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Abstract

In order to use the Gaussian representation for propagators in Feynman amplitudes,

a representation which is useful to relate string theory and field theory, one has to prove

first that each α-parameter (where α is the parameter associated to each propagator in

the α-representation of the Feynman amplitudes) can be replaced by a constant instead

of being integrated over and second, prove that this constant can be taken equal for all

propagators of a given graph. The first proposition has been proven in one recent letter

when the number of propagators is infinite. Here we prove the second one. In order to

achieve this, we demonstrate that the sum over the weighted spanning trees of a Feynman

graph G can be factorized for disjoint parts of G. The same can also be done for cuts on G,

resulting in a rigorous derivation of the Gaussian representation for super-renormalizable

scalar field theories. As a by-product spanning trees on Feynman graphs can be used to

define a discretized functional space.
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1. Introduction

In the study of the relationship between field theories and string theories, the α-

representation for Feynman graphs is a very useful tool [1-4]. In this representation one

α-parameter is assigned to every propagator and the only integrations to be made are over

these parameters, integration over the momenta circulating in the graph having already

been made. This is therefore a very economical representation and it has quite a while

ago been used to study the renormalization of field theories in the most accurate way [5].

However, it has another nice property ; writing a propagator of a scalar field theory as

[(Pi − Pj)
2]−1 =

∫ ∞
0

dα exp[−α(Pi − Pj)
2] (1)

we see that the α-parameter is a sliding scale for Gaussians. If we fix α to some constant

ᾱ we have what we call a Gaussian representation (usually called a “Gaussian approxi-

mation”) for the propagator. Now, discretized surface theories can be constructed using

precisely the Gaussian representation in planar graphs amplitudes and taking ᾱ to be the

same quantity for all propagators of a graph. ᾱ is then interpreted as proportional to

the inverse of the slope of the Regge trajectories of the equivalent string theory [6]. In

a recent letter [7] we proved that, indeed, once an integration over an overall scale was

made, all the αi’s (αi being the α-parameter of the propagator i) could be replaced by

their mean-values ᾱi which, in turn, were demonstrated to be O(1/I), I being the to-

tal number of propagators of any one-particle, one vertex irreducible Feynman graph G,

planar or non-planar, I → ∞. This was done for any number of Euclidean dimensions

where the theory was super-renormalizable. (When the theory is renormalizable we have

to make the weak assumption that a logarithm coming from the renormalization of some

sub-divergence is provoking only a shift in the coupling constant when the integration is

made over the momenta of the legs of the sub-diverging part). However, in any case, there

is a second step in the derivation which consists in proving that all the ᾱi’s can, in turn, be

replaced by a single value ᾱ for a given graph G. This could be demonstrated [7] provided
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that the sum over spanning trees of G can be considered as a functional integral, i.e. that

the sum could be factorized on disjoint domains of G. It is our purpose here to present a

rigorous derivation of that statement and thereby ending the proof about the validity of

the Gaussian representation (using an unique ᾱ).

In section 2 we present the basics of the ᾱ-representation for Euclidean scalar field

theories. We give the general expression for the Feynman graph amplitude FG of a graph G

with I internal lines, L loops in terms of an integral over I α-parameters. This integral can

be evaluated using the mean-value theorem which states that if a function f is continuous

in its arguments {α}, then ∫
ω

f = V f({ᾱ}) ,

where V is the volume of the connected domain ω over which the integration extends

and {ᾱ} a set of values of the α-parameters defining some point in ω. We expect the

mean-values ᾱi of the I α-parameters to be a priori different. Then, the central result of

this article is to demonstrate that all ᾱi’s can be replaced by one single value ᾱ without

changing the value of Feynman amplitude (expressed as a function of the ᾱi’s via the mean-

value theorem). This will amount to showing that the ratio of polynomials QG(Pv, {ᾱi})

defined in section 2 and appearing in the expression of FG is indeed insensitive to that

replacement. Isolating one particular ᾱi, QG can be set in the form

QG(P, {ᾱi}) = (ēi/b̄i)(d̄i/ēi + ᾱi)/(āi/b̄i + ᾱi)

where āi/b̄i and d̄i/ēi are ratios of homogeneous polynomials in the mean-values of all

α-parameters except αi. The proof of the independence on the shift ᾱi → ᾱ will then

translate into a proof of the equality of the ratios āi/b̄i and d̄i/ēi. Then, an important

property of āi, b̄i, d̄i and ēi is that they can be expressed as sums over products of ᾱl’s,

l indexing propagators belonging to spanning trees of G (a spanning tree of G is a tree

incident with all vertices of G). The ratio āi/b̄i involves a sum over trees containing i, i.e.
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āi, and a sum over trees not containing i, i.e. b̄i. The ratio d̄i/ēi is the ratio of a sum over

trees containing i and cut at some other propagator over a sum over trees not containing i

and cut at some other propagator (cutting means that the propagator is deleted from the

tree, yielding a cut). Then, proving that āi/b̄i = d̄i/ēi amounts to proving that the effect

of cutting of a propagator can be factorized in the sum over trees. This will be true if the

structure of trees is such that their structure far from i is independent from their structure

close to i. The next sections will be devoted to the proof that the sums over spanning

trees can indeed be factorized over domains far apart on G.

In section 3 we restrict ourselves to the case of self-avoiding paths on G instead of

trees. This is because, aside from simplicity in a first approach, there is always a self-

avoiding path linking two vertices of G on any spanning tree of G. Thus, spanning trees

can be built out of self-avoiding paths. We first give the general strategy for the proof of

the equality āi/b̄i = d̄i/ēi. Then, the following ratio

Ri(sj) =
∑
P

P (i, sj)/
∑
P

P (̄i, sj)

is proven to be independent of sj if sj is a vertex infinitely far from vi on G, vi being

a vertex incident with the propagator i. (The notion of distance on G will be discussed

later on. By infinitely far we mean that an infinite number of propagators separate vi

from sj). P (i, sj) is a self-avoiding path linking vi to sj going through i. P (̄i, sj) is also a

self-avoiding path linking vi to sj but not going through i. The proof uses the evaluation

of Ri(sj) as a mean-value in a volume Vj . In fact Ri(sj+1) will turn out to be the average

of Ri(sj). Letting j → ∞, the averaging process, repeated an infinite number of times,

removes the dependence on sj of Ri(sj). This proof is essential as the same proof will be

used to treat m-paths, i.e. paths with m connected parts, of which at least one of them

is a path P (i, sj) or a path P (̄i, sj). We also discuss some possible difficulties associated

with the convergence of the averaging process.

In section 4, the main difficulty which could impede convergence is identified with the
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fact that the ratio Ri(sj+1)/Ri(sj)M can be infinitesimally close to one, Ri(sj)M being an

extremum value of Ri(sj) when the weight for Ri(sj)M is infinite with respect to the sum

of the weights for all other Ri(sj).

We solve this difficulty in the case of spanning trees in Vj directly. Then, sj is replaced

by {sj}, a partition of the vertices of the border of Vj with Vj+1−Vj , where Vj is a volume

which increases with j. In the averaging procedure Wm′

m ({sj}, {sj+1}) is the weight of

Rmi ({sj}) in the evaluation of Rm
′

i ({sj+1}). The weight-ratio

∑
{sj}M

Wm′

mM
({sj}M , {sj+1}) /

∑
{sj}

Wm′

m ({sj}, {sj+1})

is studied, where {sj}M is a partition corresponding to Rmi ({sj}M ), i.e. an extremum

value of Rmi ({sj}) and {sj} any other partition. When the above weight-ratio becomes

infinite we have a convergence problem in the case of spanning trees equivalent to the one

for paths mentioned above. We then prove that if a constraint on the construction of the

Vj ’s is imposed which, indeed, is easy to implement, the above weight-ratio takes the same

value for all partitions {sj+1} of the vertices on the border of Vj+1 with G− Vj+1.

This result allows to conclude that if the above weight-ratio is infinite, it is infinite

whatever {sj+1} and then Rm
′

i ({sj+1}) is equal to Rmi ({sj}M ), implying that convergence

has been obtained. When, this weight-ratio is finite, then the convergence of the averaging

process is not impeded and a unique value for Rm
′

i ({sj+1}) is obtained as j →∞.

In the last sub-section we show how the averaging process works in the case of spanning

trees on G (instead of paths or multiple paths).

In section 5, the use of the above proof allow the proof of the factorization theorem.

Section 6 will be the conclusion.
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2. The α-representation

Here, we deal with scalar field theories in d Euclidean dimensions. We study one-

line, one-vertex irreducible Feynman graphs with I internal lines (propagators), L loops,

external momenta Pv and we take the coupling constant equal to - 1 in order to simplify.

Then, FG, the Feynman amplitude for a graph G and for a field of mass m reads [8]

FG = h0(4π)−dL/2
∫ h0

0

[
I∏
i=1

dαi] δ(h0 −
∑
i

αi) [PG(α)]−d/2.

∫ ∞
0

dλ/λ λI−dL/2 exp{−λ[QG(Pv, α) +m2h0]} (2)

where PG(α) is a homogeneous polynomial of degree L in the αi’s defined as

PG(α) =
∑
T

∏
l /∈T

αl (3)

where the sum runs over all the spanning tree T of G. (A spanning tree of G is a tree

incident with every vertex of G). QG(P,α) is quadratic in the Pv’s and is given by the

ratio of a homogeneous polynomial of degree L+1 over PG(α)

QG(Pv, α) = [PG(α)]−1
∑
C

sC
∏
l∈C

αl (4)

where the sum runs over all cuts C of L+1 lines that divide G in two connected parts

G1(C) and G2(C), with

sC = (
∑

v∈G2(C)

Pv)2 = (
∑

v∈G1(C)

Pv)
2 (5)

(A cut C is obtained from a tree T by cutting off one line of T . Then, the cut C will consist

of all lines on G not on T plus the line of T which has been cut). We note that λ can be

interpreted as an overall scale for the α-parameters ((2) indicates that
∑
i

αi = h0 where

h0 is arbitrary but taken equal to one in most circumstances). The integration over λ gives

the overall divergence of FG for a renormalizable theory. Here, we will limit ourselves to

super-renormalizable theories, i.e. I − dL/2 will always be positive, giving a convergent

integral
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Iλ(QG) =

∫ ∞
0

dλ/λ λI−dL/2exp{−λ[QG(Pv, α) +m2h0]}

= Γ(I − dL/2) [QG(Pv, α) +m2h0]−(I−dL/2) (6)

Now, the spirit of the demonstration concerning the replacement of the αi’s by their

mean-values ᾱi consists in isolating the dependence of the integrand of FG on one particular

αi and in using the mean-value theorem to perform the integration [7]. A discussion of the

consistency of the result of this integration then shows that one should have, in any case

[7],

ᾱi = O(h0/I) (7)

This property can easily be understood by considering the phase space for the I variables

αi, which can be found to be equal to hI−1
0 /(I − 1)! ∼ (e h0/I)I , leaving a phase space for

each αi of the order of e h0/I.

