclassical limit). We will make use of this property when
discussing the topological character of these theories in section four.

• The fourth and final property of our definition of MQTSM is the one that gives the
name “Mathai-Quillen” to the MQTSM’s. We will demand the correlators of the theory
to be localized on a certain moduli space M given by ([8]):

M = {φ ⊂ Φ | s = Dφ = 0}/G (2.10)

where Φ is again the space of fields, D is some chosen differential operator, s = Dφ is
a section of a vector bundle over MT and G is some group of symmetries present in the
theory. In other words, we want the functional integrals defining the correlators to be
localized on the subspace φ of the field space Φ satisfying Dφ = 0 (modulo symmetry
transformations). This localization is obtained by constructing an action of the form:

St[Φ] = tδQ(A[Φ]) = t(‖Dφ‖2 + . . .) (2.11)

then, it is immediate to see from (2.8) that, in the large t limit, we get localization onM:

lim
t→∞

< O1 . . .Op >t=< O1 . . .Op >M (2.12)

We will refer sometimes to φ as the “instantons” andM as the moduli space of instantons.

3. The operator ∇Q.

The only field of the field space Φ that we have specified so far are the fields Xi(σ)
(i : 1, .., n). Using (2.5) we can deduce the next relations (from now on we will drop the
internal coordinates σµ and only write them if we consider it clarifying):

δQX
i = χi ; δQχ

i = 0. (3.1)

Being Q a fermionic operator and the Xi independent fields we have that the χi are n
independent fermionic fields. The rest of this section will be devoted to the analysis of
the simple relations (3.1). The first observation is that, being both Xi (see (2.2)) and Q
scalar objects from the point of view of MI , the fields χi are also scalar fields with respect
to change of coordinates on the internal manifold. Now, let us study the behaviour of χi

under change of coordinates in the target manifold MT . From (2.3) and (3.1) we get that
under an infinitesimal change of coordinates on MT :

χ′
i

= δQX
′i ∼ χi + ∂jξ

i(X)χj (3.2)
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i.e., we conclude that the fields χi (i : 1, ..., n) are the components of a vector in the target.
Note that this is not a new condition, but a consequence of (2.3) and (3.1). An implication
of this observation is that the Q operator is not a (scalar) covariant operator from the point
of view of the target space MT . This is so because Q acting on target coordinate fields
(Xi) produces vector-target fields (χi). This introduces some problem when analyzing the
geometrical aspects of the theory on the target. Let us analyze the problem more carefully.
Let us take an arbitrary target-vector V i(X). Under a change of coordinates like (2.3) we
have:

V i(X)→ V ′
i
(X ′) ∼ V i(X) + ∂jξ

i(X)V j(X) (3.3)

therefore, applying (3.1) we get:

δQV
′(X ′) ∼ δQV

i(X) + ∂jξ
i(X)δQV

j(X) + ∂k∂jξ
i(X)χjV k (3.4)

We observe then that δQV
i(X) is not a target vector due to the last term in (3.4) . Now,

using the target metric Gij we construct the affine connection Γijk (we will consider tor-
sionless connections). One easily verifies that under an infinitesimal change of coordinates
the object Oi(X) ≡ Γijk(X)V j1 (X)V k2 (X) (here V i1 (X) and V i2 (X) are two arbitrary target
vectors) transforms as:

O′
i
(X ′) ∼ Oi(X) + ∂jξ

i(X)Oj(X)− ∂k∂jξ
i(X)V k1 (X)V j2 (X). (3.5)

Comparing now with (3.4) we are led to naturally introduce the transformation:

∇QV
i(X) = δQV

i(X) + Γijk(X)χjV k(X) = χjDjV
i(X) (3.6)

which maps target-vectors into target-vectors. ∇Q, contrary to δQ, is then a covariant
scalar in the target. This analysis was done for vector fields depending only on Xi (like
V i(X)). However, we generalize our definition to vector fields depending on any field
φ ⊂ Φ. Then we define the ∇Q transformation by (the analysis for the covariant case can
be done in the same way):

