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Abstract

We discuss some aspects of the continuum limit of some lattice models,

in particular the 2D O(N) models. The continuum limit is taken either

in an in�nite volume or in a box whose size is a �xed fraction of the

in�nite volume correlation length. We point out that in this limit the


uctuations of the lattice variables must be O(1) and thus restore the

symmetry which may have been broken by the boundary conditions

(b.c.). This is true in particular for the so-called super-instanton b.c.

introduced earlier by us. This observation leads to a criterion to assess

how close a certain lattice simulation is to the continuum limit and can

be applied to uncover the true lattice artefacts, present even in the so-

called 'perfect actions'. It also shows that David's recent claim that

super-instanton b.c. require a di�erent renormalization must either be

incorrect or an artefact of perturbation theory.
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1 Introduction

Lattice �eld theory can be considered as quantum �eld theory with a cuto�.

Of course the challenge is to dispose of the cuto�. From the point of view

of the lattice model that means letting the correlation length become large.

Combining this requirement with the desire of working in a large thermody-

namic box, one is quickly facing forbidding costs in CPU time and memory.

Although many techniques have been proposed to circumvent this limitation,

generally speaking they fall into the following two categories:

1. Choice of a better lattice action

2. Finite size scaling

Using the �rst technique one hopes that by complicating su�ciently the

lattice action the cuto� e�ects can be reduced so that continuum behavior

can be observed already at a correlation length of a few lattice units with the

perfect action of Hasenfratz and Niedermayer [1].

With the second technique one simulates the system in a box of �nite

`physical size', i.e. a box whose linear extent L is a certain fraction of the

thermodynamic (= in�nite volume) correlation length �. The idea is then to

approach the continuum limit by considering a sequence of lattices with �xed

ratio z = L=� and extrapolating to the limit � !1, using certain assumptions

about the asymptotic behavior. Thereby it is believed that the so-called lattice

artefacts can be eliminated. A notable example of this philosophy is the work

of the `Alpha Collaboration' and its precursors [2]. This procedure raises some

questions, since the proposed form of the approach to the limit does not have a

solid theoretical basis and di�erent assumptions about it lead to quite di�erent

estimated values of this limit [3].

The crucial question is: do these techniques manage to re
ect the true

continuum behavior up to some small corrections, or are they dominated by

lattice artefacts? One way to assess this lies (maybe surprisingly) in studying

the dependence of the data upon the boundary conditions (b.c.) and possibly

other constraints on individual spins.

In [4] we introduced `super-instanton b.c.' (s.i.b.c.) that are characterized

by �xing the spins at the boundary and in addition a spin in the middle of the

lattice. We pointed out that in the thermodynamic limit one has to obtain the

same results with s.i.b.c. as with more conventional b.c.. In this paper we will

show that the same is true in the continuum limit even when it is taken in a

box of `�nite physical size'. The practical use of this observation lies in the fact

that one can check to what extent this independence is ful�lled for particular

coupling parameters and box sizes. Although we do not present any numerical

data in this paper, our conclusion is that recent claims which appeared in the

literature regarding the continuum limit of 2D O(N) models and 4D gauge

theories are unjusti�ed in that they would not pass this test; likewise is the

claim that by employing perfect actions one can observe continuum behavior
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already at small correlation length.

Our observation that super-instanton b.c. must lead to the same contin-

uum limit as say Dirichlet b.c. answers also David's [5] recent claim that they

require a di�erent renormalization: they cannot possibly do so. Consequently,

if in perturbation theory one �nds, as he claims, that in fact one does need ad-

ditional renormalizations with s.i.b.c., then that is another proof that in these

models perturbation theory fails to produce the correct asymptotic expansion.

Before starting our discussion, we remind the reader of the general proce-

dure used to obtain a continuum limit of a lattice model: �rst one has to �nd a

point in parameter space where at least one dynamically generated correlation

length, called �, diverges. Then the continuum correlation functions can be

obtained by driving the system into this critical point, using � as the standard

of length; calling the lattice �elds s(x), this means that the n-point continuum

correlation function (Schwinger function) is given by

Sn(x1; :::xn) = lim
�!1

Z(�)�n=2hs(x1�); :::; s(xn�)i (1)

where Z(�) will be a suitably chosen �eld strength renormalization constant.

