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Abstract

In this work, we investigate the phenomenology of minimal four-family MSSM
supergravity theories containing an additional generation (t0; b0; � 0; �0) of heavy
fermions along with their superpartners. We constrain the models by demand-
ing: gauge coupling constant uni�cation at high energy scales; perturbative values
for all Yukawa couplings for energy scales up to the grand-uni�cation scale; ra-
diative electroweak (EW) symmetry breaking via renormalization group evolution
down from the grand-uni�cation scale; a neutral LSP; and consistency with con-
straints from direct searches for new particles and precision electroweak data. The
perturbative constraints imply a rather light fourth-family quark and lepton spec-
trum, and tan � <� 3. The lightest CP-even Higgs mass receives fourth-family loop
corrections that can result in as much as a 30% increase over the corresponding
three-family mass value. Signi�cant fourth-family Yukawa coupling contributions
to the evolution of scalar masses lead to unexpected mass hierarchies among the
sparticles. For example, the e� 01 is generally the lightest slepton and the lightest

squark is the eb01. A signi�cant lower bound is placed on the gluino mass by the
simple requirement that the e� 01 not be the LSP. Sleptons of the �rst two families
are much more massive compared to the LSP and other neutralinos and charginos
than in the three-family models; in particular, all sleptons belonging to the �rst
three families could easily lie beyond the reach of a

p
s = 500GeV e+e� collider.

Consistency tests of the RGE equations via mass sum rules and relations are ex-
plored. Relations between slepton masses and gaugino masses are shown to be
very sensitive to the presence of a fourth generation. The most important near-
future experimental probes of the four-family models are reviewed. A scenario

with mt � mW and t ! et1e�01 is shown to be inconsistent with universal soft-
SUSY-breaking boundary conditions. Full four-family evolution of �s is shown to
lead to a signi�cant enhancement in inclusive jet and di-jet spectra at Tevatron
energies when all sparticle masses are near their lower bounds.

1. Introduction

Despite the success of the Standard Model (SM), it is almost certainly in-
complete. In particular, the full theory should include a quantum theory of
gravity. However, the huge discrepancy between the characteristic Planck scale
(MPl ' 1018GeV) and the weak scale, O(mZ), is not easily bridged without en-
countering problems related to �ne-tuning and gauge-hierarchy. Supersymmetry is
currently the only fully quantitative and consistent resolution to these problems. In
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particular, the Minimal Supersymmetric extension of the Standard Model (MSSM)
is an extremely attractive contender for physics beyond the SM due to its natu-
ral prediction that the gauge couplings all unify at a common grand-uni�cation
(GUT) scale, MU . The precise particle content of the MSSM (comprising sparticle
partners for all SM particles and exactly two Higgs doublet �elds H1;H2 and their
higgsino partners) is crucial to this success. In addition, the MSSM provides an at-
tractive explanation for the long proton decay lifetime and an attractive candidate
(the lightest supersymmetric particle, or LSP) for cold dark matter, easily accom-
modates the absence of signi�cant 
avor-changing neutral currents (FCNC's), and
is completely consistent with current precision electroweak data. Of course, exper-
iment has yet to reveal any evidence for SUSY, in either the sparticle or the Higgs
sector.

Unfortunately, supersymmetric models in general, and the MSSM in particu-
lar, provide no explanation for the number of families (we denote the number of
families/generations by Ng) or the patterns of fermion masses. Certainly, a super-
symmetric extension of the standard three-family model is entirely consistent, but
the possibility of incorporating one or more additional generations into the MSSM

framework deserves exploration. In a previous work,
[1]
we investigated the minimal

four-family, gauge-uni�ed MSSM, with a large Dirac mass for the � 0,
[2]
so as to be

consistent with LEP constraints.
[3]

In particular, we explored the constraints upon the model obtained by gener-
alizing the usual perturbative limit on the top quark Yukawa coupling �t to the
requirement that all Yukawa couplings remain perturbative at energy scales below
MU . Assuming that the CDF and D0 `top-quark' events arise from a third genera-

tion top with mt >� 155GeV,
?
we demonstrated that perturbative Yukawa behavior

requires a rather light fourth-family spectrum, namely mt0;b0
<� mt. The fourth-

family lepton sector is even more strongly constrained: m� 0;�0 <� 85GeV, the upper
limit occurring when mt0;mb0 are just beyond the reach of LEP. (That is, the upper
limits for the fourth-family leptons versus quarks have a strong inverse correlation.)
Additional results included: i) limits requiring tan� (tan � � v2=v1, v1 and v2 be-
ing the vacuum expectation values of the H1 and H2 scalar �elds) to have a very
modest value, roughly 1 <� tan� <� 3, in order to avoid perturbativity problems
for the Yukawas; ii) the impossibility of imposing the �b(MU )=�� (MU ) = 1 bound-
ary condition in four-family models; and iii) an increase in the predicted value for
�3(mZ) by ' +3% from the purely gauge coupling contributions to gauge cou-
pling running, which could, however, be largely compensated by two-loop Yukawa

contributions to gauge coupling running.
[1]

