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Abstract

The total energy in the two-phase chiral bag model is studied,

including the contribution due to the bag (Casimir energy plus energy

of the valence quarks), as well as the one coming from the Skyrmion

in the external sector.

A consistent determination of the parameters of the model and the

renormalization constants in the energy is performed.

The total energy shows an approximate independence with the bag

radius (separation limit between the phases), in agreement with the

Cheshire Cat Principle.
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The hybrid chiral bag [1, 2] is an e�ective model to describe the behavior

of strongly interacting baryons. In this model, color degrees of freedom

are con�ned to a bounded region and coupled to a bosonic external �eld

(skyrmion) through boundary conditions.

These two phase models are intermediate between two successful descrip-

tions of baryons: bag models [3, 4] { with QCD degrees of freedom at short

distances { and Skyrme model [5, 6, 7], an e�ective (non renormalizable)

nonlinear sigma model, useful when the low energy properties of baryons are

considered.

An interesting feature of Chiral Bag Models (CBM) is the appearance

of the so called Cheshire Cat Principle (CCP) [1, 8], according to which

fermionic degrees of freedom can be replaced by bosonic ones in certain re-

gions of space, the resulting position of the limit of separation between the

two phases having no physical consequences.

In 1+1-dimensions, the Cheshire Cat behavior follows from the bosoniza-

tion of fermionic �elds [1]. In the 3 + 1 case, topological quantities, such as

the baryonic number, have a similar behavior [9] but, for non topological

ones, the CCP is expected to be only approximately valid.

In what follows, we will study the energy of a four-dimensional hybrid

model consisting of quarks and gluons con�ned to a spherical bag plus a

truncated exterior Skyrme �eld in a hedgehog con�guration. It is our aim to

study the dependence of the total energy on the size of the bag, thus testing

the Cheshire Cat hypothesis.

In bag models, quarks and gluons are con�ned to a bounded region that,

in our case, will be taken as an static sphere of radius R. Adequate boundary

conditions are imposed on the �eld so as to guarantee the vanishing of the


ux of color current to the external sector.

In the MIT bag model [3] the boundary conditions for fermions and gluons

are

B	jB =
1

2
(I + i 6n)	

����
B

= 0 (1)

n�F
��j

B
= 0 : (2)

The Dirac operator for the fermionic �eld, together with the boundary con-

dition (1) de�ne an elliptic boundary value problem [10]. Moreover, (1) gives

a vanishing current at the boundary, 	n�	
���
B
= 0.
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But the axial symmetry, present in QCD with massless quarks, is broken

at the boundary when condition (1) is satis�ed. To avoid such unwelcome

behavior, CBM [4] have been proposed, which amount to imposing on the

fermionic �eld the boundary condition

A	jB =
1

2

�
I + i 6ne�i�(~��~n)
5

�
	

����
B

= 0 ; (3)

where �i are Pauli matrices, and adding an external sector to the bag.

Through this boundary condition, the fermionic �eld is connected with

the external �eld represented by the \chiral angle" �(R). As it will be shown

later, the external phase can be described using the Skyrme model.

To obtain the energy in the chiral bag model we will proceed in steps,

using some results previously obtained in references [11, 12].

In the �rst place, we will introduce the di�erence between Casimir ener-

gies of chiral and MIT fermionic bags. It corresponds to the zero temper-

ature limit, T ! 0, of the results presented in [11]. As a second step, we

will study the reference vacuum energy, i.e., the MIT Casimir energy, which

is the T ! 0 limit of the cases analized in [12] for the fermionic and gauge

�elds. An external Skyrme �eld will then be introduced, so as to complete

the two phase model (TPM). The caracteristic parameters in its Lagrangian,

together with the renormalization constants in the bag energy, will be de-

termined through physical considerations, thus obtaining the total energy of

the TPM.

Determinants of quotients of elliptic di�erential operators under di�er-

ent boundary conditions can be expressed as p-determinants of quotients of

Forman's operators [13, 14, 15]. This leads, for a bounded euclidean time,

to the study of di�erences of free energies of the physical system subject

to two di�erent boundary conditions. In such a way, in reference [11] the

di�erence between the free energies of an SU(2) chirally symetric system of

massless fermions, con�ned to a spherical region and subject to chiral and

MIT boundary conditions respectively, was calculated.

To construct Forman's operator, which is totally de�ned by its action

over functions in the kernel of i 6@, a discrete basis of the space of solutions

was considered. The di�erential operator and the boundary conditions are in-

variant under the diagonal subgroup of SU(2)rotation
SU(2)isospin, and leave
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invariant the subspaces caracterized by the quantum numbers fk; j; l;mg, as-
sociated with the eigenvalues of fK2;J2;L2;Kzg, where K = L + S + I. In

particular, k takes non-negative integer values.