This will produce a massive continuum limit (of mass 1 with the choice made in

eq.(1)). Alternatively one can construct a massless continuum limit by sitting

right at a critical point, introducing an arbitrary length standard Lo that is

sent to 1 and de�ning

Sn(x1; :::xn) = lim
Lo!1

Z(Lo)
�n=2hs(x1Lo):::s(xnLo)i (2)

At least if the lattice �elds s(x) are bounded, it is unavoidable that the

�eld strength renormalizations Z(�)�1=2 diverge for � !1, if the continuum

limit is to be a quantum �eld theory which has by necessity short distance

singularities in its Schwinger functions.

2 Gaussian Computations

To get a feeling for the situation, it is useful �rst to consider free scalar �elds

� on the lattice ZZD with mass m (including the case m = 0). First we look at

the continuum limit on an in�nite lattice: the �eld is described by a Gaussian

measure with covariance

C(x� y) = (��+m2)�1(x; y) (3)

where � is the lattice Laplacian. To obtain the continuum limit, we have to

drive the system into the critical point m = 0, using � = 1=m as the standard

of length. In other words, we study correlation functions at distances that are

�xed fractions of the correlation length � = 1=m, e.g.
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h�(
x

m
)�(

y

m
)i = C(

x� y

m
) (4)

and send m! 0.

In dimension D � 2 this 2-point function is O(mD�2), so to get a nontrivial

continuum limit in D > 2 one has to introduce a divergent �eld strength

renormalization Z(m) and de�ne

�r(x) = �(
x

m
)Z(m)�1=2 (5)

with Z(m) = O(mD�2). Then one obtains the continuum limit (for x 6= y)

lim
m!0

h�r(x)�r(y)i =
1

(2�)D

Z
dDp

eip�(x�y)

p2 + 1
(6)

(The integral does not exist in the classical sense, but has to be interpreted as

follows: assuming without loss of generality that xo�yo 6= 0, one integrates �rst

over po using the calculus of residues; the remaining integral is then absolutely

convergent. To show convergence of the renormalized lattice two-point function

to the continuum limit, one uses the same trick. After the �rst integration has

been carried out, the dominated convergence theorem can be used.)

In D = 2 no �eld strength renormalization is necessary. But in all D � 2

we �nd for x 6= y

lim
m!0

h(�r(x)� �r(y))
2
i =1; (7)

which shows that the 
uctuations of the renormalized �elds diverge. In D � 3

this divergence is due to the �eld strength renormalization, whereas in D = 2

it is due to the fact that limm!0 C(0) =1 because of the logarithmic infrared

(IR) divergence.

It is easy to convince oneself that the �elds �(x=m) and �(y=m) become

statistically independent in the continuum limit for x 6= y: this is true for any

b.c. and any D � 2 and is due to the fact that C(x�y
m
)=C(0) goes to zero.

Slightly less trivial is the case of an exponential of a free �eld

	(x) = eiq�(x) (8)

We limit ourselves to the study of D = 2, because that is the most interesting

case, and for D > 2 the continuum �elds would become non-tempered, i.e. the

correlation functions would develop exponential singularities. Even though the

�elds � did not require renormalization in 2D, their exponentials do, as can

be found essentially already in Coleman's paper [7]. If we de�ne

	r(x) = Z(m)�1=2	(x=m) (9)

with Z(m) = mq2=2�, the correlation functions of the renormalized �elds 	r

will have nontrivial continuum limits. But it is interesting to look at the
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continuum limit from the point of view of the lattice �elds 	(x=m): then we

�nd restoration of the O(2) symmetry in accordance with the Mermin-Wagner

theorem [9] in the limit m! 0. Explicitly

h	(
x

m
	(

y

m
)�i = exp(�q2(C(0)� C(

x� y

m
))) (10)

which goes to 0 as m! 0 because C(0) = O(j ln(m)j).