Then, one has to show that indeed all ᾱi’s can be taken equal to some common value

ᾱ. Consequently, we shall define ᾱ by

NT ᾱ
L =

∑
T

∏
l /∈T

ᾱl = PG(ᾱ) (8)

where NT is the number of spanning trees on G. We see from (2) that the expression

obtained for FG by using the mean value theorem is

FG = h0(4π)−dL/2[PG(ᾱ)]−d/2Iλ[QG(Pv, {ᾱi})] h
I−1
0 /(I − 1)! (9)

where the factor hI−1
0 /(I − 1)! is the volume of the phase space available for the αi’s. So,

in fact, from (9) it is clear that our goal amounts to showing that QG(Pv, {ᾱi}) is not

affected by the replacement ᾱi → ᾱ. Let us write

PG(ᾱ) = āi + b̄iᾱi (10)
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C

sC
∏
l∈C

ᾱl = d̄i + ēiᾱi (11)

where āi, b̄i, d̄i and ēi do not contain any ᾱi factor. As

QG(Pv, {ᾱi}) = (ēi/b̄i)(d̄i/ēi + ᾱi)/(āi/b̄i + ᾱi) (12)

it is easily seen that if

d̄i/ēi = āi/b̄i , (13)

the shift ᾱi → ᾱ will not affect QG(Pv, {ᾱi}). Repeating the reasoning for all ᾱi’s shows

that QG(Pv, {ᾱi}) is invariant under the replacement of all the ᾱi’s by ᾱ if (13) is true. It

will be the purpose of the next sections to demonstrate that, up to vanishing corrections

as I →∞, (13) is indeed true. Then, the shift of Log [QG(Pv, {ᾱi})]

δQG(Pv, {ᾱi})/QG(Pv, {ᾱi}) = Q−1
G

I∑
i=1

∂QG

∂ᾱi
δαi (14)

will be vanishing, because δαi ∼ 1/I for any i (δαi = ᾱ − ᾱi). Then, defining ∆(ᾱ) as

∆(ᾱ) =
∏
l∈G

ᾱl (15)

i.e. defined as the product of all ᾱl’s over G, we can write (see (3) and (10))

āi = ∆(ᾱ)
∑
T ⊃i

∏
l∈T

ᾱ−1
l (16)

b̄i = ᾱ−1
i ∆(ᾱ)

∑
T 6⊃i

∏
l∈T

ᾱ−1
l (17)

In an analogous way d̄i and ēi can be written

d̄i = ∆(ᾱ)
∑
T ⊃i

∏
l∈T

ᾱ−1
l

∑
k∈T
k 6=i

ᾱk sCk ν
−1(Ck) (18)
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ēi = ᾱ−1
i ∆(ᾱ)

∑
T 6⊃i

∏
l∈T

ᾱ−1
l

∑
k∈T

ᾱk sCk ν
−1(Ck) (19)

where ν(Ck) counts the number of times the same cut Ck is obtained in cutting trees T

at k, k being among the ν(Ck) propagators binding the connected parts of G, G1(Ck) and

G2(Ck) separated by Ck.

To understand how (18) and (19) can be obtained from (11), let us recall that we are

summing in (11) over all possible cuts C belonging to G. It is then, useful to note that

the same cut Ck, containing the propagator k, can be obtained by cutting different trees

provided these trees have exactly the same structure in G1(Ck) and G2(Ck) and only in this

case. That is, they will only differ by the propagator on them linking G1(Ck) and G2(Ck).

Let us note by ν(Ck) the number of propagators on G linking G1(Ck) and G2(Ck). Then,

ν(Ck) will count how many trees T can be cut to yield the same cut Ck. Dividing by ν(Ck)

in (18) and (19) ensures that each cut is only counted once when cutting all possible trees

yielding it. (sCk is defined by (5) where C is Ck). Of course, all possible cuts are generated

because k is taken to be any propagator of G on T .

Comparing (18) and (19) to (16) and (17) respectively, we see that the sum∑
k∈T

ᾱk sCk ν
−1(Ck) is the factor which distinguishes (āi, b̄i) from (d̄i, ēi). If this factor

can be factorized out of the sum over trees, the relation (13) will be obvious. However,

this can only be done if the structure of the trees far from i is independent of their struc-

ture near i and when, in addition, k and i are far apart on G, i.e. if they are separated by

an infinite number of propagators on G. When I →∞, most of the propagators of G will

be far from i, so that we will be able to neglect in the sum over k, those k which are in a

finite range of i. So our main goal will be, in fact, to show that a factorization occurs in

the sum of weighted trees for domains far apart on G.
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3. Construction of the spanning trees on G : paths on G

It will prove to be convenient for the following to rewrite (18) and (19) by inverting

the summation order, T ik (Ck) being a spanning tree which contains i and k and which cut

at k gives a cut Ck, containing k,

d̄i = ∆(ᾱ)
∑
k

ᾱk
∑
T i
k

(Ck)

sCk ν
−1(Ck)

∏
l∈T i

k

ᾱ−1
l (20)

ēi = ᾱ−1
i ∆(ᾱ)

∑
k

ᾱk
∑
Tk(Ci

k
)

sCi
k
ν−1(Cik)

∏
l∈Tk

ᾱ−1
l (21)

where Tk(Cik) contains k but not i and gives a cut Cik when cut at k, Cik containing i and

k. What we want to demonstrate now is that for any k far apart from i on G, defining

d̄i,k =
∑
T i
k

(Ck)

sCk ν
−1(Ck)

∏
l∈T i

k

ᾱ−1
l (22)

ēi,k = ᾱ−1
i

∑
Tk(Ci

k
)

sCi
k
ν−1(Cik)

∏
l∈Tk

ᾱ−1
l (23)

we have

d̄i,k/ēi,k = āi/b̄i (24)

up to terms which tend to zero as I →∞. The proof of (24) naturally entails the validity

of (13) because d̄i = ∆(ᾱ)
∑
k

ᾱk d̄i,k and ēi = ∆(ᾱ)
∑
k

ᾱk ēi,k and also because those k

within a “volume” Vj containing i and a number of propagators infinitesimal compared to

the total number in G contribute to a negligible fraction of the sum, as will be shown at

the end of section 5.

A - General strategy for the proof of (24)

We now give the general lines of the proof of the relation (24).
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In the first place we consider G as embedded in a R3-space embedded with a metric.

Then, we consider a volume Vj in that space which contains the propagator i. When j is

finite the number of propagators contained in Vj will be finite. As j →∞ the number of

propagators contained in Vj will tend to infinity. We will however consider the number of

propagators on G outside Vj infinite with respect to the number of those inside Vj , even

as j →∞. The propagator k is taken to be outside Vj . Of course, in the sum over all k’s

some of them are inside Vj , but their number will be infinitesimal with respect to the total

number of k’s, i.e. the number of propagators in G. So the contribution of k’s inside Vj

will be negligible in the sum over them.

The reason we want to isolate Vj is that we shall see that inside Vj we can sum over

sub-trees in it (when a spanning tree on G is cut by the border of Vj , the portion of that

spanning tree inside Vj has no reason to be connected and is in general composed of several

connected pieces that we call sub-trees) independently of the rest of the trees outside it

provided the vertices on the border of Vj are partitioned in a definite way, each partition

corresponding to a partition of sub-trees in Vj . So we get a factorization in the structure

of trees on G, the sum over all trees in G being factorized into the sum over sub-trees in Vj

times the sum over all sub-trees in G− Vj for a given partition of the border of Vj in sub-

sets of vertices, each sub-set being attached to the one sub-tree in Vj . Of course, sub-trees

in G − Vj (i. e. G minus all propagators and vertices in Vj) have to be compatible with

those in Vj (not forming loops for instance) in that one should obtain trees in G altogether.

However, again this implies only a restriction of the partition of vertices on the border of

Vj , with respect to sub-trees in G − Vj this time. So given the structure on the border of

Vj , factorization of trees inside Vj and outside it holds.

However, we still have a dependence on the structure of the partition of the border of

Vj . That is where comes a first and essential part of the proof.

Let us call T (i, {sj}) those sets of sub-trees in Vj which contain the propagator i and
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T (̄i, {sj}) those sets of sub-trees in Vj which do not contain the propagator i, both being

attached to a partition {sj} of the border of Vj . Let us define the ratio

Ri({sj}) =
∑
T

T (i, {sj})/
∑
T

T (̄i, {sj}) (25)

which is the ratio of the sum of the weights of sub-trees sets T (i, {sj}) over the sum of

the weights of sub-trees sets T (̄i, {sj}). (Each propagator ` on a sub-tree brings a factor

ᾱ−1
` in the weight of any sub-tree). Then, it will be proved in the next sub-section (for

self-avoiding paths) and in the next section (for trees themselves) that as j → ∞, i.e.

when the radius of Vj grows to infinity, but with Vj still being infinitesimal with respect

to G, Ri({sj}) tends to some value R∞i independent of the partition {sj}. Using the

factorization property discussed above, this amounts to say that

āi/b̄i = R∞i ᾱi (26.a)

(see (16) and (17)). Now, the same argument can be used to derive also

d̄i,k/ēi,k = R∞i ᾱi (26.b)

and thereby prove (24) if the additional structure of cutting throught k does not interfere

with the inside of Vj , i.e. if ν(Ck) and sCk are unaffected by the inside of Vj .

Let us denote by Sk the surface defined by the cut Ck going through k and dividing

G into two separate pieces G1(Ck) and G2(Ck). (Sk cuts through all the propagators on

G linking G1(Ck) and G2(Ck)). If Sk does not go through Vj , the factorization property

then trivially shows that the sums inside Vj are unaffected by Sk, there is no interference.

If Sk goes through Vj , ν(Ck) counting the propagators in Sk will only be infinitesimally

affected by the structure of sub-trees inside Vj , as well as sCk , because the number of

propagators in Vj is infinitesimal with respect with their total number in G. So there is
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only an infinitesimal interference in this case and therefore the relations above prove the

validity of (24).

In the next sub-sections, we simplify in a first approach, replacing trees on G by

self-avoiding paths and prove in this case that the ratios Ri({sj+1}) are indeed averages

of Ri({sj}). We also show how the factorization described above works. The averaging

property means that

Ri({sj})min ≤ Ri({sj+1}) ≤ Ri({sj})max (27)

where Ri({sj})min and Ri({sj})max are respectively the maximum and the minimum

value of Ri({sj}). If, in the averaging, Ri({sj})min or Ri({sj})max only have a finite

weight relative to the sum of the weights of the other values of Ri({sj}), then it is clear

that Ri({sj+1}) will be different from Ri({sj})min or Ri({sj})max, even having at least a

finite (non-infinitesimal) difference with them. Then, we will have

Ri({sj+1})/Ri({sj})max = 1− η1 (28.a)

Ri({sj+1})/Ri({sj})min = 1 + η2 (28.b)

η1 and η2 being positive and non-infinitesimal. As j → ∞, the interval of variation of

Ri({sj}) we tend to zero, and a value R∞i independent of {sj} will be obtained for Ri{sj}.

