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ABSTRACT

We present a calculation of the total cross section for top quark production

based on a new perturbative resummation of gluon radiative corrections to the

basic QCD subprocesses. We use Principal Value Resummation to calculate all

relevant large threshold corrections. Advantages of this method include its in-

dependence from arbitrary infrared cuto�s and speci�cation of the perturbative

regime of applicability. For p�p collisions at center-of-mass energy
p
s = 1:8TeV

and a top mass of 175 GeV, we compute �(t�t) = 5:52+0:07
�0:45pb.
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The quest for the top quark t reached fruition recently with the publication

of results by two collaborations of experimenters studying t�t pair production in

proton-antiproton collisions at the Fermilab Tevatron
[1]
: p + �p ! t + �t +X. The

large mass of the quark and the possibility that its observed cross section exceeds

theoretical expectations have, in turn, stimulated considerable theoretical activity.

Among theoretical questions deserving attention is the quantitative reliability of

cross sections based on the main production mechanism in perturbative quantum

chromodynamics (pQCD), namely t�t pair creation.

At lowest order (tree-level), the two partonic subprocesses are quark-antiquark

annihilation:

q + �q ! t+ �t (1)

and gluon-gluon fusion:

g + g ! t+ �t : (2)

These subprocesses are of order �2
s
in the strong coupling strength. The calculated

top quark cross sections depend on these subprocess cross sections and on the

parton density distributions that specify the probability densities of the quarks,

antiquarks, and gluons of the incident p and �p.

Both order �2
s

[2]
and the next-to-leading order �3

s

[3] [4]
contributions have been

investigated thoroughly
[5]
. One observation is that the size of the O(�3

s
) terms

in the partonic cross sections is particularly large near the t�t production thresh-

old, raising questions about the reliability of perturbation theory. This region

of phase space is important for top quark production at the Tevatron owing to

the large mass of the top quark. Virtual and bremsstrahlung corrections to the

tree-level production channels, Eqs. (1) and (2), dominate the next-to-leading con-

tributions in the near threshold region. The large threshold corrections can be iden-

ti�ed with numerically large logarithmic terms attributable to initial-state gluon

bremsstrahlung, accompanying uncompensated mass-singularities removed after

mass-factorization. After convolution of the partonic cross section with the parton
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ux, the O(�3
s
) corrections to the physical cross section yield less dramatic en-

hancements, of the order of 25% at top mass m = 175 GeV. These enhancements

motivate a complete study of the large logarithmic corrections at the partonic

level, to all orders in perturbation theory. In this Letter we present a resumma-

tion of soft gluon corrections to the t�t cross section employing the Principal Value

Resummation (PVR) technique
[6]
.

As in other hard-scattering processes, where large logarithmic threshold con-

tributions are present
[7]
, resummation of these corrections to all orders in �s is

important both for theoretical understanding of the perturbative process and for

numerical control of the resulting predictions. One method for resummation has

been implemented previously for t�t pair production
[8]
. In most resummation meth-

ods
[9]
, including [8], the threshold corrections are exponentiated into a function of

the QCD running coupling constant, �s, evaluated at a variable momentum scale,

and formally integrated throughout the proper phase space. The variable scale is

a measure of the momenta of the gluons emitted from the initial partons, and the

associated integration represents the inclusiveness of the measurement.

An inherent uncertainty and limitation of the resummation method of [8] is

its dependence on an undetermined infrared (IR) cuto�. This cuto� enters when

the exponentiated resummation function is integrated over phase space. In the

formulation of [8], it cuts o� the Landau pole of the QCD running coupling constant

and the corresponding threshold region. Since the function is exponentiated, the

dependence of the resummed cross section on this cuto� is important numerically.

Further, dependence of the resummation exponent on this additional undetermined

mass scale spoils explicit renormalization-group invariance properties for any region

of the radiation phase space. Such properties can be implemented for a �xed value

of the IR cuto�, but a simultaneous variation of the cuto� and the renormalization

scale would again produce large sensitivities.