∇QV
i(φ) ≡ δQV

i(φ) + Γijk(X)χjV k(φ) (3.7)

∇QVi(φ) ≡ δQVi(φ)− Γkij(X)χjVk(φ) (3.8)

We note here that, for a general field φ (contrary to the last relation of (3.6) for the
special case φ = X) ∇QV i(φ) = δQV

i(φ) + Γijkχ
jV k(φ) 6= χkDjV

i(φ). Also, we remark

that, due to the fact that Φ contains fermionic fields, the position of the χi fields in our
previous definitions are important. The generalization of our definitions to tensors with
any number of covariant and contravariant indices is trivial. The next properties of the
∇Q transformation can be straightforwardly checked:

• ∇Q(A(Φ)B(Φ)) = (∇QA(Φ))B(Φ) + (−)εAA(Φ)(∇QB(Φ)).

• ∇QGij(X) = 0.

• ∇Qχ
i = δQχ

i = 0.

• ∇Q(Ai(Φ)Bi(Φ)) = δQ(Ai(Φ)Bi(Φ)).

• ∇2
QA

i(Φ) =
1

2
Rijkl(X)χjχkAl(Φ).

(3.9)
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(the last relation holds if ∇QAi(φ) 6= 0). Here, εA is 0 (1) if A(Φ) is a bosonic (fermionic)
operator. Rijkl(X) is the curvature tensor on the target space. A very important ob-
servation should be made from these relations. Looking at the fourth relation in (3.9)
we have that the ∇Q-transformation on any scalar is Q-exact (∇Q = δQ when acting on
target-scalars). In particular, the equations (2.4) and (2.7) implies that:

∇Q(S[Φ]) = ∇Q(DΦ) = ∇Q(O[Φ]) = 0 (3.10)

and
St[Φ] = tδQ(A[Φ]) = t∇Q(A[Φ]). (3.11)

This means that ∇Q defines also a symmetry of the quantum theory. Finally, let us notice
that contrary to δQ, ∇Q is not a nilpotent operator.

4. The Action and Q-transformations for MQTSM’s.

In this section, with minimal information, we will construct a rather general action
localizing the correlators in some chosen moduli space M. By minimal information we
mean that we will not specify the field content of the theory (Φ). To construct concrete
examples later, we will have to be more specific in this aspect. Also we write the δQ-
transformations and ∇Q-transformations that with this minimal data can be analyzed. A
discussion of the topological character and observables of the theory is also presented.

4.1. The Action for MQTSM’s.

We already have lot of information for constructing an action S[Φ] for MQTSM’s.
First, we know that the action is ∇Q-exact (3.11) , and second, we want S[Φ] to depend
on a given bosonic section s[φ] (φ ⊂ Φ) of a vector bundle over MT . The most simple term
to start with is:

S1
t [Φ] = t∇Q(

∫
dmσ

√
g(σ)ρ∗i [Φ]si∗[Φ]) =

∫ √
dmσg(σ)((∇Qρ

∗
i [Φ])si∗[Φ]− ρ∗i [Φ](∇Qs

i
∗[Φ]))

(4.1)
Here, ρ∗i [Φ] is any fermionic function of the field space Φ (the action has to be bosonic).
si∗[Φ] is the bosonic section of the vector bundle and “∗” denotes all internal indices (like
indices associated to the internal manifold MI or gauge indices) which are conveniently
contracted to make St[Φ] a scalar functional. To avoid complicate notation we will also
drop out the “∗” from some of the expressions and only restore them whenever we will
consider it clarifying. The action that we have obtained in (4.1) is not gaussian in the
section as we wish (see (2.11)). But looking at it it is easy to guess what we have to do to
get such a gaussian term. Just introduce a “metric” A∗∗ij such that ρ∗i [Φ] = A∗∗ij [Φ]ρi∗[Φ],

and add a term ∇Q(
∫ √

g(σ)dmσ(ρ∗i∇Qρ
i
∗)) to the action. One finds:

St[Φ] = t∇Q
(∫

dmσ
√
g(σ)(ρ∗i [Φ]si∗[Φ] + ρ∗i [Φ]∇Qρ

i
∗[Φ])

)
. (4.2)
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Using the properties in (3.9):

St[Φ] =t

∫
dmσ

√
g(σ)

{
Aij [Φ]

(
(∇Qρ

i[Φ])sj[Φ]− ρi[Φ]∇Q(sj [Φ]) + (∇Qρ
i[Φ])(∇Qρ

j [Φ])

− ρi[Φ]∇2
Qρ

j [Φ]
)

+ (∇QAij [Φ])(ρi[Φ]sj[Φ] + ρi[Φ]∇Qρ
j[Φ])

}
=

=t

∫
dmσ

√
g(σ)

{
Aij [Φ]

(
(∇Qρ

i[Φ] +
1

2
si[Φ])(∇Qρ

j[Φ] +
1

2
sj [Φ])−

1

4
si[Φ]sj[Φ]

− ρi[Φ]∇Qs
j [Φ]−

1

2
Rjklm(X)χkχlρi[Φ]ρm[Φ]

)
+ (∇QAij [Φ])(ρi[Φ]sj[Φ] + ρi[Φ]∇Qρ

j[Φ])
}
.

(4.3)
Defining the “auxiliary” fields Hi

∗ by:

Hi
∗[Φ] ≡ ∇Qρ

i
∗[Φ] +

1

2
si∗[Φ]. (4.4)

we finally get the action:

St[Φ] =t

∫
dmσ

√
g(σ)

{
Aij [Φ]

(
(Hi[Φ]Hj[Φ]−

1

4
si[Φ]sj[Φ]− ρi[Φ]∇Qs

j[Φ]

−
1

2
Rjklm(X)χkχlρi[Φ]ρm[Φ]

)
+ (∇QAij [Φ])(ρi[Φ]sj[Φ] + ρi[Φ]∇Qρ

j [Φ])
}
.

(4.5)

In (4.5) we have obtained a desired action like the one in (2.11) if the tensor A∗∗ij [Φ] defines
a proper norm (i.e., defines a positive-definite quadratic form):

‖DΦ‖2 = A∗∗ij [Φ]si∗[Φ]sj∗[Φ]. (4.6)

Using the t → ∞ argument we see that the path integration of a field theory with the
previous action is localized on configurations with si∗[Φ] = 0 as we want. Our analysis is
rather general (we have not specify neither the form of the section si∗[Φ] nor the form of the
function ρ∗i [Φ]), but this is the “minimal” form of the action for MQTSM’s. “Non-minimal”
actions can be obtained by adding ∇Q-exact (i.e., Q-exact) terms to this “minimal” action.

4.2. Basic Q-Transformations

To write the precise Q-transformations of the fields in the theory requires to specify
Φ and the concrete form of si∗[Φ] and ρi∗[Φ]. Nevertheless we can already get valuable
general information over the structure of such transformations and write expressions for
them. Here we collect such expressions:

• δQX
i = χi

• ∇Qχ
i = 0.

• ∇Qρ
i
∗[Φ] = Hi

∗[Φ]−
1

2
si∗[Φ]

• ∇QH
i
∗[Φ] =

1

2
∇Qs

i
∗[Φ] +

1

2
Rijkl(X)χjχkρl∗[Φ]

(4.7)
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The first two relations were already known in (3.1) and (3.9) and the third in (4.4). Finally,
the last one is obtained trivially by applying ∇Q to the third and using the last property of
(3.9). From these relations (4.7) we can derive straightforwardly the δQ-transformations,
just by using the definition (3.7). One gets:

• δQX
i = χi.

• δQχ
i = 0.

• δQρ
i
∗[Φ] = Hi

∗[Φ]−
1

2
si∗[Φ]− Γijk(X)χjρk∗[Φ]

• δQH
i
∗[Φ] =

1

2
δQs

i
∗[Φ] +

1

2
Γijk(X)χjsk∗[Φ]− Γijk(X)χjHk

∗ [Φ]

+
1

2
Rijkl(X)χjχkρl∗[Φ]

(4.8)

One checks that the δQ-transformations above are automatically nilpotent (as demanded
by (2.5)).