In this paper we elaborate upon our earlier results and extend our four family
study to include the superpartners of the fourth-family quarks and leptons. We
adopt the conventional framework in which the MSSM parameters are determined
in the context of minimal supergravity by universal (at MU ) soft-SUSY-breaking

? We de�ne the fourth generation by the CKM matrix hierarchy jVtbj
2; jVt0b0 j

2
� 1, with

jVt0bj
2; jVtb0j

2
� 1.
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masses for the gauginos (m1=2) and for the squark and Higgs boson �elds (m0), and

universal soft Yukawa couplings (A); of course, these typically evolve to (rather
disparate) weak-scale values. Additional crucial parameters are: tan � (de�ned

above) and �, the coe�cient of the Ĥ1Ĥ2 mixing term in the superpotential. Aside
from having considerable theoretical motivation, this approach has the advantage
that relatively few independent parameters, tan �;mt;m0; A;m1=2 (along with the

sign of �), are su�cient to completely specify the theory at the weak scale.
y

Speci�c supergravity (SUGRA) and string models make de�nite predictions
for the relative sizes of m0, A and m1=2. It is convenient to specify a given model

in terms of the ratios �A = A=m1=2 and �0 = m0=m1=2. Two models provide

particularly useful benchmarks. The �rst is the string-motivated dilaton boundary

condition scenario speci�ed by �0 = 1=
p
3, �A = �1. This boundary condition set

emerges universally in all string models where supersymmetry breaking is dilaton
dominated. It represents a middle-of-the-road choice in that the gaugino massm1=2

and the soft scalar mass m0 are both of importance in the �nal low-energy values of
the squark and slepton masses, but sleptons are generally signi�cantly lighter than
squarks, and both are generally lighter than the gluino. A more extreme boundary
condition choice is the `no-scale' model with �0 = �A = 0, which can also arise in
certain string and supergravity approaches. In this model, supersymmetry breaking
arises entirely from the gaugino mass m1=2 at MU , with all other supersymmetry

breaking parameters generated by RGE evolution as the energy scale decreases.
Sleptons are still lighter compared to squarks, and the gluino mass is generally the
largest. A brief review of these two boundary conditions can be found in Ref. [5].
As a �nal benchmark possibility we shall also consider �0 = ��A = 1. In this case,
the slepton and squark masses turn out to be large (often larger than the gluino
mass) and fairly similar in size due to the dominance of the m0 source term.

Our study is designed to complement the existing MSSM and supergravity

(SUGRA) studies, virtually all of which have assumed three generations,
[6]
and the

many earlier studies of a four-family SM.
[7]
Since the LEP experiments rule out

the possibility of an additional new sequential `light' neutrino,
[8]
the fourth-family

neutrino must be quite massive, m�0 > 45GeV, and the fourth family would seem
to not be truly `sequential'. However, there are many indications of small non-zero
mass for the neutrinos of the �rst three families, in which case the much larger mass
for the �0 is no di�erent than the large value of the top quark mass as compared
to the masses of the other quarks. Both of these large generational hierarchies
must �nd explanation in physics beyond the MSSM. A fourth family with a heavy

neutrino is no more unnatural than a third family with a heavy top quark.
[9]

In the minimal supersymmetric model with Ng � 4, the gauge couplings

unify
[10]

perturbatively at a common scale MU ' 2 � 5 � 1016 GeV. However,
as noted earlier, for Ng = 4 we must relax the often-imposed theoretical prejudice

y For a review of this approach, see Ref. [4] and references therein.
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that �b(MU ) = �� (MU ) if we are to generate an acceptable prediction for mb=m�

at low energies. We do not regard this as a signi�cant di�culty since there are
many reasons why the Yukawa couplings might not be uni�ed at MU . In addition

to potentially large weak and GUT-scale threshold e�ects,
[11]

a di�erent �eld con-
tent can drastically modify the GUT-scale relations among the Yukawa couplings.
For example, if a 45-Higgs is added to the SU(5) GUT theory, then the strict

relation �b(MU )=�� (MU ) = 1 is no longer valid.
[12]

More recently, the authors in

Ref. [13] have shown that if the theory contains additional heavy fermions at MU

then �b(MU )=�� (MU ) < 1 can naturally result.