The T ! 0 limit of the above mentioned diference of free energies leads

to

�ec(�) = R [Ec(R; �) �Ec;MIT ]

= 3

�
1

4�

h
4�KQ sin

2 � + 0:463 sin4 � + 0:023 sin6 �
i

� 1

2�

1X
k=1

Z
1

0
dx

h
2� log

�
1 + Ck(x) sin

2 � +Dk(x) sin
4 � ��(k; x)

�i

+
1

4�

(
�2 0 < � � �=2

(� � �)2 �=2 < � < �

)

� 1

2�

Z
1

0
dx log

2
6641 +

�(x)

x

�4+[2(1�a2(x))2+�(x)

x
] cos2 �

4a2(x)+(1�a2(x))2 cos2 ��
1 � �(x)

x

1
1+a2(x)

�2
3
775
9>>=
>>; ; (4)

where the Casimir energies have been adimensionalized. The �rst and second

terms in the r.h.s. of (4) correspond to the subspaces k � 1. The third and

fourth ones, to the k = 0 case. We have used the de�nitions

Ck(x) =
�2h

4x2d2k(x) + (�2 � d2k(x))
2
i2�

��
�2 � d2k(x)

�2 �
4x2d2k(x) +

�
�2 � d2k(x)

�2�

+
�
�2 � �2

� �
4x2nd

2
k(x)�

�
�2 � d2k(x)

�2��
(5)

Dk(x) =

h
(�2 � d2k(x))

2 � (�2 � �2)
i2

h
4x2d2k(x) + (�2 � d2k(x))

2
i2 (6)

� = k + 1=2 � =
p
x2 + �2
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dk(x) = x
d

dx
ln I� (x) :

a(x) = cothx �(x) = 2a(x)� 1

x
;

where I� (x) is the modi�ed Bessel function. In (4), �(k; x) represents the

�rst few terms1 in the asymptotic (Debye) expansion of the other terms in

the argument of the logarithm, required to isolate the divergent pieces in the

Casimir energy.

In obtaining (4), an analytic regularization of non-absolutely convergent

series has been performed through the introduction of the factor ��s, for

<(s) large enough, and then taking the �nite part at s = 0 [11], giving rise

to the �rst term in the r.h.s. This procedure leaves an arbitrary �nite part

proportional to sin2(�), which requires the introduction of the undetermined

constant KQ. This amounts to the introduction, in the Lagrangian of the

external Skyrme �eld, of the counterterm [16]

K0

16�R

Z
r=R

d2x tr
n
L�L� � (n�L�)

2
o
=

K0

R
sen2�; (7)

where L� = Uy@�U = e�i�(~� ��r)@�e
i�(~���r).

The second and fourth terms of (4) require numerical calculations. In the

�rst case, the sum over the index k has been cutted when the tail of the series

becomes negligible. Integrations in the x variable have been numerically

solved in both cases.

As it was said before, the reference (MIT) Casimir energy for fermions

and that corresponding to gluons have been studied in a complementary way.

In reference [12], the free energy for a fermionic and an abelian gauge �eld

(enough for the 1-loop description of the free energy for gluons) was studied.

Such evaluations have been made using analytically regularized traces which

involve the Green functions of the boundary problems considered.

The T ! 0 limit of the results in [12] has a simple structure. As it can be

understood by dimensional analysis, the Casimir energy (once singularities

1Note that, in order to isolate divergences, it is enough to retain the �rst three terms

in the asymptotic expansion [11]. However, in the present calculation, we have retained

the �rst six terms in the Debye expansion for computational convenience.
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have been removed by the renormalization of the zero-loop energy) takes the

form

ec;MIT = REc;MIT = KMIT ; (8)

whereKMIT is the arbitrary �nite part left by the renormalization procedure.

We thus have now the total Casimir energy of the bag, including the

correction due to the interaction of fermions with the external Skyrme �eld,

represented by the chiral angle �,

ec(�) = �ec(�) + ec;MIT ; (9)

up to the knowledge of the constants KQ and KMIT . As we will show later,

they can be determined imposing physical conditions in the framework of the

two phase chiral bag model.

A further contribution has to be included if the total inner bag energy

(energy of the defect, in the remaining of the paper) is studied.

In reference [9], it has been proved that the valence quark contribution

must be taken into account in the 0 � � � �=2 region, to obtain the baryon

number, B, in the TPM. In fact, when adding the contributions coming

from the truncated Skyrme model, the Dirac sea and the valence quarks, one

obtains B = 1 for any value of �. This can be understood by studying the

energy of the fundamental eigenstate of the Dirac Hamiltonian [17]. When

� < �=2, the fundamental energy becomes positive and valence quarks leave

the Dirac sea. In this case, they must be explicitely included. As regards the

bag energy, the valence quark contribution can be written as

eq = 3�(�)H(�=2 � �) ; (10)

where �(�) is the fundamental eigenvalue and H(x) is the Heaviside step

function.