However, there may be a snag if the weight of Ri({sj})max or Ri({sj})min is infinite

with respect to the sum of the weights of the other values of Ri({sj}) for some {sj+1},

because (28) may not hold. In the next section, we study the weight-ratio

Wm′

m2
({sj}2, {sj+1})/W

m′

m1
({sj}1, {sj+1})

of weights corresponding to Rm2
i ({sj}2) and Rm1

i ({sj}1) in the evaluation of Rm
′

i ({sj+1})

and prove that when a certain constraint (easy to implement) on the construction of the
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Vj ’s is imposed, it is independent of {sj+1}. This allows us to conclude that either ηj is

finitely different from zero or that when it is infinitesimal, it is so for any {sj+1}, ensuring

convergence.

B - Self-avoiding paths

Definition

A path P (v1, vn) is defined as the succession of propagators (v1v2), (v2v3), · · · ,

(vn−1vn) linking v1 to vn, v1, v2, · · · , vn being n vertices on G. In a self-avoiding

path v1, v2, · · · , vn are all different vertices.

A closed path is constructed when v1 and vn are the same vertex. A loop is a self-

avoiding closed path. ut

The main tool we will be using now is the fact that, taking a vertex vk at one end

of the propagator k and a vertex vi at one end of the propagator i, for each spanning

tree T on G, there is one path, and only one, on T , binding vk and vi. Furthermore,

this path is self-avoiding, it goes through each vertex it is incident with only once. So

the idea is to construct all spanning trees on G by beginning to construct all self-avoiding

paths P (vi, vk) on G binding vi and vk. Two spanning trees of G having a different path

P (vi, vk) are necessarily different. (If that were not the case, we would have two different

paths P (vi, vk) on the same tree, giving a loop on this tree which is forbidden). Of course,

for every such path there exist many spanning trees obtained by sprouting branches out

of the path. In fact, counting the number of trees associated with one path is the same

as counting the number of ways branches can be sprouted out of this path. However, in a

first step, we will concentrate our attention on the paths P (vi, vk) themselves, taking into

account the effect of branches later on, i.e. in the next section.

Now, let us consider the sum over all paths, each one being weighted by the product of

all ᾱ−1
l belonging to the propagators along it. We denote by P (i, s) a path P (vi, s) which
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goes through the propagator i and by P (̄i, s) a path which does not go through i, both paths

relating vi and s. Then, the sums over all P (i, vk) and P (̄i, vk) can be written (the sum

over paths P ,
∑
P

, is a multiple sum, a summation being made for each path P (sp, sp+1)),

∑
P

P (i, vk) =
∑
P

∑
si,...,slk−1

P (i, s1)P (s1, s2)...P (slk−1, vk) (29.a)

∑
P

P (̄i, vk) =
∑
P

∑
si,...,slk−1

P (̄i, s1)P (s1, s2)...P (slk−1, vk) (29.b)

s1, s2, ..., slk−1 belonging to the ensemble of the border-vertices of closed volumes

V1, V2, ..., Vlk−1 such that

V1 ⊂ V2 ⊂ ... ⊂ Vlk−1 (30)

It is important to note that a path P (sj , sj+1) will go out of Vj at sj for the first time but

will otherwise be entirely contained in Vj+1. Moreover, P (sj , sj+1) can re-enter Vj and go

out again at some vertex s′j . We also will take V1 to have a border at a finite distance of

vi, and the border of Vj+1 to be at a finite distance of Vj in terms of the minimum number

of propagators separating them.

Let us now define this notion of distance on a graph. We are going to embed G in an

Euclidean space where each propagator has a definite length (this is the purpose of this

embedding). Therefore, any path will have a definite length in this Euclidean space. The

length of the path with the least number of propagators will be the distance between two

vertices on G.

Let us also remark that, according to our above description, the distance between two

vertices measured in Euclidean space and measured in the least number of propagators

joining them have a priori no monotonicity relation between them, because the lengths of

propagators can vary from one part to another part of G. We now define in a constructive

way the volumes Vj .
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C - Construction of the Vj’s

We suppose that G is embedded in a 3-dimensional R3 space. Then, we define the

sphere S1, i.e. the ensemble of points within a certain radius, centered at the vertex vi,

provided a metric has been defined in R3. The radius of S1 will be taken such that S1

contains a finite number of propagators. In general, the two-dimensional border-surface of

S1 cut through propagators of G. We then deform continuously S1 inwards in such a way

that its border slides along the cut propagators until vertices attached to these propagators

are met.

Definition

The border of V1 is the deformed border of S1. ut

As we suppose that vi is inside S1, it will also be inside V1. Note that the border of V1

may also contain entire propagators linking two vertices on its boundary. All the vertices

and propagators belonging to the deformed sphere S1 will belong to V1.

Constructing V2, we start with a sphere S2 of radius larger than that of S1. Then,

we deform S2 along the propagators cut by its border-surface until we meet the vertices

attached to these propagators. Now, we are tempted to define V2 in the same way as we

did for V1, by taking its border to coincide with the deformed sphere S2. However, we will

do so only in the case where the part of G between the borders of the deformed S2 and S1

is connected. In general, we expect that, in fact, there will be several connected pieces of

G between the borders of S2 and S1. For each of these pieces we will have a corresponding

connected piece of V2−V1 (meaning V2 from which V1 has been subtracted) containing all

the vertices and propagators of this connected piece of G. Let us consider in more details

a given connected piece in V2 − V1.

Such a piece, let us call it (V2 − V1)C has a boundary formed by three pieces

i) a piece on the border of the deformed sphere S2, which itself has a closed curve
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C2 as boundary,

ii) a piece on the border of the deformed sphere S1, which itself has a closed

curve C1 as boundary,

iii) a cylindrical piece having C1 and C2 as boundaries. It should not be crossed

by G.

In short, each connected (V2 − V1)C will enclose a corresponding connected part of G

in V2 − V1, let us call it GC . Then, C2 encloses all the vertices and propagators of GC

on the surface of the deformed S2. In the same manner C1 encloses all the vertices and

propagators of GC on the border of V1 (which according to the last definition is the surface

of the deformed S1). Note that there may be, in some cases, no vertex of GC either in the

surface enclosed by C1 or in the surface enclosed by C2, due to the topology of G (G may

not go through the surface of the deformed S2 at the border of (V2 −V1)C , or through the

piece of border of V1 in common with that of (V2 − V1)C).

Another condition we have on the boundary of (V2 − V1)C is that it should not cross

the boundary of another connected piece in V2 − V1. In that way, two different connected

volumes of V2 − V1 do not overlap.

This condition and the properties i), ii) and iii) above define the boun dary of one

connected part (V2 − V1)C .

For the following volumes V3, · · · , Vj , the constructive process we just described for V2

repeats itself, each connected piece of Vj − Vj−1 being defined through its boundaries. It

may happen that two successive Vj−1, Vj have some coinciding part of their borders (on

a common part of the deformed Sj−1 and Sj) because the density of propagators may be

much larger in other parts of Vj − Vj−1. This ends our construction of the volumes Vj .

D - An averaging theorem

We then have an unequivocal definition for the paths P (vi, vk). In ge neral the ratio
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P (i, s1)/P (̄i, s1) depends on s1. However, considering sums over paths, we want to prove

that

Ri(sj) =
∑
P

P (i, sj)/
∑
P

P (̄i, sj) (31)

tends to a value independent of sj as j →∞. This is the clue for deriving (24) and thereby

the factorization property. (It will also be proven in section 5 that when k is outside Vj ,

j →∞, for a given k, the factors sCkν
−1(Ck) and sCi

k
ν−1(Cik) are equal). Now we want to

prove the following lemma

Lemma 1

If P (sj , sj+1) never returns in Vj then,

Ri(sj)min ≤ Ri(sj+1) ≤ Ri(sj)max (32)

where Ri(sj)min and Ri(sj)max are respectively the minimum and the maximum values

of Ri(sj) for those sj coupled to sj+1 by at least one path P (sj , sj+1).

Proof

As a first remark, we can factorize the expression for
∑
P

P (i, sj+1),

∑
sj

∑
P

P (i, sj)P (sj , sj+1) =
∑
sj

[
∑
P

P (i, sj)] [
∑
P

P (sj , sj+1)]

because the paths P (sj , sj+1) being entirely in Vj+1 − Vj never interact with the paths

P (i, sj) contained in Vj . Therefore, using (31) we can write

Ri(sj+1) = {
∑
sj

[
∑
P

P (i, sj)] [
∑
P

P (sj , sj+1)]}/

{
∑
sj

[
∑
P

P (̄i, sj)] [
∑
P

P (sj , sj+1)]}

= {
∑
sj

Ri(sj) [
∑
P

P (̄i, sj)][
∑
P

P (sj , sj+1)]}/

{
∑
sj

[
∑
P

P (̄i, sj)][
∑
P

P (sj , sj+1)]} (33)
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We see that Ri(sj+1) is an average of Ri(sj) for those sj coupled to sj+1 and therefore

(32) is true. ut

Our goal is, of course, a repeated use of (32) and as j grows we expect Ri(sj) to

become independent of sj . However, we have restricted the paths P (sj , sj+1) to be in

Vj+1 − Vj in order to avoid an interaction with the paths P (vi, sj). If we allow such an

interaction to occur, i.e. if P (sj , sj+1) returns in Vj , we have to distinguish between the

different topologies of P (sj , sj+1). That is, we have to cut P (sj , sj+1) in parts which stay

in Vj and parts which stay in Vj+1 − Vj in order to be able to factorize the sum over

paths. Let us call s0
j the first vertex of P (sj , sj+1) and s1

j , s
3
j , ..., s

2m−3
j the vertices where

P (sj , sj+1) re-enters Vj . (At s2
j , s

4
j , ..., s2m−2

j P (sj , sj+1) goes out of Vj). We denote by

{slj} the ensemble s0
j , s

1
j , s

2
j , ..., s

2m−2
j and Mj the maximum number of connected parts of

P (i, sj+1) in Vj . Then,
∑
P

P (i, sj+1) can be written

∑
P

P (i, sj+1) =
∑
s0
j

[
∑
P

P (i, s0
j )] [

∑
P

P (s0
j , sj+1)]

+

Mj∑
m=2

∑
{sl
j
}

∑
{s2lj ,s

2l−1
j }

[
∑
P

P (i, s0
j )
m−1∏
l=1

P (s2l−1
j , s2l

j )]

[
∑
P

P (s2m−2
j , sj+1)

m−1∏
l=1

P (s2l−2
j , s2l−1

j )] (34)

where the paths P (i, s0
j ), P (s2l−1

j , s2l
j ) are contained in Vj and the paths P (s0

j , sj+1),

P (s2l−2
j , s2l−1

j ) and P (s2m−2
j , sj+1) have all their propagators contained in Vj+1 − Vj .