The main advantage of PVR is that it does not depend on arbitrary IR cut-

o�s, as all Landau-pole singularities are by-passed by a Cauchy principal-value
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prescription. We emphasize three strengths:

(i) PVR reproduces correctly all the asymptotic properties and renormalon

structure of pQCD. Due to the absence of extra undetermined scales, it allows for

an evaluation of the perturbative regime, i.e., the region of the radiation phase

space where perturbation theory should be valid.

(ii) The approach implements universality of resummation automatically since

it is the same mechanism for all relevant processes, independent of undetermined

parameters. This mechanism produces a di�erent perturbative regime for di�erent

production channels, but the mechanism itself is common to such channels.

(iii) PVR been tested successfully in l�l production
[10]

where its de�nition of

resummed pQCD agrees fairly well with experiment, even at relatively low values

of the hard scale (in the region of 5-10 GeV).

In the remainder of this Letter, we present our results for the physical inclusive

total cross section for t�t-production in PVR for a top-mass range m 2 f150; 250g
GeV, including a discussion of the remaining theoretical uncertainties. We also

show some results for the behavior of partonic cross sections at m = 175 GeV.

We present our predictions in the MS factorization scheme, in which the q, �q

and g densities and the next-to-leading order partonic cross sections are de�ned

unambiguously. We postpone presentation of calculational details, more extensive

comparisons with [8], and corresponding analyses of the di�erences to our longer

companion paper
[11]
.

It has been observed that the functional form of the leading threshold correc-

tions, order-by-order in perturbation theory, appears to be universal, i.e., indepen-

dent of the hard-scattering process, except for di�erences in multiplicative color

factors and process-speci�c kinematics. An example is the \universality" between

dilepton- (l�l) and t�t-production, emphasized in [8]. We understand this universality

to arise from the fact that mass-singularities in the former process are due purely

to bremsstrahlung from the initial state, given that the l�l pair is produced through

an electroweak vector boson of large invariant mass, an \external potential" to the
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QCD sector, whereas, in the latter the �nal quarks are (highly) massive, and gluon

bremsstrahlung from (or interference with) that sector does not produce leading

mass singularities and associated large logarithms. In t�t production near threshold,

the heavy quark �nal-state sector \factorizes" and behaves as an external heavy

object, leaving the light initial states to produce the leading large QCD corrections.

For the purposes of this work we accept this universality, assuming it valid to all

orders in �s, as in [8]. Furthermore, we have chosen the order-by-order logarithmic

structure and running coupling constant identical to those of [8].

The resummed partonic cross sections, including all large threshold corrections

according to PVR, can be written as

�PV

ij
(�;m2) =

1Z

1�4(1+�)+4
p
1+�

dz

�
1 +Hij(z; �)

�
�0
ij
(�;m2; z): (3)

In Eq. (3),

Hij(z; �) =

ln( 1
1�z

)Z
0

dxeEij(x;�)
1X
j=0

Qj(x; �) ; (4)

�0
ij
(�;m2; z) = d(�

(0)
ij
(�;m2; z))=dz, and �

(0)
ij

is the tree-level partonic cross section

expressed in terms of inelastic kinematic variables [8] to account for the emitted

radiation.
?

The variable � = ŝ=4m2�1 is the distance from the partonic production

threshold, � � �s(m)=�, and ij 2 fq�q; ggg denotes the initial parton channel. The

integration in Eq. (3) is over the phase space of the radiated gluons, parametrized

through the dimensionless variable z. In l�l production z = Q2=ŝ, where Q is the

invariant dilepton mass, and z = 1 corresponds to zero gluon momentum.