Note that our regularization prescription lead to a �nite bag energy (de-

pending on KQ and KMIT ). All derived quantities will also be �nite. Such

is the case of the axial 
ux through the boundary of the sphere,

�f (R; �) =

Z
r=R

d
n�na hj�;a5 i = 1

R

d

d�
et(�) ; (11)

where et(�) = [�ec(�) + eq(�) +KMIT ]. The last term, coming from the MIT

bag, is �-independent and does not contribute to the axial 
ux.
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As it was proposed in reference [18], the vanishing of the 
ux when R!
0 determines the KQ renormalized constant. This physical imposition is

consistent with the analysis we will perform later, when treating the TPM.

The external phase of the TPM is described by the Skyrme model [5, 6].

The lagrangian can be written as

L =
1

16
F 2
�Tr

�
@�U@

�Uy

�
+

1

32e2
Tr
h
(@�U)U

y; (@�U)U
y

i2
; (12)

where the scalar �eld U(x) takes its values in the SU(2) group.

Two parameters have been introduced here: F�, associated with the pion's

decay constant (experimental value F exp
� = 186MeV) and e2, which repre-

sents the strength of the stabilizing term. These parameters will be adjusted

later in the framework of the two phase model [2].

The Skyrmion is a topologically stable classical solution of the Lagrangian

in (12), when the whole space is considered. It is given by

U0(~x) = ei�(r)(~��~x) ; (13)

where �(r) is what we are calling the chiral angle. Spatial and isospinorial

indexes are linked in the argument of the exponential.

By the imposition of the boundary conditions

�(r = 0) = � �(r)!r!1 0 ; (14)

an skyrmion of topological baryonic number (winding number) B = 1 is

obtained (in the pure Skyrme model).

Replacing the Skyrme ansatz in the Lagrangian (12), the equation of

motion is obtained as a nonlinear di�erential equation for �(r) [7].

The Skyrme lagrangian is invariant under SU(2)L
SU(2)R chiral trans-

formations

U ! AUB�1 ; (15)

where A and B belong to SU(2). When A = B�1, we are in the case of axial

symmetry leading to the locally conserved axial current. Chiral boundary

conditions guarantee its conservation even at the boundary, when the TPM

is considered.
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The 
ux of the axial current through an sphere of radius r, in terms of

the adimensionalized radius r̂ = eF�
2
r, is given by

�Sk(r̂) =
2�F�

e

d�

dr̂
r̂2
�
1 +

2

r̂2
sin2 �

�
: (16)

It is not di�cult to show that, when R ! 0 (� ! �; �0 < 1 ) �Sk ! 0.

It is reasonable to extend such behavior to the 
ux from the inner fermionic

phase, using this criterium to determine the value of the renormalized con-

stant KQ.

In the TPM, the Skyrmion is truncated to the exterior of an sphere of

radius R. In the R! 0 limit, the pure skyrmion should describe the baryon

properties. The contribution KMIT=R to the Casimir energy is forbidden

in such scheme. Then, the validity of the hybrid chiral model, even in the

R! 0 limit, imposes KMIT = 0.

Once our renormalization scheme has been established, a �t can be pro-

posed for the numerically evaluated Casimir energy. Following [18] we pro-

pose

ec(�)� 3KQ sin2 � = 3

(
3

4�

 (
�2 0 � � � �

2

(� � �)2 �

2
� � � �

)
� sin2 �

!

+C2 sin
2 � + C4 sin

4 � + C6 sin
6 � + C8 sin

8 �
o
; (17)

where the coe�cients take the values

C2 = �0:13381 C4 = 0:05085

C6 = �0:01257 C8 = 0:01241
: (18)

The required vanishing of the axial 
ux of fermions in the R ! 0 limit

inmediately leads to

KQ = �C2 ;

thus eliminating the contribution proportional to (� � �)2 for R! 0.

Having �xed the renormalized constants, the energy of the inner phase is

as shown in Figure 1. Our results are totally consistent with those presented

in [18]. The symmetry of the Casimir energy (dashed line) about � = �=2 is
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evident. Such property was a priori expectable from simple properties of the

eigenvalues of the Dirac hamiltonian of the model.

In the same �gure, the solid line represents the total energy of the inner

phase (when the valence quark contribution is also taken into account). As

in reference [18], the resulting interior energy is a smooth function.

