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1 Introduction

One might think that theories in which one has to deal with an in�nite number of inter-

actions are not predictive. On the other hand in many cases only a �nite number of these

couplings are independent while the others can be expressed in terms of the independent

ones. This is a general feature whenever one considers the e�ective theory of a more funda-

mental theory in which there are symmetries which are apparently broken at the e�ective

level, that is at low energies. A similar situation happens when a (non-anomalous) sym-

metry of a theory is broken at the quantum level by the regularization as for instance in

the case of chiral gauge theories [1]. In general if there is an in�nite number of couplings

one can derive [2] a set of conditions which constrain them, preserving renormalizability.

One studies the dependence of the couplings on the ultraviolet cuto� and seeks solutions of

the renormalization group equations in which only a �nite number of couplings are allowed

to be independent function of the cuto� with the constrain that all remaining interactions

vanish when the independent ones are zero. It is conjectured that the solutions of these

conditions are the values of the couplings which restore some symmetry of the theory, hid-

den by the presence of an in�nity number of interactions. Then it is also conjectured that

in perturbation theory it is su�cient to restore symmetries at one value of the cuto� after
which the symmetry will be automatically maintained. This problem of reducing the num-
ber of coupling can be analysed in the Wilson renormalization group (RG) [3]-[6]. In this
formulation one introduces a Wilsonian e�ective action at a scale � in order to take into
account the modes above �. The invariance of the physical Green functions with respect
to variations of �, gives a 
ow equation for this e�ective action.

Recently the RG method has been extended to gauge theories [6]-[9]. In this case the
various couplings do not 
ow independently. In particular once the relevant couplings (i.e.
renormalizable interactions) are �ne tuned at some scale, the evolution of the Wilsonian
action is constrained by the symmetry. For instance in [6, 7] it is shown that for the SU(2)
Yang-Mills theory there are 9 relevant couplings which are all expressed in terms of the

vector three point coupling g at some scale (after having �xed the normalization of the
�elds) by solving the so called \�ne-tuning" equations. Then one prove that the BRS
invariance of the physical e�ective action is recovered.

A small number of independent couplings is a characteristic feature also in the case in
which the symmetry is spontaneously broken. In this case the symmetry is broken by the
vacuum. In perturbation theory one does not �nd terms which break the symmetry so they

must be introduced by hand as interactions and only for a speci�c value of their couplings

one recovers spontaneous symmetry breaking [2].

In this paper we consider the problem of the implementation of a spontaneously broken

symmetry in the RG framework. One has to distinguish the global symmetry case from
the local one. At �rst sight the latter is more complicated since the introduction of a cuto�

breaks the symmetry itself. However due to the Ward identities associated to the local

symmetry this case can be analyzed as the symmetric one. One introduces the operator

which gives the breaking of the Ward identities due to the presence of the scale � and

studies its 
ow with �. The boundary conditions for the relevant part of this operator
determine if one deals with a symmetry which is spontaneously broken or not. Having
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chosen one of the two implementations the 
ow constraints the couplings in such a way

that the symmetry (spontaneously broken or not) is maintained for any value of �.

The signature of a spontaneously broken symmetry is the fact that one scalar �eld

�0 acquires a non-vanishing vacuum expectation value (vev) h�0i. Thus the theory is

symmetric in the unphysical �eld �0 but it is not in the physical �eld � = �0 � h�0i. In

this paper we study this property at the e�ective level. Namely if the theory is symmetric

at any � in some unphysical �eld �0 = � + v. We �nd in general that in perturbation

theory v is �-independent but gets loop corrections. Besides the �eld � (and then also

�0 = � + v) has a �-dependent value of the vev, which vanishes only for � = 0. In many

cases this running of h�i gives an important contribution to the running of the masses of

the particles. For instance in [10] it was shown how the running of the vev of the dilaton

may be of help in solving the problem of unitarity in some gauge theories of gravity.

After a brief description of the RG method given in section 2, we consider in section

3 the case of a scalar theory with a spontaneously broken Z2 symmetry. As an example

of local symmetries, in section 4 we analyze in detail the Abelian Higgs model. Section 5

contains some conclusions.

2 Wilson e�ective action

In this section we recall the main features of the Wilson approach for a simple Euclidean
theory with one scalar �eld, in order to simplify the notation. The results can be generalized
easily to more realistic theories.

The generating functional is

Z[j] = e�W [j] =
Z
D� exp f�1

2
(�; D�1�)0�0

+ (j; �)0�0
� Sint[�; �0]g ; (1)

where D is the free propagator of the theory. We have introduced a cuto� scalar product

(A; B)��0
�
Z
p
K�1

��0
(p)A(�p)B(p) ;

Z
p
�
Z

d4p

(2�)4
;

where K��0
(p) is a cuto� function which is one for �2 � p2 � �2

0 and rapidly vanishing

outside this interval. Sint[�; �0] is the UV action involving monomials in the �elds and

their derivatives which have dimension not larger than four and are Lorentz scalars. The
Wilsonian e�ective action Se� is de�ned by integrating over the energy modes higher than

�. One �nds

Z[j] = N [j; �;�0]
Z
D� expf�1

2
(�; D�1�)0� + (j; �)0� � Se�[�; �;�0] g ;

where the coe�cient N is given by

logN [j; �;�0] =
1

2
(j; Dj)0�0

� 1

2
(j; Dj)0� : (2)
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Se� contains the e�ective interactions coming from the frequencies p2 > �2. It is easy to

show how this functional is equivalent to a generalization of (1), in which the free propagator

contains � as an infrared cuto�. More precisely we have

Se�[�; �;�0]� 1
2
(�; D�1�)��0

�W [D�1K�1
��0

(p)�; �;�0] ;

where

e�W [j;�;�0] =
Z
D� exp f�1

2
(�; D�1�)��0

+ (j; �)0�0
� Sint[�; �0]g :

Namely, apart from the tree level two-point function, the Wilsonian e�ective action is the

generating functional of the connected Green functions with an IR cuto� � and amputated

of the free external propagators. As one expects, it is technically easier to study the

Legendre transform of W [j; �;�0], which is usually called \cuto� e�ective action" and is a

generalization of the usual quantum e�ective action, since it contains the infrared cuto� � in

the free propagators. In the limit �! 0 and �0 !1 , one recovers the physical quantum

e�ective action. Both these limits can be taken in perturbation theory. In particular the

dependence on the ultraviolet cuto� �0 will be often understood.

