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Abstract

We derive a systematic procedure to compute Green functions for the massive Schwinger

model via a perturbation expansion in the fermion mass. The known exact solution of the

massless Schwinger model is used as a starting point.

We compute the corrections to the Schwinger mass up to second order.
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1 Introduction

The massless Schwinger model is wellknown to be equivalent to a theory of a free massive

boson with Schwinger mass �20 =
e2

� ([1]). This massive �eld is formed via the chiral anomaly

and may be interpreted as a fermion{antifermion bound state ([6], [5], [10], [9], [19]). Besides, the

massless Schwinger model shows other nontrivial features like fermion condensate, instantons

and nontrivial vacuum structure (� vacuum) ([2]{[5], [7]{[9], [11]{[13], [23]). In the massless

Schwinger model physical quantities do not depend on the vacuum angle �.

The massive Schwinger model is di�erent in some repects. First, it is no longer exactly

solvable ([13]{[16], [10], [9]). The physical state { the massive boson { is no longer free, and its

mass acquires corrections due to the interaction. Instanton{like gauge �elds and a nontrivial

vacuum structure persist to be present, and, in addition, physical quantities now depend on

the vacuum angle �. The fermion condensate, too, acquires corrections due to the fermion mass

([21]).

Here we show how to compute Green functions for the massive Schwinger model within the

Euclidean path integral formalism, using a perturbation expansion in the fermion mass. (The

existence and �niteness of the mass perturbation theory for the massive Schwinger model was

proven in [17]). For this purpose we use the known exact solution of the massless Schwinger

model as a starting point. From the perturbation expansion we explicitly calculate corrections

to the Schwinger mass up to second orcer in the fermion mass m, for a general vacuum angle �.

2 Exact solution of the massless case

The vacuum functional (and Green functions) of the massive Schwinger model may be inferred

from n{point functions of the massless Schwinger model via an expansion in the fermion mass.

Indeed, we may write for the Euclidean vacuum functional (k : : : instanton number)

Z(m; �) =
1X

k=�1

eik�Zk(m) (1)

where

Zk(m) = N

Z
D �	D	DA�

ke

R
dx

h
�	(i@=�eA=k+m)	� 1
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F��F
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Z
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1X
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mn
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nY
i=1

Z
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� expf

Z
dx
h
�	(i@=� ���

�@��k)	 +
1

2
�k2

2�k

i
g (2)

(A� = ���@
�� corresponding to Lorentz gauge). Therefore the perturbative computation of

Z(m; �) is traced back to the computation of scalar VEVs ( h
Q
i S(xi)i0, S(x) �

�	(x)	(x) )

for the massless Schwinger model and some space time integrations. It is useful to rewrite the

scalar densities in terms of chiral ones, S(x) = S+(x) + S�(x), S� � �	P�	, because then only

a de�nite instanton sector k = n+ �n� contributes to the VEV h
Qn+
i=1 S+(xi)

Qn�
j=1 S�(xj)i0. A

general VEV may be computed exactly (see e.g. [7]{[9], [22], [21]),

hSH1
(x1) � � �SHn

(xn)i0 =
��
2

�n
exp

hX
i<j

(�)�i�j4�D�0(xi � xj)
i

(3)
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where �i = �1 for Hi = �, D�0 is the massive scalar propagator,

D�0(x) = �
1

2�
K0(�0jxj); ~D�0(p) =

�1

p2 + �20
; (4)

(K0 : : :McDonald function) and � is the fermion condensate of the massless Schwinger model,

� = h�		i0 =
e

2�
�0 (5)

( : : : Euler constant). The index 0 for �0 indicates that it is the order zero result, the index

0 for the VEVs means that they are with respect to the massless Schwinger model. From this

Z(m; �) may be computed (see [21] for details, [24] for its physical implications),

Z(m; �) = eV �(m;�);

�(m; �) = m
�

2
2 cos� +m2

��
2

�2
(E cos 2� + F ) + o(m3) (6)

(V : : : space time volume) where

E =

Z
d2xE(x) �

Z
d2x(e�2K0(�0jxj) � 1) = �8:9139 �

1

�20

F =

Z
d2xF (x) �

Z
d2x(e2K0(�0jxj) � 1) = 9:7384 �

1

�20
(7)

and for F a subtraction of a free �eld singularity is necessary.