{s2`
j , s

2`−1
j } is the ensemble of couples (s2`

j , s
2`−1
j ) on P (sj , sj+1). The first term in (34)

stands for the case where P (sj , sj+1) never returns in Vj and therefore corresponds to the

case of Lemma 1 (m = 1). The following terms describe the case where P (sj , sj+1) returns

in Vj (m ≥ 2). Then, for a given m, {slj}, {s
2l
j , s

2l−1
j } the summation over paths has
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been factorized into paths contained in Vj and paths contained in Vj+1 − Vj . Notice that

the couples (s2l
j , s

2l−1
j ), in fact, select an order among the slj ’s, their order along the path

P (s0
j , sj+1). However, the sum over all orders can be factorized as a sum over all orders

of paths in Vj times a sum over all orders of paths in Vj+1 − Vj . So, we could dispense

ourselves of tracking down the order of the slj’s through the couples (s2l
j , s

2l−1
j ). We do so

only in order to make clear how the summation over paths is done. Later on, in the case

of spanning trees this order will be meaningless and it will not appear in the summation

over all trees. Let us now define by (for m ≥ 2)

Rmi (sj) = [
∑
P

P (i, s0
j )
m−1∏
l=1

P (s2l−1
j , s2l

j )]/

[
∑
P

P (̄i, s0
j )

m−1∏
l=1

P̄ (s2l−1
j , s2l

j )] (35)

the ratio of the part of
∑
P

P (i, sj+1) in Vj over the part of
∑
P

P (̄i, sj+1) which also is in

Vj ; m, {slj} and the couples {s2l
j , s

2l−1
j } are given.

P̄ helps to distinguish the paths which are associated with P (̄i, s0
j ). Of course, Ri(sj) ≡

R1
i (sj).

We remark that the sums over P in (35) have not been factorized. This is, of course,

because the paths in Vj have to avoid each other, so that a configuration of one of them

affect the summation over the others. Then, we have the following theorem

Theorem 1

Rmi (sj)min ≤ R
m′

i (sj+1) ≤ Rmi (sj)max (36)

where Rmi (sj)min and Rmi (sj)max are respectively the minimum and the maximum values

of Rmi (sj) viewed as a function of m, {slj} and {s2l
j , s

2l−1
j }, and for those slj on at least

one path P (i, sj+1).
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Proof

For the sake of simplicity of notation we will make implicit the sum
∑
P

each time the

symbol P appears. Then define

Pm(i, sj) = P (i, s0
j )

m−1∏
l=1

P (s2l−1
j , s2l

j ) (37.a)

Pm(̄i, sj) = P (̄i, s0
j)

m−1∏
l=1

P̄ (s2l−1
j , s2l

j ) (37.b)

where the symbol P̄ is for a path which is associated with P (̄i, s0
j ) and could differ from a

path P because they are returning in V1 where the paths P (i, s0
j ) and P̄ (i, s0

j ) are different.

Writing Pm
′
(i, sj+1) we obtain (we remark that, except for P (i, s0

j ) and
m−1∏
l=1

P (s2l−1
j , s2l

j )

which are confined in Vj , all other P ’s are in Vj+1 − Vj) (see fig. 1)

Pm
′

(i, sj+1) =
∑
s0j

P (i, s0
j )P (s0

j , s
0
j+1)

m′−1∏
l=1

P (s2l−1
j+1 , s

2l
j+1)

+

Mj∑
m=2

∑
{sl
j
}

P (i, s0
j )
m−1∏
l=1

P (s2l−1
j , s2l

j ) .

∑
{lt}

tj∏
t=1

P (s2lt−2
j , s2lt−1

j ) .

∑
{lu}

uj∏
u=1

P (sluj , s
lu
j+1) .

∑
{lv}

vj+1∏
v=1

P (s2lv−2
j+1 , s2lv−1

j+1 ) (38)

with

m− tj + vj+1 = m′ (39.a)

{slj} = {s2lt−2
j } ∪ {s2lt−1

j } ∪ {sluj } (39.b)
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The first term in (38) stands for the case where the connected component starting from

vi of Pm
′
(i, sj+1), P (i, s0

j ) P (s0
j , s

0
j+1), goes out of Vj at s0

j and stays in Vj+1−Vj, with all

other connected components P (s2l−1
j+1 , s

2l
j+1) also staying in Vj+1 − Vj . In this case, there

is only one connected part in Vj , P (i, s0
j ), of Pm

′
(i, sj+1) and therefore this corresponds

to m = 1. The following terms in (38) describe the other cases with m components

(m ≥ 2) in Vj : P (i, s0
j ) with m - 1 other components P (s2l−1

j , s2l
j ). The connected paths

P (s2lt−2
j , s2lt−1

j ) are never incident with the border of Vj+1 and end up at the border of

Vj . The connected paths P (sluj , s
lu
j+1) start on the border of Vj and end up on the border

of Vj+1 while the connected paths P (s2lv−2
j+1 , s2lv−1

j+1 ) start and end up on the border of Vj+1

with no incidence with the border of Vj .

We remark that for m′ = 1 we recover expression (34) because the products over the

paths P (s2l−1
j+1 , s

2l
j+1) and P (s2lv−2

j+1 , s2lv−1
j+1 ) do not exist in that case and the product over

P (sluj , s
lu
j+1) is replaced by one unique term P (s2m−2

j , sj+1) in (34).

The relation (39.a) is obtained by counting the number of vertices of Pm(i, sj) on the

border of Vj which is equal to 2m - 1 and the number of vertices of Pm
′
(i, sj+1) on the

border of Vj+1 which is equal to 2m′ - 1 and calculating the difference 2(m′ - m). This

difference comes from the connected paths P (s2lv−2
j+1 , s2lv−1

j+1 ) which contributes 2vj+1 and

P (s2lt−2
j , s2lt−1

j ) which contributes −2tj to it. The same expression as (38) is obtained

for Pm
′
(̄i, sj+1) by replacing P (i, s0

j ) by P (̄i, s0
j ) and P (s2l−1

j , s2l
j ) by P̄ (s2l−1

j , s2l
j ). Then,

writing (sums over P , again, are implicit)

Rm
′

i (sj+1) = Pm
′

(i, sj+1)/Pm
′

(̄i, sj+1) (40)

and using (35) in it we obtain Rm
′

i (sj+1) as an average of Rmi (sj) function of the sj ’s and

m, the average being the result of a sum over m, {slj} and the sets of couples {s2l−1
j , s2l

j },

{s2lt−2
j , s2lt−1

j }, {sluj , s
lu
j+1} and {s2lv−2

j+1 , s2lv−1
j+1 } aside from the sum over paths P . However,

once the set {slj} is given the partition of the paths in Vj+1 − Vj does not depend on that

of the paths in Vj because there is no interaction between them. Therefore the sum over
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all couples can be factorized out as it was already the case for the sum over the couples

{s2l−1
j , s2l

j }. Consequently, the only variables which are necessary to retain are m and the

set {slj} in the functional dependence of Rmi (sj). As said earlier we retain the dependence

on the couples {s2l
j , s

2l−1
j } in order to remind ourselves that we had to sum over all orders,

this sum being, again, factorizable. Therefore the relation (36) follows. ut

Again, a repeated use of (36) will allow us to make all the ratios Rmi (sj) converge

towards one value independent of sj as j →∞.

However, we have to be careful about two problems potentially hampering the effi-

ciency of this uniformization of Rmi (sj).

a) As long as Rmi (sj) has not converged, both inequalities (the same as (28.a) and

(28.b))

Rm
′

i (sj+1)/Rmi (sj)max < 1− η1 (41.a)

Rm
′

i (sj+1)/Rmi (sj)min > 1 + η2 (41.b)

should be satisfied, η1 and η2 being two positive non-infinitesimal constants.

b) G could have the topology of a tree-like structure or ”polymer”, i.e. many branches

could stem out of V1 and Vj+1 − Vj would be multiply connected. Remember that in

Lemma 1 and Theorem 1, we have the restriction that sj ’s should be on at least one path

P (i, sj+1). Then, a path going in some connected part of Vj+1 − Vj could never go in

another connected part of Vj+1 − Vj because in order to do so, it would have to return in

V1 which may be impossible because it would have to go through vertices with which it is

already incident. Then, due to this finite volume effect, most paths going along one branch

of Vj+1 − Vj would never go in another branch. This leaves the possibility for Rmi (sj) of

evolving towards a different value along each branch of this tree-like structure, instead of

a unique value as we wanted to show.

However, for spanning trees on G this difficulty is easily removed. The reason for
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this is clear : a spanning tree of G is incident with every vertex of G. Then, we can

think that a spanning tree on G is composed of one path P (i, sj+1) and a myriad of paths

stemming out of it, the ensemble of all paths going through all vertices of Vj+1, and then

through all connected domains of Vj+1−Vj . For trees, a separate evolution of the quantity

corresponding to Rmi (sj+1) along branches of Vj+1 − Vj is therefore prohibited. That is

the essential difference between paths and spanning trees in our approach.

In the next section we also show how the problem a) is solved by insuring the validity

of (41.a) and (41.b).

4. Trees on G

A - Convergence of the iteration of mean-value operation

Let us consider Ri(sj+1) as given by the mean-value expression (33). For each sj ,

Ri(sj) is multiplied by a weight W (sj , sj+1) =
∑
P

P (̄i, sj) P (sj , sj+1)/
∑
P

P (̄i, sj+1). Ei-

ther (41.a) or (41.b) may be violated if and only if in the sum
∑
sj

Ri(sj)W (sj , sj+1) the

weight W (sj , sj+1) associated with Ri(sj)max or Ri(sj)min is infinite with respect to the

sum of weights of any other value for Ri(sj). (By infinite, we mean that the ratios should

be infinite).

Indeed, let us verify this and use (33), isolating the contribution of Ri(sj)max, sjm

being the vertex for which Ri(sjm) = Ri(sj)max

Ri(sj+1) = [Ri(sj)max W (sjm, sj+1) +
∑

sj 6=sjm

Ri(sj) W (sj , sj+1)]/

[W (sjm, sj+1) +
∑

sj 6=sjm

W (sj , sj+1)] . (42)

We will take Ri(sj)/Ri(sj)max for sj 6= sjm to have a finite (non-infinitesimal) differ-

ence with one (otherwise convergence to a unique value is already achieved) and simplify
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the notation, defining

Wm = W (sjm, sj+1) (43.a)

W =
∑

sj 6=sjm

W (sj , sj+1) . (43.b)

Then,

Ri(sj+1)/Ri(sj)max =
[
Wm Ri(sj)max +WR̄i(sj)

]
/

[(Wm +W )Ri(sj)max] (44)

with

WR̄i(sj) =
∑

sj 6=sjm

Ri(sj) W (sj , sj+1) (45)

R̄i(sj) being the mean-value of Ri(sj) for sj 6= sjm. We have

R̄i(sj) = (1 − η) Ri(sj)max (46)

η > 0, and non-infinitesimal, following our assumption that Ri(sj)/Ri(sj)max is finitely

different from one for sj 6= sjm. Hence, (44) gives

Ri(sj+1)/Ri(sj)max = 1− η/(1 +Wm/W ) (47)

which shows that (41.a) is satisfied provided the ratio Wm/W is not infinite. Of course, the

same sort of reasoning is also valid for showing that (41.b) is violated only if the weight of

Ri(sj)min is infinite with respect to the sum of the other weights.