Thus, it is of considerable interest to study the phenomenology of a four-family
MSSM model. In our study, we will delineate how current experiments can either
eliminate or con�rm the existence of a fourth family. We shall also discuss a num-
ber of theoretical subtleties that arise in the implementation of four generations in
the context of the SUGRA framework. Aside from updating the constraints on mt0,
mb0, and tan �, we will particularly address the following speci�c issues. i) When
all basic constraints are applied, what are the experimentally allowed regions of pa-
rameter space? ii) Does the electroweak (EW) radiative breaking mechanism work
in the Ng = 4 case? iii) What are the additional radiative corrections to the light-
est SUSY Higgs mass? iv) How is the general spectrum of the sparticles a�ected
by the presence of four families? v) In particular, are there new constraints on
MSUSY arising from fourth-family sparticle mass constraints? vi) More generally,
how does the fourth family sparticle spectrum compare to the spectra of the �rst
three families? And, vii) what experimental constraints are imposed by the latest
D0 and CDF top quark searches, as well as a global �t to the latest EW precision
data? We examine each of these issues, although not precisely in the above order.

Section 2 is devoted to a study of gauge and Yukawa coupling uni�cation. In
particular, we re�ne our earlier analysis to include exact (numerical) solution of the
coupled two-loop gauge and Yukawa couplings. The parameter space regions given
by demanding perturbativity for the Yukawa couplings and consistency with non-
observation of sparticles and fourth-family fermions at LEP are speci�ed. Section
3 discusses the radiative electroweak symmetry breaking mechanism. Section 4
describes the physical Higgs boson masses and their phenomenology in the four-
generation MSSM. Section 5 discusses a constraint on the SUSY sparticle mass
scales that is peculiar to the four-generation MSSM model. Section 6 presents, for
a number of typical models, the sparticle mass spectra that arise from a four-family
scenario, and delineates allowed regions of soft-supersymmetry-breaking parameter
space after all direct experimental constraints have been imposed. Key model-
independent features of the sparticle spectra are identi�ed. Section 7 reviews the
latest direct collider limits on a fourth family, including the implications of the

latest D0 and CDF data. There, we demonstrate that a scenario
[14]

in which the

top is light, mt � mW , but not observed because it decays by the mode t! et1e�01
(the CDF/D0 events coming from t0 ! bW in this scenario), is not consistent
with universal soft-SUSY-breaking boundary conditions by virtue of the Section 5

constraint which forces the et1 to be very heavy. In addition, a global �t to the latest
precision LEP data is presented and the ensuing constraints on a fourth family are
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discussed. We also explore implications of a fourth family for the inclusive-jet and
di-jet spectra of the light quarks following from the dramatic slow-down in the
evolution of �s once energy scales above MSUSY are reached. Section 8 presents
our summary and concluding remarks. The renormalization group formulae and
beta functions that are frequently referenced in the text appear in Appendix A. The
question of the accuracy with which tan � can be determined by squark/slepton
mass measurements is discussed in Appendix B.

2. Gauge and Yukawa Coupling Uni�cation for Ng = 4

Gauge coupling uni�cation and the low energy prediction for mb=m� (assuming
�b(MU ) = �� (MU )) at the two-loop level in an MSSM four-family model were
�rst considered in Ref. [15]. For complete family representations, gauge coupling
uni�cation implies values for �3(mZ) and MU that are independent of the number
of families at the one-loop level. At two-loops, there is a weak dependence on Ng.
Fig. 1 shows the uni�cation of the couplings in both the three- and four-family
scenarios including two-loop gauge contributions to the the beta functions but
not including the two-loop Yukawa contributions. Assuming the published value
of ��1em(mZ) = 127:9 (in the MS scheme), and adopting sin2 �W (mZ) = 0:2316
(see the discussion of the next paragraph), and a single SUSY breaking scale

MSUSY = mZ ,
?
we predict �03(mZ) = (0:1283; 0:1326), �0U = (0:0432; 0:0917) and

M0
U = (2:98; 5:73) � 1016 GeV for Ng = (3; 4), respectively. Here, the superscript