In order to compute VEVs for the massive Schwinger model one has to insert the corre-

sponding operators into the path integral (1), (2) and divide by the vacuum functional Z(m; �):

hÔim =
1

Z(m; �)
hÔ

1X
n=0

mn

n!

nY
i=1

Z
dxi �	(xi)	(xi)i0 (8)

Via the normalization all volume factors cancel completely, as it certainly has to be (we will

explicitly see this in the computations). For the computation of VEVs of scalar (S) and chiral

(S�) densities formula (3) su�ces and could be used e.g. for the computation of the fermion

condensate h�		im (this however may be derived at once from (6), see [21]).

For the computation of the Schwinger mass additional Green functions of the massless

Schwinger model are needed. It is wellknown that the vector current correlator is the free

massive propagator in the massless Schwinger model:

hJ�(x)J�(y)i0 =
1

�
���0@

�0

x ���0@
�0

y D�0(x� y) (9)

Therefore, for a perturbative calculation we need the n{point functions

hJ�(y2)J�(y1)
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SHi
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which may be computed from the Euclidean path integral or from bosonization (the latter

method is easier).
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3 Computation of the Schwinger mass

For the perturbative computation of the massive propagator we simply have to insert successive

orders of equ. (10) into (8). The factor ( 1� ���0@
�0

y2
���0@

�0

y1
) is the same for all orders, therefore we

will ignore it in the sequel.

There are two terms from (10) to be inserted in �rst order, namely SH ; H = �, and four

terms, SH1
SH2

; Hi = �, in second order. For the moment we consider the case where allHi = +;

the other contributions can be inferred from this one by a rearrangement of some signs. Up to

second order, we �nd ( hJ�(y2)J�(y1)im �
1
�
���0@

�0

y2
���0@

�0

y1
T (y1; y2) )
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1

Z(m; �)
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�
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i

(11)

Inserting equ. (6) for the vacuum functional Z(m; �) and using the perturbation formula of

second order,
a0 + a1x+ a2x

2 + o(x3)

1 + b1x+ b2x2 + o(x3)
=

a0 + a1x+ a2x
2
� a0b1x� a0b2x

2
� a1b1x

2 + a0b
2
1x

2 + o(x3) (12)

we arrive at
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Z
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�

2
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4�E
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m2
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�2
4�
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dx1dx2D�0(x1 � y1)D�0(x2 � y2)(E(x1� x2) + 1) (13)

where E;E(x) are given in (7) and we used the x ! �x symmetry of all occurring functions.

Observe that, as claimed, all volume factors V have dropped out.

However, expression (13) is not yet the desired result for further computation, there is still

one unwanted term. The last line of expression (13) consists of two terms, due to the factor

(E(x1� x2) + 1). The second one, proportional to 1, reads

m2
��
2

�2
4�

Z
dx1D�0(x1 � y1)

Z
dx2D�0(x2 � y2) (14)
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and obviously does not contribute to the y1�y2 correlation. It is a disconnected part stemming

from the VEVs

hJ�(yi)S+(xj)i0 � ���0@
�0

yi
D�0(xj � yi) (15)

and must be subtracted from (13).

Looking for the moment at the �rst order correction only, it is very easy to �nd the Schwinger

mass correction:

2y1T
(1)(y1; y2) = �(y1 � y2) + �20D�0(y1 � y2)+

4�m
�

2
(D�0(y1 � y2) + �20

Z
dxD�0(x� y2)D�0(x� y1))

� �(y1 � y2) + �21D�1(y1 � y2) + o(m2) (16)

where

�21 = �20 + 4�m
�

2
(17)

To obtain the second order result, we rewrite expression (13), without the disconnected part,

in momentum space and substitute all functions by their Fourier transforms (thereby the con-

volutions turn into products):