From the fact that the �-dependence of the cuto� e�ective action �[�; �;�0] is only
coming from the free propagators, one �nds a 
ow equation in �, the exact RG equation,
which in general has the form

�@��[�; �;�0] = I[�; �;�0] ; (3)

where I depends non-linearly on �. For the precise form of I in the various cases see
[11, 12]. In order to integrate equation (3) one has to supply the boundary conditions. For
this reason it is useful to split the cuto� e�ective action into two parts. One performs a

Taylor expansion of the cuto� vertices at vanishing momenta (if there are massless particles
the expansion should be done around a non-vanishing subtraction point). This expansion
will have coe�cients of decreasing dimension. These coe�cients are the couplings of the
theory. The \relevant" part is obtained by keeping the terms with coe�cients having non-
negative dimension (relevant couplings). The remaining part is called \irrelevant". For

instance in the scalar case one gets for the relevant part

�rel[�; �] =
1

2

Z
d4x �(x)[�1(�)� �2(�)@

2]�(x) +
�3(�)

4!

Z
d4x �4(x) :

Since we expect the theory to be renormalizable, for � � �0 the dimension of the irrelevant
couplings should be given only by powers of �0. Thus the simplest boundary condition for

the irrelevant part of the cuto� e�ective action is

�irr[�; � = �0] = 0 :

However it would not give any problem to consider irrelevant couplings which vanish only

in the limit �0 !1 .

The boundary conditions for the relevant part �x the physical couplings. Thus it is

natural to set them at the physical point � = 0. For the scalar case this requirement �xes
all the three parameters to be �1(� = 0) = m2, �2(� = 0) = 1 and �3(� = 0) = g. In the

usual �eld theory language this corresponds to give the renormalization conditions. For a
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more realistic theory the number of relevant couplings is larger than the physical conditions.

This is related to the fact that some couplings are constrained by the symmetries of the

theory. In general the implementation of a symmetry is equivalent to a certain number of

\�ne tuning" conditions which �x the undetermined couplings in terms of the physical ones.

For instance in the SU(2) Yang-Mills case one has 9 parameters, of which 3 are physical

conditions (the vector and ghost wave function normalization and the gauge coupling) and

the remaining are given by 6 �ne tuning conditions [6, 7].

Once the boundary conditions are �xed, the cuto� e�ective action can be obtained by

integrating the RG equation

�[�; �] = �rel[�; � = 0] +
Z �

0

d�

�
Irel +

Z �0

�

d�

�
Iirr ;

where the �rst term provides the boundary conditions for the relevant part, i.e. the physical

conditions. The iterative solution of this integral equation gives the renormalized loop

expansion in terms of the physical couplings [4, 6, 11].

3 Scalar case

We want to describe the case of a Z2 invariant scalar �eld �0 with a tree level negative
mass parameter �2. This means that �0 is not the physical �eld of the theory and �2 is
not the mass of the scalar particle we are describing. The e�ective action expressed in

terms of the physical �eld � has no longer any Z2 symmetry. However we impose that the
e�ective action depends on the �eld � only through the combination (� + v)2, where v is
some suitable momentum independent and �-independent quantity, corresponding to the
vacuum expectation value (vev) of the \unphysical" �eld �0.

The choice of the boundary conditions for the relevant part of the cuto� e�ective action

�rel[�; �] =
Z
d4x

�
�(�)�(x) +

1

2
�(x)[�(�)� z(�)@2]�(x) +

1

3!
g3(�)�

3(x) +
1

4!
g(�)�4(x)

�

must be such that we �x the physical couplings (the mass m and four-point coupling

g) and the residual \re
ection" symmetry corresponding to the spontaneously broken Z2

symmetry. As expected, this will �x both the value of g3 = g3(� = 0) and the vev v, in

terms of m and g. Indeed, as we shall see, the parameter v is the vev of the �eld �0 only

at � = 0, while in general h�0i is �-dependent. So for the moment we write

�rel[�; � = 0] =
Z
d4x

�
1

2
�(x)(�@2 +m2)�(x) +

1

3!
g3�

3(x) +
1

4!
g�4(x)

�
: (4)

Now we come to the determination of g3 and v. It is convenient to consider the cuto�
e�ective potential V

V (�; �) =
1X
n=1

1

n!
�n(�)�

n ; �n(�) = �n(p1; : : : ; pn; �)jpi=0 : (5)
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Notice that also V can be split into its relevant part Vrel =
P4

n=1
1
n!
�n(�)�

n and irrelevant

part Virr =
P1

n=5
1

n!
�n(�)�

n. The fact that V is depending on (�+ v)2, means that V (��
v; �) is even in �. Then, by writing

V (�� v; �) =
1X
n=1

1

n!
Gn(�)�

n ;

where

Gn(�) =
1X
k=n

1

(k � n)!
�k(�)(�v)k�n ;

we get the relations

G2n+1 = 0 :

Notice that the functions Gn are the zero momentum vertices of the unbroken theory and

it holds the relation

Gn(�) =
@nV (�; �)

@�n
j�=�v :

We will use the two equations G1 = 0 and G3 = 0, namely

V 0(�v; �) = 0 ; V 000(�v; �) = 0 ; (6)

at � = 0 to compute the boundary condition g3 and the vev v. In the following we will
consider eq. (6) in perturbation theory. At the tree level one �nds

v(0) =

s
3m2

g
; g

(0)
3 =

q
3m2g ;

independent of � and satisfying g
(0)