Of course, it could also be that while having a finite weight, either Ri(sj)max or

Ri(sj)min dominates the sum because the number of sj ’s with Ri(sj) 6= (either Ri(sj)max

or Ri(sj)min) is infinitesimal with respect to the number of sj ’s with Ri(sj) = (either

Ri(sj)max or Ri(sj)min). However, in this particular case, the range of variation of
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Ri(sj+1) would be infinitesimal and its convergence to value independent of sj+1 insured,

which is what we want to demonstrate to be valid in any case.

Then, to obviate the difficulty mentioned above in the case of infinite weight-ratio

Wm/W for either Ri(sj)max or Ri(sj)min we may show that taking s1j and s2j separated

by a finite number of propagators in Vj+1 − Vj as well as in Vj the weight associated with

Ri(s2j) can be obtained from the weight associated with Ri(s1j) by multiplying it by a

finite factor. If Ri(s1j) is Ri(sj)max or Ri(sj)min and Ri(s2j)/Ri(s1j) is finitely different

from one, the ratioWm/W will then stay finite and the relations (41) will be valid. This can

be easily understood because the corresponding paths P (̄i, sj+1) can be obtained from each

other by a “local” deformation, i.e. by substituting only a finite number of propagators.

In the following, we will consider a proof of the validity of (41) inspired from this

idea, but specific to trees. Therefore, we will need to translate the language adopted for

paths and multi-paths into the one adopted for spanning trees and multiple-spanning trees.

When we consider a spanning tree on G, the part of G contained in Vj will in general be

a spanning m-tree in Vj , i.e. a spanning tree in Vj from which m propagators have been

removed. The vertices of the border of Vj will be separated into m sub-sets {smcj } (because

each sub-tree has to be incident with the border of Vj on the border of the deformed Sj in

order to be connected to the rest of the spanning tree on G), each sub-set {smcj } belonging

to one of the m sub-trees belonging to the spanning m-tree in Vj . There will also be

sub-trees in Vj+1 − Vj . Some (or all) of them will connect to a sub-tree in Vj to form, as

a whole, a spanning m′-tree in Vj+1, i.e. a m′-tree which is incident with all the vertices

contained in Vj+1. In the same way the vertices on the border of Vj+1 will be divided

into m′ sub-sets, each belonging to a sub-tree of a spanning m′-tree in Vj+1. Therefore, in

analogy with the multi-paths situation, we will write

Rmi ({sj}) =
∑
Tm

Tm(i, {sj})/
∑
Tm

Tm(̄i, {sj}) (48)

where Tm(i, {sj}) is the weight for a spanning m-tree in Vj going through the propagator
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i and Tm(̄i, {sj}) is the weight of a spanning m-tree in Vj not going through i.

As for multi-paths the only information conveyed from the structure of m-trees in Vj

to the sub-trees in Vj+1 − Vj is the partition {sj} of the vertices on the part of the border

of Vj which is on the border of the deformed sphere Sj. This partition is common to the

m-trees of weight Tm(i, {sj}) and weight Tm(̄i, {sj}) and is the ensemble of all sub-sets

{smcj }. We write in analogy with (33)

Rm
′

i ({sj+1}) =
∑
{sj}

Rmi ({sj}) W
m′

m ({sj}, {sj+1}) (49.a)

Wm′

m ({sj}, {sj+1}) =
∑
Tm

Tm(̄i, {sj})
∑
Tn

Tn({s′j}, {sj+1})/Nm′ (49.b)

Nm′ =
∑
Tm
′

Tm
′

(̄i, {sj+1}) (49.c)

where Tn({s′j}, {sj+1}) is the weight of a spanning n-tree in Vj+1−Vj which together with

a m-tree in Vj forms a spanning m′-tree in Vj+1. {s′j} may not be identical to {sj} because

not all vertices in {sj} may be incident with a n-tree in Vj+1 − Vj . Nm′ is the sum over

the weights of all spanning m′-trees in Vj+1, Tm
′
(̄i, {sj+1}), which do not go through i

and correspond to {sj+1}.

Some partitions {sj}M correspond to an extremum value Rmi ({sj}M ) and to ensure

the validity of (41) we have to ensure that the weight Wm′

mM
({sj}M , {sj+1}) corresponding

to these partitions does not become infinite relative to the sum of weights of the other

partitions. Or, alternatively if that case arises, showing that the ratio

∑
{sj}M

Wm′

mM
({sj}M , {sj+1}/

∑
{sj}

Wm′

m ({sj}, {sj+1}) (50)

stays infinite whatever {sj+1} is also solves our problem. Then, we would already have

convergence to a unique value Rm
′

i equal to Rmi ({sj}M ). Our strategy will consist in
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building a constructive procedure which allows us to calculate the ratio of two weights

Wm′

m2
({sj}2, {sj+1})/W

m′

m1
({sj}1, {sj+1}) (51)

for two different partitions {sj}1 and {sj}2, the partition {sj+1} remaining the same.

{sj+1} is the partition of vertices on the part of the border of Vj+1 on the deformed sphere

Sj+1. It consists in sub-sets {s
m′c
j+1}, (m′c = 1, · · · ,m′) of vertices on a sub-tree of a spanning

m′-tree in Vj+1. Now, {sj}2 can always be obtained from {sj}1 by a series of minimal

modifications, each of which consists in cutting in Vj+1−Vj a self-avoiding path connecting

two vertices s1j and s2j belonging to those forming {sj} instead of cutting a path staying

Vj relating the same vertices s1j and s2j . Thus, in a minimal modification a propagator in

Vj+1−Vj on a m′-tree in Vj+1 is replaced by a propagator in Vj , obtaining another m′-tree

in Vj+1 but with the same {sj+1} because s1j and s2j (and the vertices sj+1 connected to

them) stay connected. The reverse operation is also considered as a minimal modification.

We will discuss further below this minimal modification.

B - Proof of the independence of the weight-ratio (51) on {sj+1}

We know that for spanning trees in Vj+1, given two vertices s1j and s2j of {sj}, there

are two possibilities :

i) they are not connected in Vj ,

ii) they are connected in Vj by a self-avoiding path on the spanning tree.

Let us call such a path in Vj P1(s1j , s2j). From such a path, spanning trees in Vj+1 can

be constructed by rooting branches on it, and then second branches rooted on the first

branches, and then again branches rooted on these second branches, and so on until every

vertex in Vj+1 is incident with a branch. Let us suppose for a while that a self-avoiding

path P2(s2j , s1j) is entirely in Vj+1 −Vj . From this path again spanning trees in Vj+1 can

be constructed in the same way as for P1(s1j , s2j). However, on these last spanning trees

s1j and s2j are disconnected in Vj . We remark that the succession of paths P1(s1j , s2j)
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P2(s2j , s1j) forms a loop L which crosses the border of Vj with Vj+1 − Vj at s1j and s2j .

Then,

i) if we cut the loop L by removing one propagator (v1v2) on P1(s1j , s2j), v1 and v2

being the end-vertices of the propagator, we get a self-avoiding path on L, P (v2, v1) from

which spanning trees in Vj+1 can be constructed in which s1j and s2j are not connected

in Vj . P (v2, v1) is considered as P2(s2j , s1j) with two branches on P1(s1j , s2j) rooted at

s1j and s2j .

ii) If we cut the loop L by removing one propagator (v′1v
′
2) on P2(s2j , s1j), v′1 and

v′2 being the end-vertices of this propagator, we get a self-avoiding path P (v′1, v
′
2) from

which spanning trees in Vj+1 can be constructed in which s1j and s2j are connected in Vj .

P (v′1, v
′
2) is considered as P1(s1j , s2j) with two branches on P2(s2j , s1j) rooted at s1j and

s2j .

Cutting (v1v2) instead of (v′1v
′
2) on L then defines a minimal modification which

modifies {sj}. Calculating the weight of the sum of spanning m′-trees in Vj+1 obtained

by cutting m′ − 1 propagators of the spanning trees constructed in i) we get a weight

Wm′

m1
({sj}1, {sj+1}) if the cutting is made such as to preserve {sj}1 and {sj+1}. Calcu-

lating the weight of the sum of spanning m′-trees in Vj+1 obtained by cutting m′ − 1

propagators of the spanning trees constructed in ii) we get a weight Wm′

m2
({sj}2, {sj+1})

if again the cutting is made such as to preserve {sj}2 and {sj+1}. We will see that for a

given L the ratio the respective contributions from i) and from ii) to the weights is easily

obtained. (Here we have assumed that {sj}1 and {sj}2 are related by only one minimal

modification). However, to obtain the total contribution to the weights we have, of course,

to sum over all allowed L.

The justification for the use of the loop L is that it allows us to make a systematic

correspondence between paths P2(s1j , s2j) which have some part in Vj+1 − Vj and paths

P1(s1j , s2j) which stay in Vj . Let us call P2(skj , sk+1j) a sub-path of P2(s1j , s2j) in Vj+1−
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Vj , skj and sk+1j being vertices of {sj}. To P2(skj , sk+1j) we associate a path P1(skj , sk+1j)

in Vj so that P1(skj , sk+1j) P2(sk+1j , skj) will form a loop Lk. Let us give an ensemble

{Lk} of these loops, each being not incident with any another one. Relating the loops Lk

we have paths P (skj , sk′j) in Vj , with k′ 6= k+ 1, which are not incident with {Lk} except

at skj and sk′j and which are common to P1(s1j , s2j) and P2(s1j , s2j). It is clear then,

that the sets {Lk} allows us to make a systematic correspondence between all self-avoiding

paths P1(s1j , s2j) and all self-avoiding paths P2(s1j , s2j) :

P1(s1j , s2j)
{Lk}
←→ P2(s1j , s2j) (52)

where {Lk} and the paths P1(s1j , s2j), P2(s1j , s2j) are incident with {sj} at the same

vertices.

Now, on each Lk we can make a cut either in Vj or in Vj+1 − Vj in order to go

from a partition where skj and sk+1j are disconnected in Vj to partition where they are

connected in Vj . However, we see that for each k the cutting of a loop Lk corresponds to

a different minimal modification of the partition {sj}. Moreover, each loop Lk has to be

cut in order to have a tree. Therefore, to p loops Lk in {Lk} we have a set of p cuttings.