4.3. Topological Character

Let us study the topological character of the theory so far presented. We do not know
a rigorous proof to justify the topological character of the theory neither on the internal
manifold MI nor on the target MT holding at any value of the parameter t. We have
an argument that applies in the large t → ∞ limit and then we use (2.9) to generalize
it for any value of t. Let us first study the behaviour of the theory under deformations
of the metric in the internal manifold gµν . The δQ-exactness of the action (4.5) is not
enough to guarantee the invariance of the theory under deformations of the metric. This
is so due to the possible metric dependence of the transformations (4.8) (this dependence
could appear in si∗[Φ], ρi∗[Φ] and Hi

∗[Φ]). Actually, only in the case in which the δQ-
transformations are independent of the metric we have that deformations of the internal
metric δgµν and δQ-transformations commute and, therefore, that the energy-momentum
tensor Tµν is Q-exact. General arguments shows that Q-exact energy momnetums lead
to topological theories ([9]) However, if we assume that all the metric dependence in the
δQ-transformations (4.8) are in the section si[Φ] and the auxiliary field Hi

∗[Φ] (as in the
cases that we will consider), then we see that the transformations (4.8) are independent
of the metric gµν if we restrict ourselves to the moduli space si[Φ] = Hi[Φ] = 0 (i.e., M),
where the path integral is localized in the limit t→∞ (thanks to the δQ-exactness of the
action we can take that limit as correct). We conclude then that, in this case, deformations
of gµν and δQ-transformations commute and then the theory described by the action (4.5)
is topological with respect to the internal manifold MI . In fact, in the examples to be
consider later we will take ρi∗[Φ] and Hi

∗[Φ] to be independent elemental fields (ρi∗ and Hi
∗

respectively), and we have then a topological field theory with respect to MI .
The analysis of the topological character on the target space MT is similar. If we

observe the ∇Q-transformations in (4.7) we deduce that in the case in which all the depen-
dence on Gij in (4.7) is in si[Φ] and in Hi[Φ] then, in the t→∞ limit (i.e., in the moduli
space M defined by si∗[Φ] = Hi

∗[Φ] = 0), all the dependence of the ∇Q-transformations in
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the target metric is in the curvature term in the transformation of the field Hi
∗[Φ]. But is

easy to check that, on M (here, δ̂ means deformations with respect to the target metric
Gij):

lim
t→∞

δ̂
(
∇QH

i
∗[Φ]

)
= lim
t→∞

1

2
δ̂(Rijkl)χ

jχkρl∗[Φ] = lim
t→∞

1

2
δ̂
{
δQ

(
Γiklχ

kρl∗[Φ]
)}

= lim
t→∞

1

2
∇Q
{
δ̂
(

Γiklχ
kρl∗[Φ]

)}
.

(4.9)

We have used that δ̂ commute with δQ when acting on Xi and χi. Also note that, although

Γijk is not a tensor, δ̂Γijk is a tensor and, therefore, the ∇Q action in the last term in (4.9)

is wel defined. In (4.9) we see that deformations δ̂ of the target metric varies the ∇Q-
transformations by a ∇Q-exact terms. This means that the energy-momentum tensor Tij
associated to the target metric Gij is ∇Q-exact, then leading also to a topological field
theory in the target space MT in the large limit t → ∞. Now we use (2.9) to argue that
this topological character should hold for any t.