3 = gv(0). At one loop order (6) gives for the boundary
condition of the three point vertex

g
(1)

3 = � g

2m2
V 0
irr

(1)
(�v(0); � = 0)� 1

4
V 000
irr

(1)
(�v(0); � = 0) (7)

and for the vev

v(1) = � 1

2m2
V 0
irr

(1)
(�v(0); � = 0) +

3

4g
V 000
irr

(1)
(�v(0); � = 0) : (8)

Notice that equation (7) gives g3 in terms of irrelevant vertices of the e�ective action evalu-

ated at zero momenta. This is a general feature and allows one to deduce the perturbative

expansion since in the iterative solution of the RG equations irrelevant vertices al loop `

involve relevant couplings at lower loops `0 < `. From the irrelevant part of the e�ective
potential at one loop (see appendix A) one �nds

g
(1)
3 = �3mg

p
3g

64�2
; v(1) =

9m
p
3g

64�2
: (9)

With this boundary condition for the three point coupling the one-loop e�ective potential

is completely determined and it is given by

64�2 V (1)[�; �] = �
q
3gm3�� 5gm2�2 � 3mg

q
3g�3 � 9g2

8
�4 � g

2
�2(�+ v(0))2
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+ [(
g

2
(�+ v(0))2 � m2

2
)2 � �4] log

0
@�2 + g

2
(�+ v(0))2 � m2

2

m2

1
A : (10)

Notice that the one point function vanishes only at � = 0 and is quadratically divergent

for large �. This implies that at any non-vanishing � the value � = 0 is not the minimum

of the cuto� e�ective potential. The running minimum is de�ned by

@V (�; �)

@�
j�=v(�) = 0

and at one loop it is given by

v(�) = � 1

m2
�(�) =

p
3gm

32�2

"
��2

m2
+ log

 
�2 +m2

m2

!#
:

Thus we have that the running of the one loop vacuum expectation value of the unphysical

�eld �0 is given by

h�0i = v(1)� 1

m2
�(�) =

m
p
3g

32�2

"
�2

m2
+
9

2
� log

 
�2 +m2

m2

!#
: (11)

As well known the loop expansion is insensitive to translations of the �eld [13]. This

implies that at any loop ` the contribution to V (`) coming from the graphs is the same
in the broken and unbroken theory, namely is a function of �2

0 = (� + v(0))2. Thus the
graphs contribution in any odd derivative of V (`) evaluated at � = �v(0) is vanishing.
The only thing which remains in @2n+1

@�2n+1
V (`)j�=�v(0) is the contribution from the boundary

conditions, which is independent of �. This argument implies that V 0(1)(�v(0); �) and

V 000(1)(�v(0); �) are independent of �, giving a �-independent one loop correction to the
vev. This observation holds at any loop order. At two loops for instance we have from (6)

V 0(0)(�v(2); �) + V 0(1)(�v(1); �) + V 0(2)(�v(0); �) = 0 ;

V 000(0)(�v(2); �) + V 000(1)(�v(1); �) + V 000(2)(�v(0); �) = 0 ;

where, for the same reason explained above, V (1) is even in �+ v(0)+ v(1) and V (2) is even

in �+ v(0), apart from the boundary conditions. This justi�es in perturbation theory our
assumption of a �-independent value of v.

Let us conclude this section with some comments about massless theories. Because of
infrared divergences, some relevant couplings (more precisely the marginal ones) are de�ned

as the value of the corresponding vertices at some non-vanishing subtraction points. At

� = 0 the various vertices at zero momenta are divergent but the e�ective potential is

well de�ned since the scale �� de�ning the subtraction points acts as a mass term in the

loop integrals. In massless theories there is the possibility that spontaneous symmetry
breaking is driven by radiative corrections. This corresponds to having a vanishing tree

level value for g3 and v. It is immediate to see that (6) implies that g3 and v vanish at
any loop order. Thus it impossible to have perturbative spontaneous symmetry breaking

for a massless scalar theory. This corresponds to the observation made by Coleman and

Weinberg [13] that the non-trivial minimum of the e�ective potential is out of the validity
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of the perturbative expansion. However, there is a possibility to circumvent this di�culty.

Imagine that the boundary condition for the coupling g(�) gets loop corrections

g(� = 0) = g + a=hg2 ; (12)

where a is some coe�cient. It is immediate to check that in this case the set of equation

(6) admits a solution for the tree level quantities g
(0)

3 and v(0), which clearly depends on

the scale used for the subtraction point. A boundary condition like (12) is somewhat

\unphysical", since now g is no more the value of the physical four point coupling, and has

no clear meaning. On the other hand if we are dealing with a theory with two or more �elds,

in principle it is possible to give a boundary condition for the self-interaction coupling of

one �eld in a manner analogous to (12), namely as a series in another coupling, de�ned

through the second �eld. This is precisely what was done by Coleman and Weinberg for the

massless scalar QED, in which the four-point coupling of the scalar is �xed to be zero at

tree level and proportional (with a precise factor) to e4 at one loop, so that a non-vanishing

tree level vev v is obtained1. This is an example of how the request of symmetry brings us

to make a \�ne tuning" of one or more boundary conditions.