Equation (4) is the main content of PVR. The leading large threshold correc-

tions are contained in the exponent Eij(x; �), which is a calculable polynomial

? In other words, substituting H ! 0 in Eq. (3) and using the kinematic constraint

�
0

ij(�;m
2
; z = 1 � 4(1 + �) + 4

p
1 + �) = 0, we obtain the tree-level partonic cross sec-

tion, �0ij(�;m
2) = �

0

ij(�;m
2
; z = 1).
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in x. fQj(x; �)g are calculable functions produced by the analytical inversion of

the Mellin transform from moment space (where the argument of Eij corresponds

to x ! ln n) to the physically relevant momentum space expressed in Eq. (4).

These functions are produced by the resummation and are expressed in terms of

successive derivatives of E
y
: Pk(x; �) � @kE(x; �)=k!@kx; k = 1; 2; :::. Given that

E contains at most one more power of x than of �, Pk contains at least k � 1

fewer powers of x than of �, and Qj contributes the resummed version of terms

containing j fewer powers of x than of � in the integrand of Eq. (4).
z
For example

Q0 contains all powers P
m

1 , Q1 all powers P2P
m

1 , etc.

The main object of the resummation, Eij , was studied extensively in the con-

text of l�l production [10]. Embodying the universality discussed earlier, its func-

tional form for t�t production is identical to that of l�l production, except for the

identi�cation of the two separate channels, denoted by the subscript ij. However,

there are signi�cant di�erences between the two processes which a�ect the way we

implement PVR practically for the process at hand. These can be described as

follows:

First, only the leading threshold corrections are universal. The physical reason

behind this is the existence of hadronic �nal states, absent in l�l production, that

produce interference e�ects with the initial hadronic states, a statement that can

be deduced from the O(�3) calculation as well. Therefore, from all structures fQjg
in Eq. (4), the very leading one should be considered universal. This is the linear

term in P1, which turns out to be P1 itself. Hence, Eq. (4) can be integrated

explicitly, and Eq. (3) may be written as

�PV

ij
(�;m2) =

1Z

1�4(1+�)+4
p
1+�

dzeEij(ln(
1

1�z
);�)�0

ij
(�;m2; z): (5)

y For simplicity, we drop the channel indices.

z These contributions are only approximately equal to the corresponding structures obtained

upon a �nite-order expansion of the resummation formula, since such expansion involves

truncation of a product of series.
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The second issue has to do with the perturbative regime in momentum space. A

basic property of Eij(ln n; �) in moment space is that it has a perturbative represen-

tation in the region 2b2� ln n < 1, where b2 is the �rst coe�cient of the QCD beta

function. In the region 1 < 2b2� lnn <1, it has a non-perturbative representation

which, in turn, is an exponential suppression. In fact, limn!1 Eij(lnn; �) = �1.

This latter \higher-twist" region is of negligible importance, especially for the large

scale m of the top quark production process. These considerations apply in mo-

ment space and are clearly independent of channel-dependent color factors, relying

purely on the properties of the running coupling constant and PVR itself. To

characterize a region in moment space as \higher-twist", however, one must �rst

convert to momentum space through inversion of the Mellin transform, Eq. (4).

Speci�cation of the boundary, mentioned already in ref.[6], is realized by the con-

straint that all fQjg; j � 1 be small compared to Q0 which provides the leading

integrand in Eq. (4), according to the previous power counting. This constraint

can be shown quite generally to correspond to

P1

�
ln

�
1

1� z

�
; �

�
< 1 : (6)

This perturbative regime in momentum space corresponds nicely with the perturba-

tive regime in moment space, since P1 contains at most equal powers of logarithms

and �. This determination of the perturbative regime is also less academic, in the

sense that it realistically includes all relevant orders of perturbation theory, all rele-

vant constants generated by the running of the coupling and, most importantly, the

color factors that di�erentiate between various production channels. Color factors

are not included in more abstract discussions in moment space but are physically

extremely important.