`0' indicates that the two-loop Yukawa e�ects have not been included. We see that
there is a slight shift in �3(mZ), a signi�cant shift in MU , and a factor of two

increase in �0U as one moves from Ng = 3 to Ng = 4. For the more recent value
[17]

of ��1em(mZ) = 129:08 (= 128:05 in the MS scheme), and adjusting sin2 �W (mZ)

downwards by �0:0002,[16] to sin2 �W (mZ) = 0:2314, the resulting predictions are

�03(mZ) = (0:129; 0:133), �0U = (0:0432; 0:092) and M0
U = (3:25; 6:28) � 1016GeV

for Ng = (3; 4). In either case, inclusion of a fourth family raises �3(mZ) by about
3% when calculated at two-loop order without including Yukawa contributions to
the two-loop beta functions. We shall shortly return to this issue.

In all the calculations that follow, we shall employ the published value for the

electromagnetic coupling of ��1em(mZ) = 127:9 in the MS scheme and keep theMS

value of sin2 �W (mZ) �xed at sin
2 �W (mZ) = 0:2316. Holding sin2 �W (mz) �xed is

an approximation. The actual `best-�t' value of sin2 �W (mZ) for a given set of ex-
perimental data depends upon the top-quark mass, the masses of the fourth-family
fermions, the mass of the light SM-like Higgs boson of the model, and the masses
of the superpartners of all four families (see, for example, Refs. [16,18]). If exact
coupling constant uni�cation is demanded, and de�nite boundary conditions for
the soft-supersymmetry-breaking parameters are speci�ed at the uni�cation scale,

? As described in Ref. [16], the e�ective MSUSY is generally not far from mZ even when some
superpartners are heavy.
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the appropriate `best-�t' value for sin2 �W (mZ) value within the four-generation
model could be obtained by a self-consistent iterative procedure such as described
in Refs. [16,18]. We have chosen to avoid this complexity for this �rst study of
the four-generation supersymmetric model. We also note that we ignore the dif-

ferences between DR and MS couplings and masses. In particular, although it

is the DR couplings that are most naturally required to unify in supersymmetric

models, the di�erences between DR and MS couplings are not signi�cant at scale
MSUSY � mZ compared to other uncertainties. As described later, we allow a
certain level of `error' in the uni�cation of the coupling constants in order to ac-

count for the remaining experimental uncertainty in sin2 �W (mZ), the slight DR

vs. MS mismatch and the (small) variation in sin2 �W (mZ) that would occur as
we change 4th-family masses and SUSY parameters. We will see that the allowed
parameter space is only slightly sensitive to a relaxation of exact uni�cation, and
certainly the general phenomenological features and issues that we discuss would
not be signi�cantly altered by a more precise treatment.

The mb0 ;mt0 parameter space for m�0 = m� 0 = 50GeV (consistent with LEP

limits of 45GeV
[3]
) and mt = 165GeV, equivalent to mt(pole) = 175GeV,

y
that

is allowed after demanding perturbativity for the Yukawa couplings for all energy
scales up toMU , as well as coupling constant uni�cation atMU , including two-loop
Yukawa contributions to the gauge coupling evolution equations, is illustrated for
tan � = 1:5 and tan� = 2:2 in Fig. 2. Our precise criterion for perturbativity is
that all Yukawa couplings obey �i � 3:3; this value ensures that one-loop e�ects

dominate over two-loop e�ects.
[19]

Two possible levels of gauge uni�cation are con-

sidered: uni�cation of �3 with �1 and �2 to within 2.5% and to within 0.01%.
Fig. 2 shows the allowed parameter space regions for these two cases. We observe
that some of the excluded points on the border become allowed if the precision
demanded for uni�cation of the couplings is relaxed by even a few percent. Our
procedure and these results will be explained in more detail shortly.