4 Abelian gauge symmetry

In this section we consider the abelian Higgs model in four dimensional Euclidean space
with spontaneously broken U(1) gauge symmetry. The \classical action" for this model is

S =
Z
d4x

�
1

4
F��F��+jD��j2�

1

2
m2j�j2+gj�j4+ 1

2�
(@A��M�2)

2+�c(@2��M2��eM�1)c

�
;

where D� = @�� ieA�, � = 1p
2
(�1+

M

e
+ i�2), the masses and couplings are in the relation

2gM2 = e2m2 and we have included the 't Hooft gauge �xing term and the ghost action.
This action can be rewritten as

S =
Z
d4x

�
1

4
F��F�� +

1

2
M2A2 +

1

2�
(@A)2 +

1

2
jD��1j2 +

1

2
m2�21

+
1

2
jD��2j2 +

1

2
�M2�22 + �c(@2 � �M2)c (13)

+
g

4
(�41+�42+2�2

1�
2
2+4

M

e
�1�

2
2+4

M

e
�31)+ eA�(�2@��1��1@��2)+ eMA2�1��eM�c�1c

�
:

In this form it is easy to see that the free propagators are

D��(p) =
1

p2 +M2
(��� �

1 � �

p2 + �M2
p�p�) ; D�cc(p) =

�1
p2 + �M2

;

D1 =
1

p2 +m2
; D2 =

1

p2 + �M2
: (14)

The action (13) is invariant under the BRS transformations [15, 16]

�A� = �@��c ; ��c = 0 ; �c = �
1

�
(@A� �M�2) ;

1A numerical study of a truncation of RG equations for massless scalar QED was performed in [14].
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��1 = ��e�2�c ; ��2 = �(M�c + e�1�c) ;

where � is a Grassmann parameter. This invariance is expressed by a set of Slavnov-Taylor

(ST) identities SW = 0 for the generating functional W [J; �] of the quantum correlation

functions

e�W [J;�] =
Z
D� e�S+SJ+S� ;

where the source terms are SJ =
R
d4x[j�A�+j1�1+j2�2+�jc+�cj] and S� =

R
d4x[��1e�2�c+

�2(M�c + e�1�c)]. The ST operator is

S = (@�j�)
�

�j
+M�j

�

�j2
� 1

�
�j@�

�

�j�
+ j1

�

��1

+ j2
�

��2

:

For the quantum e�ective action, de�ned as �[�; �] = W [J; �] + SJ , the ST identities are

S� � = 0, where the Slavnov operator is

S� = (@��c)
�

�A�

+
1

�
(@�A� � �M�2)

�

�c
� 1

2

X
i=1;2

 
��

��i

�

��i
+

��

��i

�

��i

!
:

These expressions can be simpli�ed by noting that the identity �j + @2 �W
�j

+ �M �W

��2
= 0

holds. In terms of � it reads

��

�c
+ @2�c+ �M

��

��2

= 0 :

Using this relation the ST identities become

�c@�
��0

�A�

+
X
i=1;2

��0

��i

��0

��i
= 0 ;

where �0 = � � 1

2�
(@�A� � �M�2)

2. The relevant part of � contains 22 couplings corre-
sponding to the renormalizable interactions (see appendix B), whose values are �xed by the
renormalization conditions. We will see that 6 of them are given by physical requirements

(masses and wave function normalizations of A� and �1, the electric charge e and the van-
ishing of the �2-A mixing in the two point function) while the others will be constrained
by the symmetry.

We now apply the Wilson method. By integrating in the path integral the higher
momentum modes (p2 > �2) we get

e�W [J;�] = N

Z
D� exp f(�S2 + SJ + �2M�c)0� � Se�g ; (15)

where S2 is the part of the action (13) quadratic in the �elds and the notation (� � �)0� stands
for the cuto� scalar product introduced in section 2. The factor N in (15) is given by the

product of the four terms obtained from (2) with the substitutions j ! fj�; j1; j2; ��jg and
Dj ! fD��j� ; D1j1; D2j2; D�cc(j �M�2)g. The functional Se�[�; �; �] is the Wilsonian
e�ective action and is given by

expf�(S2)��0
� Se�[�; �; �]g =

Z
D� exp f(�S2 + �2M�c)��0

� Sint + SJg ;
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where the sources in the r.h.s. are related to the �eld � by

� = K��0
(D��j� ; D1j1; D2j2; �D�cc

�j; �D�ccj +K�1
��0

D�ccM�2)

and Sint is the UV action involving monomials in the �elds, BRS sources and their deriva-

tives which have dimension not higher than four, are Lorentz scalar and are invariant

under charge conjugation. This, together with the high momentum behaviour of the free

propagators (14) ensures perturbative renormalizability [11].

In the RG formulation one has to de�ne the boundary conditions for the 
ow in � of

the Wilsonian action Se�. As usual its irrelevant part is �xed at � = �0 and vanishes for

�0 ! 1. The relevant part of Se� is �xed at the physical point � = 0 in such a way

that the the physical e�ective action ful�lls the ST identities. In order to show how to �x

the parameters of this functional we �rst perform the following change of variables (cuto�

BRS) in (15)

�A� = �@��c ; ��c = 0 ; �c = �
1

�
(@A� �M�2) ;

��1 = ��K0�

�Se�
��1

; ��2 = �(M�c�K0�

�Se�
��2

) :

One then deduces the following identity

Se�W = N

Z
D� �e� expf(�S2 + SJ + �2M�c)0� � Se�g ;

which gives the violation of the ST identities. The violation �e� = �1 +�2 is

�1 =

�
��1D

�1
1

�

��1

� �2D
�1
2

�

��2

+ (@��c)
�

�A�

+M�c
�

��2
+

1

�
(@�A� � �M�2)

�

�c

�
Se� ; (16)

�2 =
Z
p
K0�(p)

X
i=1;2

 
�2Se�
��i��i

� �Se�
��i

�Se�
��i

!
: (17)

We now discuss the conditions needed to have �e� = 0, i.e. the ST identities.

The operator �e� satis�es a linear evolution equation which perturbatively has the form

�@��
(n) = L[�(m)] ; m < n ; (18)

where �(n) is the vertex of �e� with n �elds and L is a linear operator. Namely the 
ow
of a vertex of �e� is given by the vertices with lower number of �elds. From the linearity
of this equation if one has vanishing boundary conditions then �e� is zero for any �.