In the TPM picture, the axial 
ux through the boundary of the defect

should be continuous for all values of the bag radius. So, a �ne tunning of

the strength of the stabilization term e(R) must be performed to ensure

�f (R) = �Sk(R) for all R : (19)

To impose this condition, the knowledge of the chiral angle as a function

of R, �(R), is necessary. As it was said, its value can be obtained numerically,

by solving a nonlinear di�erential equation. But, following the proposition

of M. Atiyah and N. Manton [19], U(~x) con�gurations can be constructed

by evaluating the holonomy of Yang-Mills �elds with topological charge k,

in the time direction. This is derived from a t'Hooft instanton of width �.

For the k = 1 case, the resulting chiral angle is

�(r̂) = �

2
6641 � 1r

1 +
�
�̂

r̂

�2
3
775 : (20)

Replacing �(r̂) in the energy of the skyrmion[7]

MSk = �
Z
d3xLSk

= 4�
Z
1

0

(
F 2
�

8

�
r2�02 + 2 sin2 �

�
+

1

2e2
sin2 �

r2

n
2r2�02 + sin2 �

�)
; (21)

and minimizing with respect to �̂, the value of this parameter is �xed to �̂ =

1:452 [19]. The resulting pro�le is very close to the one obtained numerically.

For computational convenience, we will use this aproximation for the rest of

the paper.

With the Atiyah-Manton pro�le, equation (19) gives

1

e2(�)
= �8 3�

32�̂2

1

(� � �)3
h
1 + 2

�̂2
�(2���)

(���)2
sin2 �

i det(�)
d�

; (22)
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Figure 1: (Dimensionless) Inner energy of the chiral bag ; { { : Casimir

energy ; | : Total inner energy
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when parametrized by the chiral angle �.

When the � ! � (R ! 0) limit is taken, the stabilization strength for

the pure skyrmion is obtained

e(R = 0) = 4:216 ; (23)

to be compared with the value e = 5:45 obtained by G. S. Adkins, C. R. Nappi

and E. Witten by �tting the masses of the nucleon and the � particle.

Now, the value of F� can be �xed in the scheme proposed in [7]. Hav-

ing e and the nucleon mass M exp
n = 938MeV, expression (9) of [7] (with �

and M calculated for the Atiyah-Manton pro�le) leads to F� = 99:59MeV.

This value, far from the experimental one, is, however, near F� = 129MeV

obtained in [7]. As a consistency check, the � particle mass has been cal-

culated with our parameters, giving M� = 1206MeV (experimental value:

M
exp:
� = 1230MeV).

The calculations just detailed complete the determination of the param-

eters of the Skyrme model, in a consistent way with the TPM under study.

Now, recovering the dimensional variable r, the strength e(R) is as shown in

Figure 2.

To complete our task, the energy contained in the Skyrme external sector

must be evaluated. To do this calculation, the integral in (21), with the

lower limit truncated to the radius of the defect, must be studied. We have

performed the numerical evaluation of this quantity using the Atiyah-Manton

pro�le and the parameters of the Skyrme model F� and e(R), thus obtaining

the energy in the Skyrme sector as a function of the defect radius.

Figure 3 is the main result of this paper. It shows in dashed lines, from

top to bottom, the energy of the external Skyrme phase and the energy of

the defect, as functions of the position of the limit between the phases. Also

shown, in solid line, is the total energy of the hybrid chiral bag model. This

last shows a remarkable independence with the bag radius (for 0 � R � 1 fm),

as suggested by the CCP.

Summarizing, we have employed the results presented in [11, 12] for the

internal Casimir energies in a chiral bag model. In these papers, by the use

of analytical regularizations, a renormalized Casimir energy, dependent on

the KQ and KMIT constants, was obtained. In the present paper, a TPM
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Figure 2: Strength of the stabilization term e(R)
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Figure 3: Two Phase model energy | : Complete model ; { � { : Skyrmion's

sector ; { { : Bag's sector
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was completed, by introducing an external Skyrme phase. The renormalized

constants KQ and KMIT , as well as the parameters F� and e(R) of the trun-

cated Skyrme Lagrangian were determined according to physical conditions,

suitable for the TPM.

In reasonable agreement with the Cheshire Cat hypothesis, the total en-

ergy of this model shows an approximate independence with the bag radius

(separation limit between the phases) in the range of 0 � R � 1 fm.

The study of CBM at �nite temperature [20, 21] is an interesting e�ec-

tive approach to the analysis of decon�nement transitions. In those refer-

ences, succesive approximations to the problem, based on the validity of the

Cheshire Cat hypothesis at T = 0 have been made. The present results give a

ground to such hypothesis, thus making it sensible to look for the presence of

decon�nement transitions only in the temperature-dependent contributions

to the free energy of the bag.
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