One could actually apply Eq. (5) all the way to z = 1 by using contour in-

tegration as suggested by PVR, beyond the perturbative regime of Eq. (6), but

one would then be using a model for non-perturbative e�ects, the one suggested

by PVR, far beyond the knowledge justi�ed by perturbation theory. In this work
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we con�ne our attention to the perturbative regime, and hence our cross section is

evaluated accordingly, namely

�
PVpert

ij
(�;m2) =

zmaxZ

1�4(1+�)+4
p
1+�

dzeEij(ln(
1

1�z );�)�0
ij
(�;m2; z) : (7)

The upper limit is calculated through

P1

�
ln

�
1

1 � zmax

�
; �

�
= 1 : (8)

Equations (7), (8) are the basic formulas of our approach. Based on these,

notice that our perturbative approach can probe the threshold region down to

� � (1 � zmax)=2. It turns out our �nal result does not rely much upon the PVR

method to by-pass IR renormalons and associated problems, precisely because it

is restricted to the perturbative regime. In that sense, the presence of arbitrary

IR cuto�s in previous resummations is super
uous, as all necessary information

about IR sensitivity (i.e., the perturbative regime) can be obtained by examining

the perturbative asymptotic properties of the resummation functions. Further

analysis of these issues, especially the perturbative representation of Eq. (4) as

an asymptotic series and related numerical issues relevant to the color factors

characterizing each speci�c production channel, will be presented in our longer

paper[11].

We provide our �nal resummed cross sections for each production channel by

taking into account the complete next-to-leading calculation, �
(0+1)
ij

, through the

improved prediction

��nal
ij

(�;m2) = �
PVpert

ij
(�;m2) + �

(0+1)
ij

(�;m2)� �
(0+1)
ij

(�;m2)

����
PV

: (9)

The last term in Eq. (9) is the next-to-leading order partonic cross section included

in the resummation, �
PVpert

ij
.
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In Fig.1 we present our prediction for the partonic cross sections in the q�q

and gg channels, in the MS scheme, at m = 175 GeV. We also show the tree-level

(�(0)) and next-to-leading (�(0+1)) counterparts. Notice that the three curves di�er

substantially in the partonic threshold region � < 1, with the �nal resummed curve

exceeding the other two. Below � ' 7� 10�3 in the q�q channel and ' 5� 10�2 in

the gg channel, our �nal perturbative cross sections become identical to the next-

to-leading order cross sections. This is a consequence of our decision to perform

the resummation in the perturbative domain. This domain is smaller in the gg

case because the color factors are larger in this channel. Above � ' 1, we note

that our resummed cross sections are essentially identical to the next-to-leading

order cross sections, as is to be expected since the near-threshold enhancements

that concern us in this paper are not relevant at large �.

In Fig.2 we plot the physical cross section ��nal, along with the tree-level and

the next-to-leading order counterparts, for the q�q and gg channels for a wide range

of top mass. These are obtained after the partonic cross sections shown in Fig.1

are convoluted with parton densities and integrals are performed over �. We use

the most recent CTEQ3M parton distributions
[12]
. Here, the usual factorization

scale � has been chosen equal to the mass of the top. We observe that perturbative

resummation enhances the cross section by about 10%.

In Fig.3 we plot the same cross section as a function of the factorization

(\hard") scale � in a range �=m 2 f0:5; 2g. Notice the mild dependence, as

well as the interesting shape that peaks around the value 1. We consider the vari-

ation of the physical cross section the range �=m 2 f0:5; 2g a good measure of the

theoretical perturbative uncertainty.