One can also establish that the �elds 	(x=m);	(y=m) become statistically

independent in the limit m ! 0 for x 6= y. Furthermore each �eld 	(x=m)

will be distributed uniformly on the unit circle in this limit. To see this, it

su�ces to consider

h	(x=m)nx	(y=m)nyi = e�
q2

2
[C(0)(n2x+n2y)+2nxnyC(

x�y

m
)] (11)

for nx; ny 2 ZZ. It is easy to see that for n2x + n2y 6= 0 this goes to zero, while

for nx = 0 = ny it is equal to 1. Thus we have

lim
m!0

h	(x=m)nx	(y=m)nyi = �nx0�ny0 (12)

from which the claim follows.

Next we turn to the continuum limit in a box. The linear extent L is to

be kept �xed in `physical units', i.e. we choose L = l=m with l �xed. We

may use Dirichlet, periodic or any other classical b.c.. The discussion of the

continuum limit proceeds as above and the equations are changed only by

replacing C(x� y) with Cbc(x; y), the covariance with the appropriate b.c.; we

�nd as above:

(1) In D > 2 the Gaussian �eld � requires a wave function renormalization,

leading to divergent 
uctuations of the massive free �eld in the continuum

limit.

(2) In D = 2, � requires no wave function renormalization, but the 
uctu-

ations of the free massive �eld diverge in the continuum limit due to the IR

divergence of Cbc(x; x).

(3) In D = 2 the renormalized exponentials 	r(x) of the free �eld require

a wave function renormalization; their expectation values are not O(2) sym-

metric in accordance with the symmtry breaking mass term.

(4) In D = 2 the unrenormalized exponentials 	(x) show restoration of the

O(2) symmetry, because from the point of view of the lattice (i.e. measured in

lattice units) the box is becoming in�nitely large and the symmetry breaking by

the mass term disappears in the limit. The �elds 	(xi=m) become statistically

independent for di�erent xi.

Next we turn to s.i.b.c.. They are de�ned as 0 Dirichlet b.c. at the bound-

ary of the box, at distance O(1=m) from the origin, together with the constraint

�(xc) = 0 where xc is a point in the `middle of the lattice', e.g. the origin.
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The Green's function h�(x)�(y)i with these b.c. can be expressed in terms of

the Dirichlet Green's function CD as follows [4, 8]:

h�(x)�(y)is:i:b:c: = CD(x; y)�
CD(x; xc)CD(xc; y)

CD(xc; xc)
(13)

More generally we may require that �(xc) = a, whereas at the edges of the

box we still have 0 Dirichlet b.c.. In this case the two-point function becomes

h�(x)�(y)is:i:b:c: = CD(x; y)�
CD(x; xc)CD(xc; y)

CD(xc; xc)
+ a2

CD(x; xc)CD(xc; y)

CD(xc; xc)2

(14)

and there is also a nonvanishing one-point function

h�(x)is:i:b:c: = a
CD(xc; x)

CD(xc; xc)
(15)

Looking at eqs.(13),(14),(15) one sees at once that in 2D, if we replace x

by x=m etc., the extra terms go to zero because their denominators blow up

as m ! 0. In D > 2, after �eld strength renormalization, and replacing x

by x=m etc, the extra terms go to zero because the numerators do not have

enough renormalization factors. It should not come as a surprise that the

additional constraint �(xc) = a does not leave any trace in the continuum

limit of the renormalized �elds, because in the continuum it is impossible to

impose a Dirichlet condition at a point in D > 1 (or more generally on a set

of zero capacity).

It is clear from eqs.(8) and (9) that the situtation is analogous for the

exponential �elds 	(x=m) and 	r(x).