The allowed parameter space regions illustrated in Fig. 2 are even more re-
stricted than those given in our earlier work, Ref. [1], at these same tan� values,
for two reasons: i) the higher value of mt(mt) = 165GeV (vs. mt(mt) = 160GeV)
has been chosen so as to yield mt(pole) � 175GeV, consistent with the latest CDF

and D0 experimental results
[20]

(the precise pole mass value depends on the spar-

ticle spectrum, but only weakly); ii) the two-loop Yukawa e�ects in the running of
the gauge couplings feed back into the Yukawa couplings themselves so that they
violate perturbativity more easily. This latter point can be understood by noting
that inclusion of Yukawa couplings reduces the value of �3(Q) when mt0;mb0 have
values near the boundary of the perturbatively allowed region. The reduction in
�3(Q) in turn slightly reduces the magnitude of the negative gauge contribution to
the one-loop component of the Yukawa beta functions as Q runs from mZ to MU

(see Eqs. (A.1), (A.5) and (A.6) in Appendix A), constraining the weak-scale value

y Unless explicitly indicated, up until Section 7 all masses are the running m(m) masses, and
not the pole masses.
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of the Yukawas to be somewhat smaller than before in order to remain perturbative
at MU .

This reduction in �3 for points at the parameter space edge is illustrated in
Fig. 3 which shows how much the values of MU and �3(mZ) can be a�ected by
including the large Yukawa contributions to the two-loop gauge coupling beta func-
tions in the four-family scenario. The values of MU and �3(mZ) are presented as

contours in the the mt0;mb0 plane.
z
The shifts in �3(mZ);MU from �03(mZ);M

0
U

agree well with our approximate solutions from Ref. [1]. For mt0;mb0 near their
maximal allowed values, �3(mZ);MU can be lowered by as much as 5%; 16% re-
spectively. We see that the Ng = 4 values of �3(mZ) are essentially the same as
the Ng = 3 value when large Yukawa e�ects are included at two-loop.

The precise boundary of the perturbatively allowed region depends upon the
precision demanded for coupling constant uni�cation. In Fig. 2 we showed the
allowed regions obtained by demanding uni�cation of the coupling constants to
within 2.5% or 0:01% (the latter being essentially equivalent to exact uni�cation).
The allowed region in the 0:01% case is slightly reduced compared to the 2:5%
case. This sensitivity is implicitly present even before the two-loop Yukawa terms
are included in gauge coupling evolution. As noted above, by increasing �3 the
Yukawa blow-up is delayed. So if �3(MU ) is allowed to be slightly larger than the
common value of �1(MU ) and �2(MU ) (denoted �1;2(MU )), then slightly larger
values of mt0;mb0 will be allowed by the requirement of perturbativity for Yukawa
couplings up to MU . When two-loop Yukawa couplings are included in the gauge
evolution equations, an iterative procedure must be employed for �nding a fully
consistent solution. For a given mt0;mb0 choice and a given possible starting value
of �3(mZ), full two-loop evolution of all three couplings may be performed (which
requires evolving also the Yukawas at the same time). The value ofMU at which �1
and �2 unify can then be determined. The common value, �1;2(MU ), can then be
compared to the evolved �3(MU ) value. This process is iterated until the evolved
�3(MU ) value is as close to �1;2(MU ) as possible without the Yukawas becoming
too large (�i < 3:3 is required). The precision of uni�cation is then speci�ed by the
requirement that �3(MU ) = �1;2(MU ) to within a de�nite percentage deviation:
for example uni�cation to within 2.5% means that �3(MU ) is allowed to be no more

than 2.5% larger than �1;2(MU ). Given experimental errors in sin2 �W (mZ) and
variations in its best �t value as fourth-generation fermion masses and sparticle
masses for all the generations are varied, we regard the region allowed by uni�cation
to within 2.5% as fully acceptable. However, to go much beyond the 2.5% allowed
region of Fig. 2 would almost certainly require accepting the fact that one of the
Yukawa couplings becomes non-perturbative at a scale below MU or that �3(MU )
truly exceeds �1;2(MU ), e.g. due to non-renormalizable operators, string threshold
e�ects and/or evolution between MU and Mstring.

z Not shown is �U ; the shift in �U due to inclusion of two-loop Yukawa contributions is
comparable to the �3(mZ) shift, i.e. <� 4%.
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Of course, as at one loop, the value of �3(mZ) consistent with uni�cation is
sensitive to the e�ective scale MSUSY implied by the sparticle masses. As the
value for MSUSY is raised, �3(mZ) is reduced; for Ng = 3 and MSUSY = 1TeV,
the shift can be as large as ' �10%. Similar results hold for Ng = 4 as well. Given
the present measurement of �3(mZ) = 0:12 � 0:01, it would seem that both the
Ng = 3 and Ng = 4 scenarios predict an �3(mZ) which is somewhat high unless
MSUSY is signi�cantly above mZ. However, a large value of the e�ective MSUSY