Here, requiring only one minimal modification to take place, we want to cut P1(s1j , s2j) at

most once. Suppose this cut takes place on a given loop Lk. Then, we will associate to

P1(s1j , s2j) the path P2(s1j , s2j) which differs from P1(s1j , s2j) only on Lk, i.e. we will have

only one Lk in {Lk}. Then, P1(s1j , s2j) will consist of the succession of paths P (s1j , skj)

P1(skj , sk+1j) P (sk+1j , s2j), all in Vj , see fig. 2. The simplest topology appears when s1j

is skj and s2j is sk+1j , Lk becoming the loop L described before. In the following, we will

treat this simple case first because the reasoning is almost unchanged passing from L to

Lk. We now turn to the construction of spanning m′-trees in Vj+1, and first of spanning

trees in Vj+1.

We observe that the branches in i) and ii) are exactly the same. The corresponding

spanning trees in Vj+1 only differ in the way L is cut.
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From the spanning trees, m′-trees in Vj+1 are obtained by cutting off m′− 1 propaga-

tors either on L or on branches. The rule to be observed is that any sub-tree generated by

the cutting should be incident with at least one vertex of the border of Vj+1 with G−Vj+1,

i.e. a vertex of {sj+1}. Otherwise, a sub-tree would be isolated from all the others on G

and the ensemble of sub-trees could not form a spanning tree on G as they should.

Let us cut branches first. For the reason given above a branch can only be cut when

it is incident or connected to a vertex of {sj+1}. It is clear that branches will be cut in

exactly the same way for spanning trees in i) and ii).

Then, we come to the eventual cutting of L, i.e. P (v2, v1) or P (v′1, v
′
2). However,

remember that we want that in {sj}1 P1(s1j , s2j) to be cut only once and in {sj}2 not to

be cut at all. Therefore, we don’t allow P (v2, v1) and P (v′1, v
′
2) to be cut in Vj . However,

they can be cut in Vj+1 − Vj . After the branch-cutting has been completed we focus our

attention on those branches which are still incident or connected with a vertex of {sj+1}.

Let us call rk the roots on L of these particular branches and let us order them along L. It

is clear that we can cut L only once between rk and rk+1 because otherwise the part of L

between two cut propagators, having only branches rooted on it not incident or connected

to {sj+1}, would be disconnected from all other sub-trees on G, which is forbidden.

Moreover, we want the partition {sj+1} to be the same for m′-trees constructed from

P (v2, v1) or P (v′1, v
′
2). Cutting L between two roots rk and rk+1 will in general modify

{sj+1} (except when L is cut only once) and therefore any path P (rk, rk+1) on L should

be cut or not cut at the same time for the m′-trees generated from P (v2, v1) and P (v′1, v
′
2).

The exception is when only one cut is performed on L, i.e. leaving P (v2, v1) and

P (v′1, v
′
2) uncut, because all roots on L are still connected and in particular the roots rk.

Then, (v1, v2) can be anywhere on P1(s1j , s2j) and (v′1, v
′
2) anywhere on P2(s2j , s1j) in

Vj+1 − Vj .

Let us return to the general case when L is cut more than once. Cutting L at (v1v2)
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or (v′1v
′
2) should not modify {sj+1}. Therefore, (v1v2) and (v′1v

′
2) should be on the same

path P (rk1 , rk2 ) on L, rk1 and rk2 being two consecutive roots of type rk on L. Of course,

P (rk1 , rk2 ) should cross the border of Vj with Vj+1 − Vj in order to have (v1v2) in Vj and

(v′1v
′
2) in Vj+1 − Vj .

Let us now consider roots on L of branches in Vj which are incident with or connected

to branches in Vj incident with at least one vertex of {sj}. Let us call such roots rb. Again,

it is clear that L can only be cut once between two successive roots rb and rb+1 along L for

the same reason as for the roots rk. Furthermore, any cut on a path P (rb, rb+1) on L gives

rise to m′-tree in Vj+1 with m-trees in Vj corresponding to the same partition {sj}. Of

course, the propagator (v1v2) on L is on such a path (which itself is on P (rk1 , rk2)) which

we will call P (rb1 , rb2), i.e. b2 = b1 + 1, as well as k2 = k1 + 1. And the propagator (v′1v
′
2)

is on the intersection of P2(s2j , s1j) with P (rk1 , rk2 ), this intersection being P2(s2j , s1j) if

P (rk1 , rk2 ) contains P2(s2j , s1j) (in which case rk1 and rk2 are in Vj), or a path P (rk1 , s1j)

on P2(s2j , s1j) if rk1 is in Vj+1−Vj, or a path P (s2j , rk2) on P2(s2j , s1j) if rk2 is in Vj+1−Vj .

In any case let us call this intersection path Pint which of course is always in Vj+1 − Vj .

Now, given L, we can now write easily the ratio of the weights of m′-trees where Pint is

cut to those where P (rb1 , rb2) is cut, this is (L cut more than once, m′ > 1)

∑
`2⊂Pint

ᾱ`2/
∑

`1⊂P(rb1 ,rb2 )

ᾱ`1 (53)

which is a remarkably simple expression. In this minimal modification {sj}1 goes to {sj}2

and {sj+1} is unchanged. In the case when m′ = 1, L is cut only once, the roots rk1 and

rk2 are irrelevant to determine where P2(s2j , s1j) should be cut in order to keep {sj+1}

unchanged because all roots on L are in any way connected, and Pint has to be replaced

by P2(s2j , s1j) in the above expression.

We now want to make an important observation, i.e. that in the ratio (53) the only

object which may be sensitive to {sj+1}, {sj} being fixed, is Pint through the position of
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rk1 or rk2 when rk1 or rk2 are in Vj+1−Vj . P (rb1 , rb2) being in Vj is insensitive to {sj+1},

because once {sj} is fixed, rb1 and rb2 cannot depend on the structure of the m′-trees

outside Vj . Or, said otherwise, the structure of m-trees in Vj only depend on {sj}.

In what follows, we are going to show that in spite of that, we can constrain the

building of the successive volumes Vj, Vj+1, · · · in such a way that the ratio of weights (51)

does not depend on a change of {sj+1}. Then, if it is finite or infinite for one given {sj+1}

it stays so for any {sj+1}. As noted before in the discussion of the weight-ratio (50) this

solves immediately our convergence problem for Rmi ({sj}).

Constraint on the construction of the Vj’s

Any propagator going out of Vj is relating a vertex of the border of the deformed

sphere Sj to a vertex of the border of the deformed sphere Sj+1 if the vertices at the ends

of this propagator are one in Vj and the other one in Vj+1 − Vj . ut

The later provision takes into account the possibility for the borders of the deformed

Sj and Sj+1 to coincide on some domain in which case a propagator going out of Sj would

also go out of Sj+1. This constraint is easy to satisfy because we only need to make the

radius of Sj+1 sufficiently close to that of Sj in order to obey it. It has the following

consequence : if a loop L enters Vj+1 − Vj at s2j and reenters Vj at s1j , then the part of

L in Vj+1 − Vj is a path

(s2j s2j+1) P (s2j+1, s1j+1)(s2j+1, s1j) (54)

where (s2j s2j+1) and (s1j+1 s1j) are two propagators relating vertices on the border of Vj

and Vj+1. Furthermore any vertex of P (s2j+1, s1j+1) not on the border of Vj+1 is related

to vertices of Vj through paths on P (s2j+1, s1j+1) going to vertices on the border of Vj+1,

see fig. 3.

An immediate consequence of the structure of L in Vj+1− Vj as shown in (54) is that

s1j+1 is rk1 or s2j+1 is rk2 because being in {sj+1} and on L they are roots of branches
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incident with {sj+1}, these branches being restricted to one vertex. Then, Pint is simply

the propagator (s1j+1 s1j) or the propagator (s2j s2j+1) depending on which part of L

we choose P (rk1 , rk2 ) to be. However, in any case, Pint depends only on L and no more

on {sj+1}, because the vertices s1j+1 and s2j+1 will not move on L as we change {sj+1}.

Then, the ratio (53) will depend on L and not {sj+1} and the ratio of the weights for two

partitions {s}1 and {sj}2 related by a minimal modification will be, summing over all L

going out of Vj at s2j and reentering Vj at s1j . (L cut more than once, m′ > 1),

Wm′

m1−1({sj}2, {sj+1})/W
m′

m1
({sj}1, {sj+1}) =

ᾱPint
∑

Tm1−1

Tm1−1 (̄i, {sj}2)/
∑

Tm1−1

( ∑
`1⊂P(rb1 ,rb2 )

ᾱ`1

)
Tm1−1(̄i, {sj}2) (55)

where Tm1−1 (̄i, {sj}2) is for the weight of spanning (m1−1)-trees in Vj with partition {sj}2

and ᾱPint is for the ᾱ` of the propagator (s1j+1 s1j) or (s2j s2j+1). The sum over the span-

ning (m1−1)-trees is provided by cutting in all possible ways compatible with {sj}2 m1−2

propagators from all spanning trees in Vj , not going through the propagator i, and ob-

tained from all possible paths P2(s2j , s1j). Looking at the weight structure in (49.b) we see

that the contribution to weights coming from sub-trees in Vj+1−Vj ,
∑
Tn
Tn({s′j}1, {sj+1}),

being the same ones for Wm′

m1−1({sj}2, {sj+1}) and Wm′

m1
({sj}1, {sj+1}), and being factor-

ized, cancels out in (55). The main feature of the expression on the right-hand side of (55)

is that it does not depend on {sj+1}, which is what we were looking for.

We now have to establish the same property for the contribution coming from spanning

m′-trees in Vj+1 where L is only cut once. For this case we need to separate two classes

of m′-trees

a) those m′-trees where for {sj}2, L is cut on Pint, i.e. on the propagator (s2j s2j+1)

or (s1j+1 s1j).

b) those m′-trees where for {sj}2, L is cut on the complement of Pint on P2(s2j , s1j),

which we will call P compint , but uncut on Pint.
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For the m′-trees in a) the reasoning is the same as for the m′-trees where L is cut

more than once and the result (55) is valid for them too. For the m′-trees in b), changing

{sj+1}, we cannot obtain m′-trees in which L is cut more than once, because P (rk, rk2 )

would stay uncut for {sj}2 - corresponding m′-trees, which is forbidden (i.e., for L cut

more than once, P (rk1 , rk2) has to be cut for {sj}1 in Vj and for {sj}2 in Vj+1−Vj , i.e. on

Pint, in order not to change {sj+1} passing from {sj}1 to {sj}2). We remind the reader

that when L is cut only once all roots rk on L are connected. Then, for the m′-trees in b)

changing {sj+1} always keeps all roots rk on L connected because L stays cut only once.