In order to discuss the boundary conditions we distinguish the relevant part, corre-
sponding to the local approximant with monomials of dimension not larger than �ve and

with ghost number one (see appendix C), and the remaining irrelevant part. From (16)

and (17) the irrelevant part of �e� vanishes at � = �0 !1 since Se�[� = �0] is local and
K01 = 1. We now consider the boundary conditions for the relevant part. Since we are

interested in �xing the relevant couplings of the e�ective action at the physical point, the
vanishing of the relevant parameters of �e� is imposed at � = 0. Moreover at this point

9



the functional �e� is simpler since �2 = 0 and �1 becomes by Legendre transform the ST

functional �� � S��. As a consequence of the above considerations we have [7]

��;rel = 0 ) �� = 0 ;

where ��;rel is the relevant part of ��. It is a general feature that the requirement��;rel = 0

gives a number of conditions, the �ne tuning conditions, larger than the number of couplings

which have to be �xed. However due to the nilpotency of the BRS transformation one can

�nd a set of algebraic consistency conditions which must be identically satis�ed by ��. In

our case one can see that2
4S� � 1

2

X
i=1;2

 
��

��i

�

��i
+

��

��i

�

��i

!3
5�� = 0 :

This is a functional identity which mixes relevant and irrelevant parts of ��, due to the

presence of mass scales (which can be the masses of the particles, as in our case, or the

subtraction point in a massless theory). If one shows that these irrelevant parts vanish, the

consistency conditions become a set of relations among the relevant couplings of �� [16],

thus giving a reduction of the number of independent relations in ��;rel = 0.

In general at this point one invokes the so-called Quantum Action Principle (QAP)

which states the locality of �� at the �rst non-trivial loop order. However one can avoid
the use of the QAP and exploit only the properties of the RG 
ow. As shown in [7] the
locality of �� can be recovered by solving the �ne tuning conditions starting from the
vertices of �� with the lowest number of �elds, i.e. �(2).

We brie
y summarize the proof. Due to the form of the evolution equation (18), per-
turbatively the vertex �(2) does not 
ow. Therefore this vertex is given by its relevant part

at � = 0 and can be set to zero by tuning the couplings in the e�ective action. One then
considers the evolution of the vertices �(3). From eq. (18) and the fact that �(2) = 0 these
vertices do not 
ow. Therefore they are equal to their relevant parts at � = 0. By using
the consistency conditions one reduces the number of independent parameters of �(3) and
show that also �(3) can be set to zero by �xing the couplings of �. This procedure can be

repeated until the whole ��;rel is �xed to zero. The technique we described is equivalent to
the introduction of a �ltration in the analysis of the cohomology of the ST operator [17].

The explicit solution of the various �ne tuning equations is given in appendix D. After
having �xed the following physical conditions

�mA
=M2 ; �A = 1 � 1

�
; ��2A = 0 ;

�m1
= m2 ; �1 = 1 ; �A�1�2 = �ie ;

for the remaining couplings we use the ST identities. One �nds

��c�2 =M ; �m2
= �M2 ; �2 = 1 :

All the other couplings receive perturbative corrections. As an example we now evaluate

the one loop correction to the boundary condition on the gauge parameter ��. This is �xed

to be

�� =
1

�
+M

@�(�c�2)(p)

@p2
jp2=0 + iM

@�(�2A)(p)

@p2
jp2=0 :
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At one loop one �nds in the Feynman gauge

@�(�c�2)(p)

@p2
jp2=0 = �e2Mm2I3 ;

@�(�2A)(p)

@p2
jp2=0 = 2ie2Mm2(I3 �m2I4) + ie2

m4

M
(I3 � 2m2I4) ;

where I3 and I4 are given by

16�2I3 =
M2

(m2 �M2)3
log

M2

m2
+

M2 +m2

2m2(m2 �M2)2
;

16�2I4 =
M2

(m2 �M2)4
log

M2

m2
+
5m2M2 �M4 + 2m4

6m4(m2 �M2)3
:

Then the one loop correction to the gauge parameter is

�(1)
� = e2m2[�(m2 + 3M2)I3 + 2m2(m2 +M2)I4] :

5 Conclusions

In this paper we have seen what are the boundary conditions that one has to impose on
the RG 
ow in order to describe a theory with a spontaneously broken symmetry. We have

discussed the global and the local case.

In the global case, the implementation of the symmetry, which is immediate in the
unbroken phase, requires a non-trivial perturbative �ne tuning of the boundary conditions.
We considered the discrete Z2 symmetry, but the analysis for a continuous one is identical.

In the local case the implementation of the symmetry can be performed along the same
lines in both phases. The problem can be reduced to the vanishing of the relevant part

of the Slavnov-Taylor identities. In principle one could expect that the broken phase is
simpler, since the vector mass avoids problems related to infrared singularities and there is
no need of introducing a non-vanishing subtraction point. For this reason for instance the
extraction of the relevant part of a functional can be performed at vanishing momentum and

reduces to a truncated Taylor expansion. In the massless case the non-vanishing subtraction

point causes some technical problems in the solution of the �ne tuning equation and the
consistency conditions, since it mixes the relevant and irrelevant contributions of the various

vertices. As a consequence the �ltration of the operator �� must be introduced. However
we have found that also in the broken phase the solution of the �ne tuning equations is

quite complicated. In this case the mass terms mix the relevant and irrelevant contributions

and a �ltration of �� is also needed.