There is another continuum limit that can be discussed: We can put the

massless Gaussian �eld in a box of size L, with 0 Dirichlet b.c. to avoid trouble

from the zero mode, and take L as the standard of length. The continuum

limit is now de�ned by the limit L!1 of the correlations of the renormalized

�elds

�r(x) = Z(L)�1=2�(xL) (16)

with Z(L) = L2�D (D � 2), or (only in 2D):

	r(x) = Z(L)�1=2	(xL) � Z(L)�1=2eiq�(xL) (17)

with Z(L) = L�q
2=2�.

Also in this massless case we can consider s.i.b.c.. The results are analogous

to the massive case discussed above:

(1) The renormalized �elds �r show divergent 
uctuations as in eq.(5) in

the continuum limit.

(2) The renormalized �elds 	r (D = 2) show no O(2) symmetry.

(3) The lattice �elds 	 show restoration of the O(2) symmetry.

(4) S.i.b.c. become identical to Dirichlet b.c. in the continuum limit.
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3 2D O(N) Models

In this section we want to show that what we found for the Gaussian models

also holds more generally, in particular for the 2D O(N) models. These models

describe con�gurations of classical spins fs(x)g; s(x) 2 IRN ; s(x) = 1; x 2 �,

where � is the lattice ZZD or a �nite part of it (like a box of size L). For

de�niteness we may consider the standard nearest neighbor action (s.n.n.a.)

S =
X
hxyi

s(x) � s(y) (18)

(even though that is inessential) and the Gibbs state induced by it via the

Boltzmann factor exp(��S).

First let us discuss the xy-model (N = 2). This model has the famous

Kosterlitz-Thouless transition from a massive phase at � < �crt to a massless

one at � � �crt [10, 11]. A massive continuum limit is constructed by driving

� ! �crt from below, using the correlation length � = 1=m as the unit of

length, as in the Gaussian models above. For instance the two-point Schwinger

function becomes

S2(x; y) = lim
�!�crt�0

Z(�)�1h(s(x�) � s(y�))i (19)

First let us point out that there has to be a �eld strength renormalization

Z(�)�1 that diverges for � ! �crt�0, to compensate for the fact that without

it the two-point function would go to zero. This can be seen as follows: Let

�r� be a box of size r� within the in�nite lattice ZZD. Then the root mean

square (rms) magnetization in that box is given by

Mrms =
1

(r�)2

s
h(
X

x2�r�

s(x))
2
i: (20)

Assuming the two-point function is everywhere nonnegative { a well known

though not rigorously proven fact { this is bounded by
q
(�=(r�)2 (remember

that there is no subtraction of a disconnected contribution because the O(2)

symmetry is unbroken). Now it is well known that

�

�2
= O(���) (21)

for � ! �crt� 0, and according to the Kosterlitz-Thouless theory [10] � = 1=4

(reasonably well con�rmed by the numerical simulations [12, 13]). This implies

that the rms magnetization over a box of size r� goes to 0 in the continuum

limit. But theM2
rms is nothing but a double average of the two-point functions

over that box, and under the positivity assumption made above it follows that

lim
�!�crt�0

h(s(x�) � s(y�))i = 0 (22)
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for x 6= y. On the way we have learned that the correlation between two spins

located at a distance x� will go to zero as � ! 1, contrary to a widespread

belief (this is also in agreement with the Ornstein-Zernike behavior as discussed

below).

It should be pointed out that the existence of a nontrivial continuum limit

requires that the same �eld strength renormalization that is needed for the two-

point function also works for the higher n-point functions. Composite �elds

(products of �elds a the same point) will require �eld strength renormalization

as well (cf. eq.(11)). Conversely, since the �eld strength renormalization has

to diverge in the continuum limit, all the correlations of the unrenormalized

lattice spins at `physical' distances will go to zero in that limit, and those spins

will become statistically independent.

Next let us turn to the continuum limit in a box �r� of size r�. As before

we �nd that the rms magnetization is given by

Mrms =
1

(r�)2

s
h(
X

x2�r�)r�

s(x))2i =
�r�

�2
(23)

Note that we denote by � the in�nite volume correlation length and by �r�
the susceptibility in the �nite box. We invoke now the hypothesis of �nite size

scaling (FSS) [14], which says that

lim
�!�crt�0

�r�

�1
= f(r) (24)

to conclude as before that also the two-point function in the box will go to

zero in the limit � !1.