~T (p) =
�1
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+ 4�m

�
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1
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2
+ 4�m2
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2
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2 + 4�m2(�2 )
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2 )

2 1
p2+�2

0
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Therefore, for �nding the mass pole, p2 has to obey the self consistency equation (after a

rescaling p02 = p2

�2
0

, E0 = E(�20 � 1) = �20E etc.)

p0
2
= �1� 4�

m
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�

2�0
� 4�

m2

�20

� �

2�0

�2
[E0+ ~E0(p0) +

4�

p02 + 1
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The second order part (the term in square brackets) may be rewritten like

[� � �] =

Z
d2x[e�2K0(jxj) � 1 + eip

0x(e�2K0(jxj) � 1 + 2K0(jxj)] =

Z 1

0
drr[2�(e�2K0(r) � 1) +

Z 2�

0
d�eijp

0jr cos �(e�2K0(r) � 1 + 2K0(r))] =

2�

Z 1

0
drr[e�2K0(r) � 1 + J0(jp

0
jr)(e�2K0(r) � 1 + 2K0(r))] (20)

where J0 is the Bessel function of the �rst kind. This expression behaves well around jp0j = i

and therefore we may set jp0j = i because deviations from this value are of higher order in m.

Using I0(r) = J0(ir) we �nd

p0
2
= �1 � 4�

m

�0

�

2�0
� 8�2

m2

�20

� �

2�0

�2
�A (21)
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A :=

Z 1

0
drr[e�2K0(r) � 1 + I0(r)(e

�2K0(r) � 1 + 2K0(r))]

A = �0:6599 (22)

This result was computed for the positive chirality densities S+. For the pure negative chirality

densities S� the result is completely identical. However in second order there are mixed products

S+S�; S�S+, too. Both of them lead to the same result, where the above integralA is substituted

by a similar expression B,

B :=

Z 1

0
drr[e+2K0(r) � 1 + I0(r)(�e

+2K0(r) + 1 + 2K0(r))]

B = 1:7277 (23)

In this expression the nice feature of cancellation of UV divergencies occurs. Indeed, both e2K0(r)

and �I0(r)e
2K0(r) diverge like 1

r2
for small r (this divergency corresponds to the free fermion

�eld divergency of the underlying theory), but obviously the divergencies cancel each other.

In fact, this cancellation was already observed twenty years ago in [13] within a bosonization

approach, and on general grounds it should continue to hold for higher orders.

Collecting all results and multiplying each contribution with its corresponding � factor

(S� ! e�i� , see (1{3)), we �nd for the Schwinger mass in second order

�p0
2
�

�22
�20

= 1 + 8�
m

�0

�

2�0
cos � + 16�2

m2

�20

� �

2�0

�2
(A cos 2� + B) (24)

or, inserting all numbers (remember �
2�0

= e

4� , equ. (5))

�22 = �20(1 + 3:5621 �
m

�0
cos � + 5:4807 �

m2

�20
� 2:0933 �

m2

�20
cos 2�) (25)

which is our �nal result.

For the special case � = 0 our result (24) precisely coincides with the result in [25], where

the second order correction for � = 0 was computed within bosonization and using near light

cone coordinates. In the same article this result was compared with a lattice calculation ([26]),

and a good agreement is obtained within the range of the expansion parameter m
�0

where the

lattice calculations were performed.

4 Summary

We have demonstrated a general method of computing n{point functions for the massive

Schwinger model in mass perturbation theory within the Euclidean path integral formalism,

using the known exact solution of the massless Schwinger model as a starting point.

All n{point functions exist perturbatively and are �nite in the in�nite volume limit.

Using this approach we were able to compute the mass perturbation corrections to the

Schwinger mass up to second order, and almost all calculations could be done analytically. This

feature does not persist to hold for higher orders. Already in third order an equation analogous

to (19) will be a true self consistency equation that can be solved only numerically.

For � = 0, the result (24) is well reproduced by lattice calculations ([25]).

The numerical calculations in this article were done with Mathematica 2.2.
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