For simplicity we have considered only the abelian Higgs model. The non-abelian case

can be treated along the same lines. Obviously one should introduce a non-vanishing
subtraction point in order to de�ne the relevant part of the vertices involving vector �elds

of the unbroken symmetry generators.
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In the Z2 scalar case we have computed the one loop e�ective potential and found that

in the direction in which the symmetry is broken the cuto� e�ective action acquires a

�-dependent minimum which vanishes only for � = 0. We computed the one-loop value

of this running minimum for the scalar case. The analysis done for the scalar case (see

eqs. (9)-(11)) could be repeated for the Abelian Higgs model. In this case v(1) is the one

loop correction to the parameter v(0) = M=e. The qualitative results are the same, the

only changes are in the factors. That is, at any non-vanishing � the value �1 = 0 is not the

minimum of the cuto� e�ective potential. The running minimum is given by the one-point

function of �1.
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Appendix A

In this appendix we perform some one loop computations for the scalar case. The evolution
equation for the cuto� e�ective potential can be derived from (3). However we �nd more

convenient to use the 
ow equation [18]

�
@

@�
V (�; �) = � =h

16�2
�4 log(�2 + V 00(�; �)) : (19)

This equation can be obtained from (3) in the approximation in which the momentum
dependent part of the vertices of the cuto� e�ective action is discarded (see [19] for the

derivation). By solving this equation iteratively one obtains the loop expansion of V in this
approximation. Notice that in the one loop case (19) is exact since in the r.h.s. one must
use the tree level value of V 00 which is momentum independent2. In this case it is easy to
integrate (19) with the boundary conditions (4) on the relevant couplings (and vanishing
boundary conditions at � = �0 for the irrelevant part). Thus the �0 ! 1 limit can be

taken and we get

64�2 V (1)[�; �] = �
q
3gm3�� 5gm2�2 + (

64�2

6
g
(1)
3 � 5mg

p
3g

2
)�3 � 9g2

8
�4 (20)

�g
2
�2(�+ v(0))2 + [(

g

2
(�+ v(0))2 � m2

2
)2 � �4] log

0
@�2 + g

2
(�+ v(0))2 � m2

2

m2

1
A ;

apart from a �eld independent term. In this expression the constant g
(1)
3 is the boundary

condition for the three point coupling and has to be determined by using (7) in terms of

the irrelevant part V
(1)

irr (�; � = 0) of this one loop potential at � = 0. In order to isolate
this functional one notices that at � = 0 the relevant part of (20) is simply given by

V
(1)

rel [�; � = 0] =
1

6
g
(1)
3 �3 ;

2For the Abelian Higgs model a formula analogous to (19) gives the exact one loop e�ective potential

only in the Landau gauge, since in this gauge the derivative couplings do not contribute to the scalar sector.
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thus one obtains V
(1)

irr (�; � = 0) by setting g
(1)

3 = 0 and � = 0 in (20). By using this result

in (7)-(8) one gets (9). The e�ective potential (20) is now completely determined and given

by (10). For instance the one loop relevant couplings are

�(1)(�) =

p
3gm

32�2

"
��2 +m2 log

 
�2 +m2

m2

!#
;

�(1)(�) =
g

32�2

"
��2 � 3m2�2

�2 +m2
+ 4m2 log

 
�2 +m2

m2

!#
;

g
(1)
3 (�) =

3mg
p
3g

32�2

"
�5�4 + 4m2�2 +m4

2(�2 +m2)2
+ log

 
�2 +m2

m2

!#
;

g(1)(�) =
3g2

32�2

"
�4�6 �m2�4 +m4�2

(�2 +m2)3
+ log

 
�2 +m2

m2

!#
:

In the limit �!1 one obtains the one loop values of the \bare" couplings

�
(1)

B =

p
3gm

32�2

�
��2 +m2T

�
; �

(1)

B =
g

32�2

�
��2 � 3m2 + 4m2T

�
;

g
(1)

3 B =
3mg

p
3g

32�2

�
�5

2
+ T

�
; g

(1)

B =
3g2

32�2
(�4 + T ) ;

where T = log(�2=m2). Then the bare potential in terms of the unphysical �eld �0 is

1

2

"
�m

2

2
+

=hg

64�2
(�2�2 + 3m2 �m2T )

#
�20 +

1

4!

"
g +

3=hg2

32�2
(�4 + T )

#
�40 :

Appendix B

Here we explicitly give the relevant part of the e�ective action �[�; �]. We use the fact

that under charge conjugation the functional �[�; �] is even. Recall that under charge
conjugation �1, �c and �2 are even while A�, �2 and �1 are odd.

Using the equation of motion for the ghost c, the contributions to �[�; �] which contain
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relevant couplings are

�[�; �] =
1

2

Z
p

�
�(AA)
�� (p)A�(�p)A�(p) + �(�1�1)(p)�1(�p)�1(p) + �(�2�2)(p)�2(�p)�2(p)

+ 2�(�2A)
� (p)�2(�p)A�(p) + 2�(�c�2)(p)�c(�p)�2(p)

�

+
Z
p

Z
q

�
1

2
�(2A�1)
�� (p; q; r)A�(p)A�(q)�1(r) + �(A�1�2)

� (p; q; r)A�(p)�1(q)�2(r)

+
1

3!
�(3�1)(p; q; r)�1(p)�1(q)�1(r) +

1

2
�(�12�2)(p; q; r)�1(p)�2(q)�2(r)

+ �(�c�1�2)(p; q; r)�c(p)�1(q)�2(r) + �(�c�2�1)(p; q; r)�c(p)�2(q)�1(r)

�

+
1

4!

Z
p

Z
q

Z
k

�
�(4�1)(p; q; k; h)�1(p)�1(q)�1(k)�1(h) + �(4�2)(p; q; k; h)�2(p)�2(q)�2(k)�2(h)

+ 6�(2�12�2)(p; q; k; h)�1(p)�1(q)�2(k)�2(h) + 6�(2�12A)
�� (p; q; k; h)�1(p)�1(q)A�(k)A�(h)

+ 6�(2�22A)
�� (p; q; k; h)�2(p)�2(q)A�(k)A�(h) + �(4A)

����(p; q; k; h)A�(p)A�(q)A�(k)A�(h)

�

+ : : : ;

(21)
where r = �p � q, h = �p � q � k and the dots stand for all the remaining terms which
contain only irrelevant vertices, since they are coe�cients of monomials in the �elds and
sources with dimension higher than four.