As in the Gaussian models, one can also discuss a continuum limit in the

massless (KT) phase. Since there is no mass to set the scale, one chooses an

arbitrary diverging scale unit Lo and considers the limit

S2(x; y) = lim
Lo!1

Z(Lo)
�1h(s(xLo) � s(yLo))i (25)

Note that � � �crt is kept �xed in this limit. It is rigorously known [11, 19]

that � > 0 (KT theory predicts in fact 1=4 � � > 0), so we can conclude

as above that the spin-spin correlation without �eld strength renormalization

will vanish in the continuum limit and a similar argument can be made for

the continuum limit in a �nite box of sixe Lo. It should be stated (though

it may be obvious) that the O(2) symmetry of the unrenormalized spins is

restored in the limit, no matter what symmetry breaking b.c. we used. This

is of course simply a consequence of the Mermin-Wagner theorem [9] which

says that on the in�nite 2D lattice, a continuous symmetry cannot be broken

spontaneously.

Now we are ready to discuss s.i.b.c. for the O(2) model. Again they

are de�ned by �xing a spin in the middle in addition to imposing Dirichlet
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(�xed) b.c. at the boundary of our box. Because the spin in the middle

becomes uncorrelated with all the spins that have a distance O(�) or O(Lo),

respectively, in both limits (massive and massless) discussed above, s.i.b.c.

become equivalent to Dirichlet b.c..

Let us now extend the discussion to the O(N) models with N > 2. Else-

where [15, 16] we have presented arguments for the existence of a �nite �crt
such that for � � �crt there is a massless phase in all these models. Accepting

this point of view, the discussion can be taken over unchanged from the O(2)

model. The conventional wisdom { with which we disagree { states, however,

that the model is critical only at � =1. We want to point out that even if we

accept this point of view for the sake of the argument, the same conclusions

as before hold.

Since by assumption there is no massless phase, we only have to discuss the

massive continuum limit. According to the conventional wisdom the correla-

tion length � and the magnetic susceptibility � behave as follows for � ! 1

[17]:

� / ��
1

N�2 e
2��

N�2 (26)

� / ��
N+1

N�2 e
4��

N�2 (27)

which would imply
�

�2
= O(��

N�1
N�2 ) (28)

Since this vanishes in the limit � ! 1, we obtain again the conclusion

that in the limit � !1 the spin-spin correlations at distances that are �xed

multiples of the correlation length will vanish and the system, from the point

of view of the lattice spins, restores the O(N) symmetry in that limit.

Quite generally, and independently of the question whether the conven-

tional scenario is true or false, the existence of a continuum limit describing a

quantum �eld theory enforces a divergent �eld strength renormalization, and

as above we conclude that therefore the lattice spins at distances proportional

to the correlation length will become statistically independent of each other.

Tree level perturbation theory (which is uncontested) reveals that the spins

stay well ordered only over a distance O(�PT ) where

�PT = e
2��

N�1 (29)

and this is becoming arbitrarily small with respect to the correlation length �,

whether we subscribe to the conventional scenario (eq.(20)) or believe in the

existence of a critical point at �nite �.

Likewise it follows that s.i.b.c. are equivalent to Dirichlet b.c. in the

continuum, and it is an obvious generalization that �xing any �nite number

of spins will have as little e�ect as �xing one, i.e. no e�ect in the continuum.