Let us then take all the loops L with the same P compint , for these the contribution of the

weights will be such that (L cut once, m′ ≥ 1)

Wm′

m1−1({sj}2, {sj+1})/W
m′

m1
({sj}1, {sj+1}) =( ∑

`2⊂P
comp
int

ᾱ`2

) ∑
Tm1−1

Tm1−1 (̄i, {sj}2)/
∑

Tm1−1

( ∑
`1⊂P(rb1 ,rb2 )

ᾱ`1

)
Tm1−1(̄i, {sj}2) (56)

which, again, is independent of {sj+1}.

Now, because each contribution to the weight Wm′

m1
({sj}1, {sj+1}) is multiplied by a

factor independent of {sj+1} when the corresponding contribution toWm′

m1−1({sj}2, {sj+1})

is taken, we have the following theorem :

Theorem 2a

Let us consider a minimal modification of {sj}, {sj}1 → {sj}2 where {sj+1} remains

unchanged. In {sj}2, s1j and s2j , vertices of {sj} are connected by a self-avoiding path

P1(s1j , s2j) in Vj . In {sj}1, P1(s1j , s2j) is cut once. The m′-trees in Vj+1 corresponding

to {sj}2 are obtained from P1(s1j , s2j). The m′-trees in Vj+1 corresponding to {sj}1 are

obtained from a self-avoiding path P2(s2j , s1j) with all propagators in Vj+1 − Vj , its only

vertices on the border of Vj+1 − Vj with Vj being s1j and s2j .

Then, the ratio of the sum of weights of m′-trees corresponding to {sj}2 to the sum

of the weights of m′-trees corresponding to {sj}1 is independent of {sj+1}. ut
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We have examined so far the simplest case where the loop Lk was taken as the loop L

going out of Vj at s2j and in Vj at s1j . In general, as discussed earlier, a path P2(s1j , s2j)

may have some parts P2(skj , sk+1j) in Vj+1 − Vj . Confining ourselves to the minimal

modification of {sj}, only one such P2(skj , sk+1j) or one Lk is relevant.

We can repeat the reasoning followed with the loop L for the loop Lk, the only change

being that two self-avoiding paths in Vj , P (s1j , skj) and P (sk+1j , s2j) will be rooted at

skj and sk+1j respectively on Lk. Then, we have to divide the paths P1(s1j , s2j) into two

classes in order to avoid a double-counting :

a) those which are incident with a vertex of {sj} other than s1j and s2j only once

b) those which are incident with at least two vertices skj and sk′j of {sj}.

The paths a) will be associated to the loop L. The paths b) will be associated to

a loop Lk with sk′j being then noted sk+1j . Of course, in this case P1(s1j , s2j) can be

incident with other vertices of {sj} as well. We only need to exhaust all pairs of vertices

skj , sk′j in order to form all possible loops Lk. In this way, all different paths P1(s1j , s2j)

are taken into account only once. Theorem 2a applied to each pair skj , sk′j replacing s1j

and s2j then provides the independence of the weight ratio (51) on {sj+1}.

The only thing which is left to prove is that, indeed, any partition {sj}2 can be

obtained from another one {sj}1 by a series of minimal modifications. So let us consider

the respective situation of two vertices s1j and s2j in {sj}1 and in {sj}2. Suppose that

they are unconnected in {sj}1 and connected in {sj}2. Then, it is easy to see that a

minimal modification will allow to disconnect them, passing from {sj}2 to {sj}3, leaving

weight-ratios corresponding to those in (51) independent of {sj+1}. Then, we will consider

the respective situation of any two other sj ’s and repeat the operation until we obtain

{sj}1, having always weight-ratios insensitive to {sj+1}.

Let us make also a remark about the topology of G in Vj+1. G can be disconnected
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into several pieces in Vj+1, although G itself is taken to be connected and even 1-line and

1-vertex irreducible. When G is multiply connected in Vj+1 we consider each connected

piece separately for the construction of spanning trees on them and the eventual cutting of

propagators. The resulting weight for m′-trees will simply be the product of the weights of

all connected pieces of G in Vj+1. Of course, in this case m′ > 1 but the above reasoning

is essentially unchanged. We then are able to write the following theorem :

Theorem 2b

For any two different partition {sj}1 and {sj}2 of vertices sj on the border of Vj with

Vj+1−Vj the ratio of weights (51) is independent of {sj+1} if we impose the constraint on

the construction of the Vj ’s described earlier and which can always be satisfied. It follows

that the ratio (50)

∑
{sj}M

Wm′

mM
({sj}M , {sj+1}) /

∑
{sj}

Wm′

m ({sj}, {sj+1})

is also independent of {sj+1}. Therefore, when this ratio is infinite it is so for all {sj+1}

and Rm
′

i ({sj+1}) takes a unique value Rmi ({sj+1}M ). When this ratio is finite, it also

stays finite for all {sj+1} and therefore the convergence condition (41) is satisfied. ut

In order to have Rmi ({sj}) to converge as j →∞, we also need to have this ratio finite

for some finite value of j. This condition is naturally satisfied if we impose the constraint

that V1 should only contain a finite number of propagators. This condition, of course, can

always be satisfied by choosing a sufficiently small radius for the sphere S1.

C - Extension of the convergence proof to trees

We now want to extend the inequality (36) of theorem 1 to the spanning trees in Vj and

Vj+1. For that purpose let us define a (spanning) multiple tree (or m′-tree) Tm
′
(i, {sj+1})

contained in Vj+1, one component of which is going through i. {sj+1} stands for a partition

of all border-vertices of Vj+1 with G− Vj+1 with which Tm
′
(i, {sj+1}) is incident. As for
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paths, Tm
′
(̄i, {sj+1}) has the same properties as Tm

′
(i, {sj+1}), except that it does not go

through i but is still incident with vi through one to its component-tree. In the following,

in order to have a simpler notation we will imply that a summation over all T ’s of the kind

is made whenever the symbol T appears. Then, we can write, {sj} being some partition of

vertices of the border of Vj with Vj+1 − Vj and {sj+1} a corresponding partition for Vj+1,

(Tm(i, {sj}) is a m-tree contained in Vj , T ({stj}) is a tree in Vj+1 − Vj with no vertex on

the border of Vj+1 and incident with the border of Vj at {stj}, T ({suj } {s
u
j+1}) is a tree in

Vj+1 − Vj incident with the borders of Vj and Vj+1 at {suj } and {suj+1} respectively, and

T ({svj+1}) is a tree in Vj+1 − Vj not incident with the border of Vj but incident with the

border of Vj+1 at {svj+1})

Tm
′

(i, {sj+1}) =

Mj∑
m=1

∑
{sj}

Tm(i, {sj}).

∑
{{st

j
}}

x∏
t=1

T ({stj})
∑

{{suj },{s
u
j+1}}

y∏
u=1

T ({suj }, {s
u
j+1})

∑
{{svj+1}}

z∏
v=1

T ({svj+1}) (57)

({{suj }, {s
u
j+1}} is the ensemble of border-vertices of the y trees T ({suj }, {s

u
j+1}), {{s

t}}

is the ensemble of the border-vertices of the x trees T ({stj}) and {{svj+1}} is the ensemble

of border-vertices of the z trees T ({svj+1})) for x, y, z ≥ 1 and with

y + z ≥ m′ ≥ z (58)

When x = 0, y = 0 or z = 0 the corresponding product in (57) is equal to one (no

tree). The relation (51) can be explained by saying that y + z is the maximum number

of components of Tm
′
(i, {sj+1}) and z the minimum number of its components. A tree

T ({stj}) in Vj+1 − Vj should be connected to at least one tree in Vj , giving

∀ t, {sj} ∩ {s
t
j} 6= φ (59)

If {smcj }, (mc = 1, · · · ,m), denotes the set of border-vertices of Vj of one component-tree

of Tm(i, {sj}), i.e. if {sj} = {{smcj }}, then, avoiding loops,

{stj} ∩ {s
mc
j } = at most one sj (60.a)
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{suj } ∩ {s
mc
j } = at most one sj (60.b)

Any component-tree of Tm(i, {sj}) should be connected to at least one tree in Vj+1 − Vj

giving

∀ m, [{{stj}} ∪ {{s
u
j }}] ∩ {s

mc
j } 6= φ (60.c)

The relations (60) insure that a component-tree of Tm(i, {sj}) in Vj should be incident

with at least one component tree in Vj+1−Vj through at most one vertex. Indeed, (59) and

(60) fix the topology of contact between the component-trees in Vj and Vj+1−Vj in order

to leave no component-tree isolated and in a way that avoids the formation of any loop.

Let us denote {{stj}} ∪ {{s
u
j }} by {s′j} which will be the ensemble of the vertices on the

border of Vj of the trees in Vj+1− Vj . Then, it is clear that once {sj} and {s′j} have been

fixed, the summation over trees in Vj and Vj+1 − Vj is factorizable because no interaction

occurs between the trees in Vj and those in Vj+1 − Vj (apart from their contact at the

common border of Vj and Vj+1 − Vj). Note even that once {sj} is fixed the summation

over all Tm(i, {sj}) (or over all Tm(̄i, {sj})) does not depend on {s′j}. Consequently, the

sum over all n-trees in Vj+1 − Vj , including the sum over {s′j}, can be factorized out.

Again, in a way analogous to that of paths let us define

Rmi ({sj}) =
∑
Tm

Tm(i, {sj})/
∑
Tm

Tm(̄i, {sj}) (61)

for which we demonstrate as for paths the following

Theorem 3

Rmi ({sj})min < Rm
′

i ({sj+1}) < Rmi ({sj})max (62)

where Rmi ({sj})min and Rmi ({sj})max are respectively the minimum and the maximum
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value of Rmi ({sj}) for all m’s or Rm
′

i ({sj+1}) has converged to either Rmi ({sj})min or

Rmi ({sj})max.

Proof

It is clear, using (61) in (57) that Rm
′

i ({sj+1}) is a mean-value of Rmi ({sj}) considered

as a function of m, {sj} and {{sj}}, {{s′j}}. However, due to the factorization property

mentioned above (once {sj} is fixed, {s′j} does not have an influence over the m-trees in

Vj), the functional dependence of Rmi ({sj}) is indeed restricted to m and {sj}. Moreover,

theorem 2b either excludes the limiting cases where the inequalities become equalities or

makes Rm
′

i ({sj+1}) equal to Rmi ({sj})min or Rmi ({sj})max for any {sj+1}. It therefore

follows that either (62) is true or Rm
′

i ({sj+1}) has converged. ut

Remark

We note that Rmi ({sj}) (and Tm(i, {sj}) is a function of a partition {sj} which covers

any part of the border of Vj on the surface of the deformed Sj independently of the partition

{sj+1} of Tm′(i, {sj+1}). Therefore, the sum
∑
{sj}

in (57) is a sum over the whole part of

border of Vj on the deformed surface Sj . This is in contrast with the corresponding sums∑
s0
j

or
∑
{sl
j
}

in (34) for paths which may cover only part of the border of Vj on the deformed

surface Sj , depending on sj+1 in P (i, sj+1). Therefore, in the case of trees, the topology of

Vj+1 − Vj does not intervene to possibly limit the range of {sj}. Hence, we have a unique

value for Rmi ({sj}) and this solves problem b) of the preceding section. The repeated use

of (62) will make all Rmi ({sj}) converge towards the same value R∞i .