The vertices in (21) contain 22 relevant couplings which are de�ned as follows

�(AA)
�� (p) = ���[�mA

+ p2�� + �L(p)] + t��(p)[�A + �T (p)] ;

�(�1�1)(p) = �m1
+ p2�1 + �1(p) ;

�(�2�2)(p) = �m2
+ p2�2 + �2(p) ;

�(�2A)
� (p) = p�(��2A + �(�2A)(p)) ;

�(�c�2)(p) = ��c�2 + �(�c�2)(p) ;

�(2A�1)
�� (p; q; r) = ���[�2A�1 + �(2A�1)(p; q; r)] + ~�(2A�1)

�� (p; q; r) ;

�(A�1�2)
� (p; q; r) = q�[�A�1�2 + �(A�1�2)(p; q; r)] + r�[�

0
A�1�2

+ �(A�1�2)(p; q; r)] ;

�(3�1)(p; q; r) = �3�1 + �(3�1)(p; q; r) ;

�(�12�2)(p; q; r) = ��12�2 + �(�12�2)(p; q; r) ;

�(�c�1�2)(p; q; r) = ��c�1�2 + �(�c�1�2)(p; q; r) ;

�(�c�2�1)(p; q; r) = ��c�2�1 + �(�c�2�1)(p; q; r) ;

�(4�1)(p; q; k; h) = �4�1 + �(4�1)(p; q; k; h) ;

�(4�2)(p; q; k; h) = �4�2 + �(4�2)(p; q; k; h) ;

�(2�12�2)(p; q; k; h) = �2�12�2 + �(2�12�2)(p; q; k; h) ;

�(2�12A)
�� (p; q; k; h) = ��� [�2�12A + �(2�12A)(p; q; k; h)] + ~�(2�12A)

�� (p; q; k; h) ;

�(2�22A)
�� (p; q; k; h) = ��� [�2�22A + �(2�22A)(p; q; k; h)] + ~�(2�22A)

�� (p; q; k; h) ;

�(4A)
����(p; q; k; h) = (������ + ������ + ������)[�4A + �(4A)(p; q; k; h)] + ~�(4A)

����(p; q; k; h) ;
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with the conditions

�L(0) = 0 ;
@�L(p)

@p2
jp2=0 = 0 ; �T (p)jp2=0 = 0 ;

�i(0) = 0 ;
@�i(p)

@p2
jp2=0 = 0 ; i = 1; 2 ;

�(���)(pi)jpi=0 = 0 :

In the various � we can factorize a dimensional function of p. Thus they are irrelevant

and contribute to the irrelevant part of the functional �[�; �]. Similarly the vertices ~�i are

irrelevant since their Lorentz structure is (partially in the case of ~�(4A)) given by external

momenta.

We recall that the ghost propagator and the �c-c-�1 vertex are given in terms of the

vertices �(�c�2) and �(�c�2�1) by

�(�cc)(p) = �p2 � �M�(�c�2)(p) ; �(�cc�1) = ��M�(�c�2�1) :

At tree level one has
�(�cc)(p) = �(p2 + �M2)

and
�(�cc�1)(p; q; r) = ��Me :

Appendix C

We now extract the relevant part of the most general one dimensional functional of �elds
and sources with ghost number �1 and odd under charge conjugation. We call this generic

functional �. The vertices of � which contain the relevant couplings come from the �(n)

with n = 2; : : : 5, where n denotes the number of �elds. From the two-�elds component

�(2) =
Z
p

�
�(�cA)

� (p)�c(�p)A�(p) + �(�c�2)(p)�c(�p)�2(p)
�
;

we have the following relevant parameters

�(�cA)
� (p) = p�[�1 + p2�2 +�

(�cA)

irr (p)] ;

�(�c�2)(p) = �3 + p2�4 +�
(�c�2)

irr (p) :

The three-�elds component is

�(3) =
Z
p

Z
q

�
�(�cA�1)

� (p; q; r)�c(p)A�(q)�1(r) + �(�c�1�2)(p; q; r)�c(p)�1(q)�2(r)
�
+ : : : ;

where r = �p � q and the dots stand for the remaining terms which are all irrelevant. It

contains the following relevant parameters

�(�cA�1)
� (p; q; r) = p�[�5 +�

(�cA�1)

1;irr (p; q; r)] + q�[�6 +�
(�cA�1)

2;irr (p; q; r)] ;

�(�c�1�2)(p; q; r) = �7 + q2�8 + r2�9 + q � r�10 +�
(�c�1�2)

irr (p; q; r) :
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From the four-�elds component

�(4) =
Z
p

Z
q

Z
k

�
�(�c3A)

��� (p; q; k; h)�c(p)A�(q)A�(k)A�(h)

+ �(�c2A�2)
�� (p; q; k; h)�c(p)A�(q)A�(k)�2(h) + �(�cA2�1)

� (p; q; k; h)�c(p)A�(q)�1(k)�1(h)

+ �(�cA2�2)
� (p; q; k; h)�c(p)A�(q)�2(k)�2(h) + �(�c3�2)(p; q; k; h)�c(p)�2(q)�2(k)�2(h)

+ �(�c2�1�2)(p; q; k; h)�c(p)�1(q)�1(k)�2(h)

�
+ � � � ;

where h = �p� q � k, we have the relevant parameters

�(�c3A)
��� (p; q; k; h) = (q���� + k���� + h����)[�11 +�

(�c3A)

1;irr (p; q; k; h)]

+ [(k + h)���� + (q + k)���� + (q + h)����][�12+�
(�c3A)

2;irr (p; q; k; h)]

+ ~�(�c3A)
��� (p; q; k; h) ;

�(�c2A�2)
�� (p; q; k; h) = ��� [�13+�

(�c2A�2)

irr (p; q; k; h)] + ~�(�c2A�2)
�� (p; q; k; h) ;