The necessity of a divergent �eld strength renormalization (and the ab-

sence of spontaneous symmetry breaking at any �, which in 2D follows from
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the Mermin-Wagner theorem), is also in full accordance with the so-called

Ornstein-Zernike behavior of correlations at large distance (see for instance

[18]); one can even obtain a prediction for the behavior of the �eld strength

renormalization from the Ornstein-Zernike behavior. The Ornstein-Zernike

postulate, which has been proven in some cases like the Ising model [18], but

is expected to hold generally in massive models, since it corresponds to the

requirement that the model describes massive particles with an isolated mass

shell, says:

hs(x�) � s(y�)i �= �2�D��jx� yj
�(D�1)=2

exp(�jx� yj=�) (30)

for jxj >> �. It can be seen immediately that this expression times a �eld

strength renormalization factor Z�1 has a continuum limit if and only if

Z = O(�2�D��) (31)

The Gaussian models discussed in the previous section have � = 0; so eq.(29)

generalizes the result found there. From the so-called infrared bounds it fol-

lows that � � 0 (see for instance [19]), an inequality that is also required if the

continuum theory is to be Osterwalder-Schrader positive; of course logarith-

mic corrections to the pure power behavior assumed in eq.(29) are legitimate,

provided they correspond to a stronger divergence of Z than in the free Gaus-

sian model. In all these cases the Ornstein-Zernike behavior leads to the same

conclusions as our other considerations.

4 Discussion and Conclusions

We have seen that �xing a �nite number of spins has no e�ect on the continuum

limit in a box of �nite physical size or in the in�nite volume. This is to be

contrasted with the claim made by David [5] in a comment to our papers

[4, 6]. David claimed, that �xing a spin at the origin in addition to Dirichlet

b.c. (imposing s.i.b.c.) will necessitate extra renormalizations; as we have seen

here, there is no e�ect of the extra spin on the continuum limit. So if in fact

in perturbation theory one �nds the need for such an extra renormalization,

then this is just another proof that perturbation theory does not produce the

correct asymptotic expansion in these models.

Furthermore we have learned that in the continuum limit the system gets

disordered on the scale of the correlation length, in the sense that spins located

at a �xed �nite fraction of the correlation length will become decorrelated and

this phenomenon even occurs in a box of �nite physical size. This is in accor-

dance with the properties of continuum quantum �elds known from axiomatic

quantum �eld theory. We have learned there long ago that continuum quantum

�elds and their correlations are never functions, but have distributional char-

acter, in other words there are large 
uctuations at short continuum distances.
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So if the phenomena found here did not occur, there would be no chance to

have a continuum limit satisfying e.g. the Osterwalder-Schrader axioms [20].

In [4, 6] we pointed out the importance of certain `defects' dubbed super-

instantons in disordering the O(N) models at large �. These are con�gurations

that turn the spin gradually from a certain value in the center of a region

to a di�erent one at its edge; we stressed that these con�gurations require

arbitrarily little energy and have entropy corresponding to their position and

scale; therefore they should be abundantly present even at low temperature.

Here we found that at the scale of the correlation length, constraining the spin

at the center has no e�ect. This is also a manifestation of the fact that super-

instantons become so abundant in the continuum limit that they disorder the

system even at the scale of the correlation length, and thus forcing an extra

super-instanton into the system has no e�ect.

There is a useful lesson to be drawn from our observations: Since we now

know that in the continuum limit �xing a �nite number of spins cannot have

any e�ect, by doing precisely this and checking how much the physics changes,

we can assess how close our results are to the true continuum limit. This is of

relevance in particular in studies where small lattices are used to extract infor-

mation about the presumed continuum limit; notable examples are the work of

the `Alpha collaboration' [2] studying the running coupling, the work by Kim

[21] and by Caracciolo et al [22] on �nite size scaling in the O(3) model and

various claims which have appeared in the literature regarding the miraculuous

properties of the improved/perfect actions in simulating continuum physics al-

ready at rather small correlation lenghts [1, 23]. We intend to return to this

question in a more quantitative fashion elsewhere [3]; however we would like

to state here that this type of claims, that from lattices of modest size one can

learn true continuum behavior, are in our opinion false: whatever the action

may be, the lattice must be large enough to allow the typical con�guration to

resemble a gas of super-instantons, i.e. to restore a certain symmetry required

by the Gibbs measure.