5. The factorization of trees on G

We now proceed to the proof of the relation (24), the crucial factorization property of

spanning trees on G.

Let us consider a volume Vj with j →∞, and a partition of its border-vertices {sj} and
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let us denote by R∞i the common value to which all Rmi ({sj}) tend as j →∞. Recalling

(16) and (17) we have, Tn being an n-tree on G−Vj , (a sum over m is implied in the sum

over all {sj} and a sum over n is implied in the sum over all {s′j} compatible with {sj})

āi = ∆(ᾱ)
∑
T ⊃i

∏
l∈T

ᾱ−1
l

= ∆(ᾱ)
∑

{sj},Tm

Tm(i, {sj})
∑
{s′j},T

n

Tn({s′j}) (63.a)

b̄i = ᾱ−1
i ∆(ᾱ)

∑
T 6⊃i

∏
l∈T

ᾱ−1
l

= ᾱ−1
i ∆(ᾱ)

∑
{sj},Tm

Tm(̄i{sj})
∑
{s′j},T

n

Tn({s′j}) (63.b)

{s′j} is a subset of the vertices of Vj belonging to Tn({s′j}), and Tn ∪Tm form a spanning

tree of G. Notice that the sets {s′j} and {sj} are in general different, a branch of Tm can

end at one sj without being incident at that sj with one branch of Tn. For any given m,

{sj}, Tm(i, {sj}) can be replaced by R∞i Tm(̄i, {sj}) and we therefore get

āi/b̄i = R∞i ᾱi . (64)

Remember that by a given {sj} we mean a given {{smcj }} where {smcj } is a set of sj ’s

belonging to the same component-tree of Tm. In the same way {s′j} means {{s
′nc
j }} where

{s
′nc
j } belongs to one component-tree of Tn.

Looking now at (22) and (23) we can write, using the same notations,

d̄i,k =
∑

{sj},Tm

sCk ν
−1(Ck) Tm(i, {sj})

∑
{s′j},T

n
k

Tnk ({s′j}) (65.a)

ēi,k = ᾱ−1
i

∑
{sj},Tm

sCk ν
−1(Cik) Tm(̄i, {sj})

∑
{s′j},T

n
k

Tnk ({s′j}) (65.b)
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where Tnk is a n-tree belonging to G − Vj and going through the propagator k which is

assumed to be outside Vj .

We see that, compared to (63), the expressions (65) have exactly the same structure

except for the factors sCk ν
−1(Ck) and sCk ν

−1(Cik). We now want to demonstrate that,

indeed,

[sCk ν
−1(Ck)]/[sCi

k
ν−1(Ck

i)] = 1 + ε (66)

where ε is infinitesimal. Let us recall that ν(Ck) counts the number of propagators on the

surface Sk(Ck) cutting G into two disjoint pieces G1(Ck) and G2(Ck), the same being true

for ν(Cik) replacing Ck by Cik.

Let us take j = 1 for the expressions (65) in order to have a finite number of propagator

in V1. First, it is obvious that if Sk does not cut through V1 it will cut only the Tn’s which

are the same n-trees in (65.a) and (65.b) for a given {sj} and we will have ε = 0 in (66).

Now, if j grows, Sk will remain identical in (65.a) and (65.b) because Ck and Cik do not

depend on j, i.e. on the decomposition of a spanning tree in G into a m-tree in Vj and a

n-tree in G − Vj . So, ε will remain equal to zero as j →∞.

The non-trivial case occurs when Sk cuts through V1. Then, it could be that when

j → ∞ the number of propagators cut by Sk in Vj remains finite. This could arise when

there are domains in the deformed sphere Sj which are empty of propagators and of a size

large enough so that when Sk cuts through them it will contain only a finite number of

propagators in Vj . An example of this situation is provided when G has a topology such

that it consists of infinite ladders (which may join and separate themselves creating a sort

of effective field theory of Reggeons).

To study the situation where Sk cuts through V1 let us consider, for a given spanning

tree T on G, the sum

ΣT (G) =
∑
k∈T

ᾱk sCk ν
−1(Ck) (67)
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and a similar sum for the part of T in V1, T1

ΣT (V1) =
∑
k∈T1

ᾱk sCkν
−1(Ck)

=< ᾱk sCk >T1

∑
k∈T1

ν−1(Ck) (68)

where < ᾱk sCk >T1 is the mean-value of ᾱk sCk for all propagators k in V1 belonging to

T . The maximum value of
∑
T (V1) is obtained when ν(Ck) for all k’s belonging to T1 is

constant, meaning that the correspondingSk’s each contain a finite number of propagators.

Then,
∑
T (V1) is equal to < ᾱk sCk >T1 multiplied by some constant.

We can express
∑
T (G) in the same way, writing

ΣT (G) =< ᾱk sCk >T
∑
k∈T

ν−1(Ck) (69)

where < ᾱk sCk >T is the mean-value of ᾱk sCk over T . Now, we can calculate a lower

bound for
∑
k∈T

ν−1(Ck).

This comes from the fact that every propagator in Sk has to be incident with a vertex of

the sub-trees in G1(Ck) and G2(Ck), the parts of G separated by Sk. If a branch consisting

of N vertices (and N − 1 proapagators) is separated in a φn field theory, the number of

propagators cut is (n− 2)N + 1 which represents the maximum number of propagators cut

for a tree with N vertices (and of course N−1 propagators). The number of propagators in

G1(Ck), for example can be taken to vary from zero to I−L. Thus, the following inequality

follows

∑
k∈T

ν−1(Ck) >
1

n− 2

∫ I−L+1

1

dN/(N + 1) = (1/(n − 2))Log(I − L+ 1) (70)

with (1/(n − 2))Log(I − L+ 1) tending to infinity as I →∞. Therefore, if the ratio

< ᾱk sCk >T1 / < ᾱk sCk >T (71)
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stays finite, the ratio

ΣT (G)/ΣT (V1) (72)

is infinite as I → ∞ and the contribution to (65.c) and (65.b) coming from Sk’s cutting

through V1 can be neglected. It follows, then, that (66) will be true.

Let us now remark that (71) may be infinite in the case where some internal lines

incident with vertices in V1 carry a momentum infinite with respect to the momenta of

external lines incident with G−V1. Then, Sk may cut V1 in such a way as to separate such

lines, giving an infinite sCk , while a cancellation occurs between infinite momenta when Sk

does not cut through V1. Note however that if, although infinite, (71) is equal to

ε1Log(I − L) (73)

with ε1 → 0 as I →∞, the conclusion reached above, i.e. that
∑
T (V1) can be neglected

in front of
∑
T (G), is still valid.

Finally, considering the ratio

ΣT (G)/ΣT (Vj) (74)

where
∑
T (Vj) is the sum of ᾱk sCkν

−1(Ck) for k’s belonging to the part of T in Vj , we

see that we have the inequality

ΣT (G)/ΣT (Vj) >
[
(n− 2)−1Log(I − L)/(I −L)Vj

]
< ᾱk sCk >T / < ᾱk sCk >Tj (75)

if (I −L)Vj is the number of lines a spanning tree in Vj (a m-tree in Vj has even less lines

than (I − L)Vj ) and < ᾱk sCk >T the mean-value of ᾱk sCk over Tj , the m-tree part of T

on Vj .

Provided the ratio on the right of (75) is infinite we can neglect in (20) and (21) the

sum over k, k belonging to Vj , even as (I−L)Vj goes to infinity, as was claimed in section 3.
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Then, Tm(i, {sj}) can be replaced by R∞i Tm(̄i, {sj}) in (65.a) and (65.b) as in (63.a)

and (63.b) with the result

d̄i,k/ēi,k = R∞i ᾱ0 (76)

which was sought after. This entails that (24) and thereby (23) are verified. As said in

section 2 this, in turn, makes QG(Pv, {ᾱi}) insensitive to the replacement ᾱi → ∞̄ and a

unique ᾱ can be used to evaluate FG in a super-renormalizable scalar field theory.

6. Conclusion

Our initial aim was to put the Gaussian representation for propagators on a firm

footing. Using the well-known α-representation we are able to prove that the parameter α

which measures the inverse of the variance of that Gaussian can be taken everywhere equal

to some unique ᾱ = O(1/I) where I is the number of internal lines of a Feynman graph

G. We did this for a super-renormalizable scalar field theory, although we expect the same

result to hold for renormalizable theories as well. But, what is more interesting even, is

that we were obliged during the derivation to prove a factorization property of spanning

trees on G, i.e., we can sum over all graphs in a volume Vj , and if j →∞, the structure of

the trees outside Vj is independent of the structure of the same trees in V1, a subpart of

Vj . We can however imagine that Vj itself is an infinitesimal volume relative to the whole

volume of G. Then, we can interpret our factorization of trees as the factorization of local

sums defined on trees. In other words, trees on a Feynman graph can be used to define a

functional integral. In fact, we assumed such a functional property in our first attempt [7]

to derive the relation (13).
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Figure Captions

Fig. 1 We illustrate the case (see eq. (38)) where m′ = 3, m = 3, i.e. there are 3 paths in

Vj+1 and 3 paths in Vj with tj = 1, uj = 3 and vj+1 = 1. B(Vj+1) and B(Vj) are

respectively the borders of Vj+1 and Vj .

The path P (̄i, s0
j ) relates one end of the propagator i to s0

j without going through i.

Paths P (s2`−1
j , s2`

j ) corresponding to ` = 1, relating s1
j to s2

j , and to ` = 2, relating

s3
j to s4

j are shown, together with three paths P (s`uj , s
`u
j+1) with u = 1, 2, 3 and one

path P (s2`v−2
j+1 , s2`v−1

j+1 ) with v = 1.

Fig. 2 The case where one loop Lk is present is depicted. The path P1(s1j , s2j) in Vj con-

sists of the successive paths P (s1j , skj) P1(skj , sk+1j) P (sk+1j , s2j). The propagator

(v1v2) is shown on P1(skj , sk+1j). The path P2(s1j , s2j) differs from P1(s1j , s2j) by

the path P2(skj , sk+1j in Vj+1 − Vj on which the propagator (v′1v
′
2) is shown. The

loop Lk is formed by the succession of paths P1(skj , sk+1j) P2(sk+1j , skj) where the

latter is the reverse path of P2(skj , sk+1j).

Fig. 3 The constraint that any propagator stemming out of Vj should relate the part of

the borders of Vj and Vj+1 (on the deformed spheres Sj+1 and Sj respectively) has

been imposed, if this propagator is in Vj+1. The path in Vj P1(s1j , s2j) is shown

(here Lk is simply L). In Vj+1 − Vj , the path P2(s1j , s2j) is shown by a thick line.

Depicted are the propagators (s1j s1j+1) and (s2j s2j+1).