�(�cA2�1)
� (p; q; k; h) = p�[�14 +�

(�cA2�1)

1;irr (p; q; k; h)] + q�[�15+�
(�cA2�1)

2;irr (p; q; k; h)] ;

�(�cA2�2)
� (p; q; k; h) = p�[�16 +�

(�cA2�2)

1;irr (p; q; k; h)] + q�[�17+�
(�cA2�2)

2;irr (p; q; k; h)] ;

�(�c3�2)(p; q; k; h) = �18 +�
(�c3�2)

irr (p; q; k; h) ;

�(�c2�1�2)(p; q; k; h) = �19 +�
(�c2�1�2)

irr (p; q; k; h) :

Finally the �ve-�elds component

�(5) =
Z
p

Z
q

Z
k

Z
h

�
�(�c2A�1�2)

�� (p; q; k; h; s)�c(p)A�(q)A�(k)�1(h)�2(s)

+ �(�c3�1�2)(p; q; k; h; s)�c(p)�1(q)�1(k)�1(h)�2(s)

+ �(�c�13�2)(p; q; k; h; s)�c(p)�1(q)�2(k)�2(h)�2(s)
�
+ : : : ;

where s = �p � q � k � h, contains the parameters

�(�c2A�1�2)
�� (p; q; k; h; s) = ��� [�20+�

(�c2A�1�2)

irr (p; q; k; h; s)] + ~�(�c2A�1�2)
�� (p; q; k; h; s) ;

�(�c3�1�2)(p; q; k; h; s) = �21 +�
(�c3�1�2)

irr (p; q; k; h; s) ;

�(�c�13�2)(p; q; k; h; s) = �22 +�
(�c�13�2)

irr (p; q; k; h; s) :

The conditions de�ning the 22 relevant parameters are

�
(�cA)

irr (0) =
@

@p2
�

(�cA)

irr (p)jp2=0 = 0 ; �
(�c�2)

irr (0) =
@

@p2
�

(�c�2)

irr (p)jp2=0 = 0

and
�

(�c���)
irr (p; :::)jpi=0 = 0

for the other vertices.

Due to these conditions one can isolate in these vertices a dimensional function of the

momenta thus they are irrelevant. Similarly the vertices ~�i have the Lorentz indices carried

by momenta in a di�erent way with respect to their relevant parts and are irrelevant.
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Appendix D

In this appendix we perform the �ne tuning of the couplings of the e�ective action. The

condition �(2) = 0 gives

�1 = 0 ! ��c�2 =M ;

�2 = 0 ! �� =
1

�
+M(

@�(�c�2)

@p2
jp2=0 + i

@�(�2A)

@p2
jp2=0) ;

�3 = 0 ! �m2
= �M2 ;

�4 = 0 ! �2 = 1 :

The condition �(3) = 0 gives

�5 = 0 ! i�2A�1 �M�0A�1�2 = ieM +m2A(0) ;

�6 = 0 ! M��c�2�1 = eM � im2B(0) ;

�7 = 0 ! M��12�2 = �m2��c�1�2 ;

�8 = 0 ! ��c�1�2 + ��12�2
@�(�c�2)

@p2
jp2=0 = �e�MC(0)�m2E(0) ;

�9 = 0 ! i�0A�1�2 =MD(0) � 2MC(0) � ��c�2�1 � ��12�2
@�(�c�2)

@p2
jp2=0 �m2F (0)

and �10 is zero due to a consistency condition.

The condition �(4) = 0 gives

�12 = 0 ! i�4A = �MI(0) + [A(0)�B(0)]�2A�1 ;

�13 = 0 ! M�2A2�2 + �2A�1��c�1�2 = 0 ;

�14 = 0 ! i�2A2�1 = �3�1A(0) + (�0A�1�2 + ie)��c�2�1 +MJ(0) ;

�15 = 0 ! �3�1B(0) = (�0A�1�2 � ie)��c�2�1 � iM�(�c�22�1)(pi = 0) �MK(0) ;

�18 = 0 ! M�4�2 + 3��12�2��c�2�1 = 0 ;

�19 = 0 ! M�2�12�2 + �3�1��c�1�2 + 2��12�2��c�2�1 = 0

and �11, �16 and �17 are zero due to consistency conditions.

The condition �(5) = 0 gives

�21 = 0 ! �4�1��c�1�2 = �3�2�12�2��c�2�1 � 3m2�(�c�12�1�2)(pi = 0)

�3�3�1�(�c�1�1�2)(pi = 0)� 3��12�2�
(�c�22�1)(pi = 0)�M�(3�12�2)(pi = 0) ;

and �20 and �22 are zero due to consistency conditions.

The above solutions are written in terms of some form factors of the following irrelevant

vertices

�(�c�1A)
� (p; q; k) = p�A+ k�B ; �(�12�2)(p; q; k) = (q2 + k2)C + (qk)D ;

�(�c�1�2)(p; q; k) = q2E + k2F + (qk)G ; �(2�1�2A)
� (p; q; k; h) = p�J + q�K ;
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�(�23A)
��� (p; q; k; h) = (q���� + k���� + h����)H + [(k + h)���� + (q + k)���� + (q + h)����]I

+~�(�23A)
��� (p; q; k; h) :

At tree level one has

�mA
=M2 ; �� =

1

�
; �A = 1� 1

�
;

�m1
= m2 ; �1 = 1 ; �m2

= �M2 ; �2 = 1 ;

��2A = 0 ; ��c�2 =M ;

�2A�1 = 2Me ; �A�1�2 = �ie ; �0A�1�2 = ie ;

�3�1 = 3!M
g

e
; ��12�2 = 2M

g

e
;

��c�1�2 = �e ; ��c�2�1 = e ;

�4�1 = 3!g ; �4�2 = 3!g ; �2�12�2 = 2g ;

�2�12A = 2e2 ; �2�22A = 2e2 ; �4A = 0 :
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