4.4. Observables.

The observables O[Φ] of any topological field theory are metric-independent scalar
objects belonging to the cohomology of Q:

O[Φ] ∈
Ker(δQ)

Im(δQ)
. (4.10)

Note that we could replace δQ by ∇Q in the previous (and following) expressions (δQ = ∇Q
when acting on target scalars). The numerator of (4.10) just says that any observable has
to be invariant under the symmetry of the theory (Q). The denominator tells that, due
to (2.4), two observables differing by a Q-exact quantity lead to the same correlators (and
then, have to be identified as observables). So far, we have specified two of the fields of Φ:
Xi and χi. With them we can already construct observables satisfying (4.10). In [2] the
analysis for the case where the internal manifold was bidimensional (d = 2) was studied.
It is not difficult to generalize the arguments there for the general case d = m. The result
is the following. Given a a-dimensional homology cycle γa(i) ∈ Ha(MI) (0 ≤ a ≤ m and

i : 1, .., ba = dim(Ha(MI))) and a p-form A(X) ∈ Hp(MT ;R) we define W
γa(i)

A by:

W
γa(i)

A [X,χ] =

∫
γa(i)

OaA(X,χ) (4.11)

where the object OaA(X,χ) is given by:

OaA(X,χ) =

(
p

a

)
A(X)i1,..,ipdX

i1 ∧ . . . ∧ dXiaχia+1 . . . χip 0 ≤ a ≤ m. (4.12)

Oa−1
A (X,χ) and OaA(X,χ) are easily seen to be related by the so-called “topological de-

scendent equations” (use (3.1) and (4.12) to prove this):

dOa−1
A (X,χ) = δQ(OaA(X,χ)). (4.13)
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Similar arguments to those of [2] adapted to the present case show that W
γa(i)

A [X,χ] defines
an observable (δQW

γa(i)

A [X,χ] = 0) which depends on the homology class of γa(i) and not
on the particular cycle chosen. Therefore, to define the observables (4.11) we can take any
basis γa(i) of Ha(MI). An observable (4.11) can then be constructed for any choice of the
pair (A(X), γa(i)) where A(X) ∈ Hp(MT ;R) and γa(i) ∈ Ha(MI).

The correlators of these observables have the form:

<
∏

A,γa(i)

W
γa(i)

A >t (4.14)

The analysis in the limit t → ∞ (see the action (4.5)) localizes these correlators on the
moduli space M (si = 0 and Hi

∗ = ρ∗i∇Qs
i
∗ = 0). We can not continue this analysis with-

out specifying a concrete model, however, let us just mention that the role of fermionic
zero modes (ρ∗i∇Qs

i
∗ = 0) are going to be essential to establish the selection rules for ob-

taining non-zero outputs from (4.14). These selection rules are dictated by index theorems
depending on the manifolds MI , MT and the differential operator D defining the section
si∗ ([2,3]).

5. Examples.

In this section we will apply our formulas to derive the action and δQ-transformations
of two well known examples: Topological Quantum Mechanics ([5]) and Type A Topological
Sigma Models ([2,4]).

5.1. Topological Quantum Mechanics.

In this case MI is taken to be S1:

X : S1 →MT . (5.1)

(X can be thought as elements of π1(MT )). The map X can be locally described by
functions Xi(τ) (i : 1, .., n), being τ a coordinate in S1. The section is taken to be:

si(X(τ)) =
d

dτ
Xi + V i(X) (5.2)

where V i(X) is some smooth vector field on MT . In this situation we have:

∇Qs
i(X) = δQs

i(X) + Γijk(X)χjsk(X)

=
d

dτ
χi + ∂jV

i(X)χj + Γijk(X)χj(
d

dτ
Xk + V k(X))

= Dijχ
j .

(5.3)

where we have used the notation of [5]:

Dij = δij
d

dτ
+
dXk

dτ
Γikj +DjV

i. (5.4)
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We take the metric Aij [Φ] = Gij(X) in (4.5) (then, using (3.9) we get ∇QAij [Φ] = 0).
Therefore, the action (4.5) reads in this case:

St[Φ] =t

∫
e(τ)dτGij(X)

{
HiHj −

1

4
(
d

dτ
Xi + V i(X))(

d

dτ
Xj + V j(X))

− ρiDjkχ
k −

1

2
Rjklm(X)χkχlρiρm

}
.