This remark applies equally to gauge theories. Contrary to the claim of

the `Alpha Collaboration' and its precursors, we believe that their data on the

running of �s(Q) do not reveal the true continuum behavior of QCD. Indeed

for example the study of this running in SU(2) [2] involves lattices with L � 20

and � � 3, a regime in which the typical con�guration corresponds to small


uctuations around a well ordered state, rather than a gas of super-instantons;

this explains also the excellent agreement they found in the running of �s(Q)

with the prediction of perturbation theory.

References

[1] P.Hasenfratz and F.Niedermayer, Nucl.Phys. B414 (1994) 785.

10



[2] ALPHA collaboration (G.de Divitiis, R.Frezzotti, M.Guagnelli,

M.L�uscher, R.Petronzio, R.Sommer, P.Weisz and U.Wol�), Nucl.Phys.

B437 (1994) 447; M. L�uscher, R.Sommer, U.Wol� and P.Weisz,

Nucl.Phys. 389 (1993) 247; M.L�uscher, P.Weisz and U.Wol�, Nucl.Phys.

B 359 (1991) 221.

[3] A.Patrasciou and E.Seiler, in preparation.

[4] A.Patrasciou and E.Seiler,Phys.Rev.Lett. 74 (1995) 1920.

[5] F.David, Comment on \Superinstantons and the Reliability of Perturba-

tion Theory in Non-Abelian Models", hep-lat/9504017.

[6] A.Patrascioiu and E.Seiler, Phys.Rev.Lett. 74 (1995) 1924.

[7] S.Coleman, Phys.Rev. D11 (1975) 2088.

[8] A.Sokal, private communication.

[9] N.D.Mermin and H.Wagner, Phys.Rev.Lett.17 (1966) 1133.

[10] J.M.Kosterlitz and D.J.Thouless, J. Phys. (Paris) 32 (1975) 581.

[11] J.Fr�ohlich and T.Spencer, Commun.Math.Phys. 81 (1981) 527.

[12] R.Gupta and C.F.Baillie, Phys.Rev.B 45 (1992) 2883.

[13] M.Hasenbusch, M.Marcu and K.Pinn, Physica A 208 (1994) 124.

[14] E.Br�ezin, J.Phys.(Paris) 43 (1982) 15; M.Barber in: C.Domb and

J.L.Lebowitz (eds), Phase Transitions and Critical Phenomena, vol.8,

Academic Press, New York 1983.

[15] A.Patrascioiu, Existence of Algebraic Decay in non-Abelian Ferromagnets,

University of Arizona preprint AZPH-TH/91-49.

[16] A.Patrascioiu and E.Seiler, Percolation Theory and the Existence of a Soft

Phase in 2D Spin Models, Nucl.Phys.B.(Proc. Suppl.) 30 (1993) 184.

[17] E.Br�ezin and J.Zinn-Justin, Phys.Rev.Lett. 36 (1976) 691; Phys.Rev.

B14 (1976) 3110; Phys.Rev. D14 (1976) 2615.

[18] P.J.Paes-Leme, Ann.Phys.(N.Y.) 115 (1978) 367.

[19] R.Fern�andez, J.Fr�ohlich and A.Sokal, Random Walks, Critical Phenom-

ena and Triviality in Quantum Field Theory, Springer-Verlag, Berlin etc.

1992.

11



[20] K.Osterwalder and R.Schrader, Commun.Math.Phys. 31 (1973) 83; 42

(1975) 281.

[21] J.K.Kim, Phys.Rev.Lett. 70 (1993) 1735; A.Patrascioiu and E.Seiler,

Phys.Rev.Lett. 73 (1994) 3325.

[22] S.Caracciolo, R.G.Edwards, A.Pelissetto and A.Sokal, Asymptotic Scaling

in the Two-Dimensional O(3) � Model at Correlation Length 105, hep-

lat/9411009; Nucl.Phys.B (Proc. Suppl.) 42 (1995) 752.

[23] M.Alford, W.Dimm, G.P.Lepage, G.Hockney and P.B. Mackenzie, Lattice

QCD on Small Computers, FERMILAB-Pub 95/199-T, hep-lat 9507010.

12