Our prediction for the inclusive total t�t-production cross section at the Teva-

tron, using CTEQ3M parton densities, is

�t
�t
�nal(m = 175 GeV) = 5:52+0:07

�0:45 pb : (10)

The \central" value of 5.52 pb is obtained with �=m = 1, and the upper and lower
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limits of the uncertainty band correspond to the maximum and minimum values

of the cross section in the range �=m 2 f0:5; 2g. The cross section is insensitive

to the choice of parton densities. Repeating the same analysis with the MRS(A0)

densities
[13]
, we obtain

�t
�t
�nal(m = 175 GeV) = 5:32+0:08

�0:41 pb : (11)

In Tables 1 (2) we summarize the main features of the physical cross section,

in pb, for top mass m = 175 GeV for three choices of � and CTEQ3M (MRS(A0))

parton densities. The �rst line in each table shows the values of the two-loop �s=�

for the corresponding set; there is very little di�erence in the values. TheMRS(A0)

cross sections are a bit smaller than the CTEQ3M values. For the q�q channel this

di�erence is less than 4% and is about 5% for the gg channel.

m = 175 GeV � = m=2 � = m � = 2m

�s=� 0.03584 0.03260 0.02991

�
(0)
q�q 5.02 3.69 2.78

�
(0+1)
q�q 4.13 4.43 4.21

��nal
q�q 4.70 4.87 4.55

�
(0)
gg 0.55 0.34 0.22

�
(0+1)
gg 0.72 0.63 0.50

��nal
gg

0.75 0.65 0.52

�t
�t
�nal 5.45 5.52 5.07

Table 1.
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m = 175 GeV � = m=2 � = m � = 2m

�s=� 0.03596 0.03269 0.02998

�
(0)
q�q 4.88 3.57 2.68

�
(0+1)
q�q 4.00 4.28 4.08

��nal
q�q 4.56 4.71 4.41

�
(0)
gg 0.51 0.32 0.21

�
(0+1)
gg 0.67 0.59 0.49

��nal
gg

0.70 0.61 0.50

�t
�t
�nal 5.26 5.32 4.91

Table 2.

The value in Eq. (10) is larger than that of [8], but within uncertainties, and

it agrees with the present CDF and D0 measurements [1]. In Fig.4 we show the

top-mass dependence of the physical cross section for p�p! (t�t)X.

The band of perturbative uncertainty quoted in Eq. (10) is relatively narrow.

On the other hand, we noted in discussing Fig.1 that there is a reasonable range of

� near threshold in which perturbative resummation does not apply. Perturbation

theory is not justi�ed in this region. Correspondingly, further strong interaction

enhancements of the t�t cross section may arise from physics in this region. We

know of no reliable way to estimate the size of such non-perturbative e�ects and,

therefore, cannot include such uncertainties in the estimates of the perturbative

uncertainty of Eqs. (10) and (11).

In our longer companion paper we will present mathematical and physical

details, more extensive comparisons of our approach to existing results, and a

discussion of remaining theoretical uncertainties.
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FIGURE CAPTIONS

1. The total parton-parton cross sections as a function of � in the MS scheme

at m = 175 GeV for the subprocesses (a) q�q! t�tX and (b) gg ! t�tX. Plotted are

the lowest order Born cross section (dotted line), the next-to-leading-order cross

section (dashed line), and the cross section obtained after resummation of soft

gluons by the principal value resummation method (solid line). The QCD scale

� = m.

2. The calculated cross sections for t�t production as a function of top mass m

in p�p collisions at
p
s = 1:8 TeV for the q�q (upper bunch) and gg (lower bunch)

subprocesses. Each bunch consists of three curves: the Born cross section (dotted

line), the next-to-leading-order cross section (dashed line), and the cross section

obtained after soft gluon resummation (solid line).

3. Plot showing the calculated dependence of the �nal resummed cross section

on (�=m) for t�t production at m = 175 GeV and
p
s = 1:8 TeV. Shown also is the

next-to-leading order result (dashed curve).

4. Physical cross section for p�p! (t�t)X at
p
s = 1:8 TeV as a function of top

mass. Data from the CDF and D0[1] collaborations are shown. Our calculated cross

section here is obtained from adding the �nal resummed q�q and gg contributions.

Shown are entries for �=m = 0:5 (dashed), 1 (solid) and 2 (dotted).
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