(5.5)

(e(τ) is the “einbein” for S1 making (5.5) invariant under reparametrizations on τ). This
is precisely the action obtained in a different way in [5]. The ∇Q-transformations can
be obtained from (4.8). We get (we write only the two last ∇Q-transformations of (4.8),
because the two first remain the same):

• ∇Qρ
i = Hi −

1

2
(
d

dτ
Xi + V i(X))

• ∇QH
i =

1

2
Dijχ

j +
1

2
Rijklχ

jχkρl.

(5.6)

Also, the analog of (2.6) for the present case is:

δQe(τ) = 0 (5.7)

The analysis of observables and the computation of the partition function was done
in [5] and we refer there for details.

5.2. Type A Topological Sigma Model.

The topological sigma models are well known to be derived from the N = 2 super-
symmetric sigma models by performing the so-called “topological twisting” ([2,4]). The
two basic N = 2 multiplets are the chiral and the twisted-chiral multiplets. Twisting the
first one gives the topological sigma model of type A. Twisting the second one we get the
topological sigma model of type B ([2,4]). There are several differences between type A
and B topological sigma models. Perhaps, the most relevant one is that while the type
A models can be generalized even to real manifolds (as we will see shortly), the type B
models depend strongly on the complex structure and has been formulated so far only for
Kahler manifolds. Also, type A and B models formulated on Calabi-Yau spaces are known
to be related by mirror symmetry ([3]).

Let us derive the type A topological sigma models by applying our formulas. First,
the internal manifold MI is taken to be a two-dimensional, compact, oriented Riemann
surface Σ (endowed with the metric gαβ(σ)):

X : Σ→MT . (5.8)

Also, we will consider now the case where the target manifold MT is an Hermitian manifold
equipped with a complex structure J ij(X) and the Hermitian metric Gij(X) (this means

that Jij(X) = Gik(X)Jkj(X) = −Jji(X)). Second, the section is taken to be:

siα = −2(∂αX
i + εβαJ

i
j∂βX

i) (5.9)
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(factors are chosen to make contact with the notation of [4]) and the “metric” A∗∗ij in (4.6)
is given by:

Aαβij (X, σ) =
1

4
gαβ(σ)Gij(X) (5.10)

From (5.9) and (5.10) one quickly derives:

Aαβij (X, σ)siαs
j
β = 2(gαβGij∂αX

i∂βX
j + εαβJij∂αX

i∂βX
j). (5.11)

where we have used that, for Hermitian manifolds, gαβε τα ε
µ
β GijJ

i
pJ

j
k = gτµGpk. Also one

gets easily:

Aαβij ρ
i
α∇Qs

j
β = −

1

2
(gαβGijρ

i
αDβχ

j + εαβDkJijρ
i
αχ

k∂βX
j + εαβJijρ

i
αDβχ

j). (5.12)

where DαV
i is the pull-back of the covariant derivative on the target:

DαV
i = ∂αV

i + ΓijkV
j∂αX

k. (5.13)

Moreover:
1

2
Aαβij R

j
klmχ

kχlρiαρ
m
β =

1

8
gαβRklimχ

kχlρiαρ
m
β . (5.14)

Again, ∇QA
αβ
ij = 0 ((3.9)). Substituting all this information in our expression (4.5) we

obtain:

St[Φ] =−
1

2
t

∫
d2σ
√
g
{
gαβGij∂αX

i∂βX
j + εαβJij∂αX

i∂βX
j

− gαβGijρ
i
αDβχ

j − εαβDkJijρ
i
αχ

k∂τX
j − εαβJijρ

i
αDβχ

j

−
1

2
gαβGijH

i
αH

j
β +

1

4
Rklimχ

kχlρiαρ
m
β

}
.

(5.15)

This expression is slightly different from that on [4], the reason being that we have not
demanded here the self-duality conditions on the ρiα and Hi

α fields (ρiα = ε βα J
i
jρ
j
β and

Hi
α = ε βα J

i
jH

j
β). This means, in particular, that the topological action (5.15) can not be

obtained from a twisting of a N = 2 supersymmetric sigma model. However, if we desire
to make full contact with the action obtained from a twisted N = 2 supersymmetry we
see straightforwardly that, imposing selfduality on the field ρiα, (5.12) can be written as:

Aαβij ρ
i
α∇Qs

j
β = −(gαβGijρ

i
αDβχ

j +
1

2
εαβDkJijρ

i
αχ

k∂τX
j). (5.16)

then, on a Kahler manifold (where DiJ
j
k = 0) we recover exactly the expression for the

type A topological sigma model ([2,4]):

St[Φ] =−
1

2
t

∫
d2σ
√
g
{
gαβGij∂αX

i∂βX
j + εαβJij∂αX

i∂βX
j

− 2gαβGijρ
i
αDβχ

j −
1

2
gαβGijH

i
αH

j
β +

1

4
Rklimχ

kχlρiαρ
m
β

}
.

(5.17)
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However, is not necessary to impose selfduality to show that our action (5.15) is by its own
topological both on the target MT and on Σ (due to our general considerations in section
4).

Let us now use (4.7) to derive the ∇Q-transformations for this case (again, the first
two transformations in (4.7) remain the same and we just write the two last ones):

• ∇Qρ
i
α = Hi

α + ∂αX
i + εβαJ

i
j∂βX

j

• ∇QH
i
α = −Dαχ

i − εβαJ
i
jDβχ

j +
1

2
Rijklχ

jχkρlα.
(5.18)

The ∇Q-transformation of ρiα in (5.18) is easily seen to violate selfduality on no-Kahler
manifolds. Actually, if:

ρiα = ε βα J
i
jρ
j
β (5.19)

then:
∇Q(ρiα) = ε βα J

i
j∇Q(ρjβ) + ε βα χ

kDk(J ij)ρ
j
β ≡ ε

β
α J

i
j∇Q(ρjβ) +Aiα. (5.20)

and self-duality is violated by the∇Q-transformations due to the termAiα ≡ ε
β
α χ

kDk(J ij)ρ
j
β.

This term is obviously zero for a Kahler manifold (DkJ
i
j = 0) but not for an arbitrary

Hermitian manifold. However, we can check that Aiα is anti-selfdual:

Aiα = −ε βα J
i
jA

j
β (5.21)

and consequently, from (5.20), we could naturally define a new operator:

∇̂Qρ
i
α = ∇Qρ

i
α −

1

2
Aiα (5.22)

which is selfdual. From this we could define, if we want, a selfdual Q̂-transformation ([4])
for Hermitean (non-Kahler) manifolds (note that the action (5.15) changes also of form if
we define it ∇̂Q-exact). But we stress again that self-duality is not a necessary condition
to have a topological theory in our formalism.

Let us now argue that the theories defined through the actions (5.15) and (5.17) do
not depend on the complex structure J ij . The argument is completely similar to the one
we used on section 4 to show that the theory is topological on the target manifold MT .
First we note that the ∇Q-transformations in (5.18) depend on the complex structure J ij
through the section siα(X, J(X)). Due to the ∇Q-exactness of the action we can analyze
the theory on the large t limit. There we have localization on the instanton configurations
siα = 0 and then all the dependence of (5.18) in J ij disappears. In this case, deformations
of the complex structure and ∇Q transformations commute and the theory is invariant
under that deformations of J ij . The introduced reader could be surprised at this point,
because the type A topological theories formulated on Kahler manifolds (dJ = 0 where
J = JijdX

i ∧ dXj and Jij = GikJ
k
j) are known to depend on the Kahler class J . But we

remark here that the action employed by Witten SWt [Φ] in [3] is not (5.17) but:

SWt [Φ] =St[Φ]− t

∫
d2σ
√
g(σ)X∗(J)

=t∇Q(

∫
d2σ
√
g(σ)(ρ∗i [Φ]si∗[Φ] + ρ∗i∇Qρ

i
∗))−

∫
d2σ
√
g(σ)X∗(J)

≡St[Φ]−K(J).

(5.23)
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being:

K(J) ≡

∫
d2σ
√
g(σ)X∗(J) =

∫
d2σ
√
g(σ)εαβJij∂αX

i∂βX
j (5.24)

(X∗(J) is the pullback of the Kahler form). This term is seen to be invariant under
∇Q-transformations:

∇Q
(
εαβJij∂αX

i∂βX
j
)

= 2εαβDα(Jijχ
i∂βX

j) (5.25)

(we have used the Kahler condition DiJ
k
l = 0), but is not ∇Q-exact. Therefore the

topological character of the theory is not guaranteed (we can not use the large t limit if
the action is not δQ or ∇Q-exact). In fact, the term (5.24) added in the action (5.23)
is a topological invariant (and consequently, the theory defined by the action (5.23) is
still invariant under deformations of the target metric Gij(X) and the internal metric
gµν), however, (5.24) depends on the homotopy class of the map X and the cohomology
class of the closed form J (and then, is sensible to changes of the Kahler form J(X) =
JijdX

i ∧ dXj). As a consecuence, the theory defined by SWt depends on the Kahler form
J whereas the one defined by St does not.

Before finishing this section, let us do some general comments. The type A topological
action that we have constructed here is exactly the same as the one that is obtained by
twisting the N = 2 supersymmetric sigma models (when the manifold MT is Kahler and we
demand self-duality conditions on the fields ρiα and Hi

α). The generalization to Hermitian
manifolds was done by Witten in [2]. In the present context we see that the type A
topological sigma models can be generalized even to real manifolds. One just has to take
the section (5.9) without the complex structure term and use our formulas (4.5) and (4.8)
to derive the acction and Q-transformations. With respect to the observables of the theory,
they were analyzed in [3]. Here we note from (5.9) that the localization of correlators are
going to take place on the moduli space of holomorphic instantons:

−
1

2
siα = ∂αX

i + ε βα J
i
j∂βX

j = 0. (5.26)

One has to study again carefully the fermionic zero modes to know which of the observables
(4.12) give non-trivial correlators. This depends on Σ, MT and index theorems. We refer
to [3] for details. The result is that, on Kahler manifolds, correlators split on an addition∑
k of intersection forms on the moduli space of holomorphic instantons of degree k (over

instantons of the type (5.26) we have that K(J) = k where, using a proper normalization, k
is an integer [3]). If we use the action SWt ((5.23)) instead of St ((5.17)) these intersection
numbers are weighted by exponentials of the degree of the corresponding holomorphic
instantons (e−itK(J) ∼ e−itk). In the case that we work with a real manifold MT the
generalization is straightforward with our formalism. We can just the section siα to be
(5.9) without the complex structure term and substitute in our formulae (4.5) and (4.8) to
get the action and transformations. A simple analysis gives that correlators, in this case,
are just the classical intersection numbers of submanifolds of MT which are Poincaré duals
to the corresponding forms A(X) entering in the observables (4.12) in the correlators (note
that the solutions of the moduli equations ∂αX

i = 0 are the constant maps and therefore,
M coincides with the target manifold MT ).
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6. Conclusions

We have introduced a wide class of topological field theories of maps Xi : MI →MT

from a m-dimensional internal manifold MI to a n-dimensional target manifold MT local-
izing the correlators on a desired moduli space of instantons M. The minimal action is
given in (4.5) and the general Q-transformations are given in (4.7). To guarantee the topo-
logical character of the theory we were forced to demand the ρi∗[Φ] fields to be independent
both of the internal metric gµν and the target metric Gij . Our models contain previously
known topological systems as particular cases, like the topological sigma models of type A.
However our approach does not involve the twist procedure of an N = 2 supersymmetric
sigma model. This allowed us to formulate topological matter of type A in real manifolds
(to our knowledge, so far, they have been formulated only for Hermitean manifolds [2]).
In the case of real manifolds, when the section is chosen to be siα = ∂αX

i, the correlators
turn out to be classical intersection numbers of submanifolds of the target space MT .

It would be interesting to study if the models here introduced contains the other
type of known topological sigma models (type B). Also our formalism could be generalized
to the case in which the topological charge Q is not nilpotent but closses on a group of
symmetry transformations of the theory.
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