is not easy to achieve,
[16]

when the slepton, neutralino and chargino mass scales are
signi�cantly lower than the squark and gluino mass scales. Nonetheless, it is fair
to say that �3(mZ) per se does not discriminate between the Ng = 3 and Ng = 4
cases, since the increase in �3(mZ) for Ng = 4 vs. 3 from pure gauge e�ects can be
compensated in the Ng = 4 case by the large Yukawa e�ects in the gauge running,
as just discussed. In addition, we shall �nd that Ng = 4 scenarios characteristically
force all the sleptons and squarks to higher masses (including those of the �rst three
families), implying that the e�ective MSUSY could be larger for Ng = 4 than for
Ng = 3. Given this and the additional uncertainties associated with weak and
GUT-scale threshold e�ects, we believe that the Ng = 3 and Ng = 4 scenarios are
equally admissible. Attempts to address the moderately high prediction for �3(mZ)
(that emerges in both cases) have recently been considered in Refs. [16,18].

In general, it is important to note that two-loop contributions to the running
of �s(Q) will be much more signi�cant in the case of Ng = 4 than for Ng = 3. This
is simply due to the fact that the one-loop beta function for �s is proportional to
(9�2Ng) (once Q > MSUSY ) and therefore is rather small for Ng = 4. This means
that two-loop contributions can represent a much larger percentage of the total beta
function than in the Ng = 3 case. The importance of two-loop contributions will
be especially apparent when considering the running of the squark masses, where
some terms involve the running value of �3s. The cumulative e�ect of two-loop
contributions can be large in such cases when evolving all the way down from
Q = MU to Q = mZ. The situation for �1 and �2 is quite the opposite. Indeed,
the one-loop beta function for �2 increases by a factor of 3 in going from Ng = 3
to Ng = 4, implying that �2 increases much more rapidly as the energy scale is
varied from mZ up to MU .

What about Yukawa coupling constant uni�cation? In Fig. 4, contours of
constant �b0 (MU ), �t0(MU ) and �� 0(MU ) within the allowed parameter space region
are shown. From these contours we discover a number of important facts. First,
�b0(MU ) and �� 0(MU ) are generally quite di�erent; Yukawa uni�cation does not
generally occur, although we see that in the mt0;mb0 � 100GeV corner of the
tan � = 1:5 plot we do have �t0 � �b0 � �� 0 . Second, we see that most of the
non-perturbative borders are de�ned by one of the fourth-family Yukawa couplings
becoming non-perturbative. At tan � = 1:5 the right-hand border results from non-
perturbative behavior for �b0 (at the upper boundary, �t becomes non-perturbative)
while at tan� = 2:2 the right-hand border results when �� 0 becomes large and
the upper boundary arises from non-perturbative behavior of �t0 . However, it
is also clear that, in general, not all of the fourth-family Yukawas (or �t) are
simultaneously large. This means that one is unlikely to be particularly close to a
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Yukawa �xed-point solution
[21]

such that the low-energy values of the �'s are rather
independent of theirMU -scale values. The nearest approach to a �xed point occurs
in the mt0 � mb0 � 100GeV corner of the tan� = 1:5 �gure; the actual �xed point

location is indicated by an X. In our earlier work,
[1]
with mt(mt) = 160GeV and

two-loop Yukawa contributions to gauge running not included in determining the
parameter space, the large mt0;mb0 corner of the allowed region was nearer to this
�xed point.

3. EW Symmetry Breaking

One of the many nice features of the MSSM extended by minimal SUGRA is
that, for a very large region of soft-SUSY-breaking parameter space, radiative EW-
symmetry breaking is automatically induced by renormalization group evolution.
Thus, the hierarchy betweenMU (where scalar masses are universal and (therefore)
EW symmetry is initially unbroken) and mZ receives a natural explanation. In the
three-family model, this EW-symmetry breaking is mainly a result of the quantum
corrections arising from the large �t Yukawa coupling which drives the H2-Higgs
�eld squared-mass to ever smaller values as the energy scale is decreased; EWSB
occurs when the Higgs mass-squared term in the scalar Higgs potential is �nally
driven to a negative value. Of course, to obtain the precise value of mZ as given
by m2

Z = 1
2 (g

2+ g02)(v21 + v22), there must be a relation among the supersymmetric
model parameters. Mathematically, these relations result from requiring that the
�rst derivatives of the scalar �eld potential with respect to v1 and v2 vanish. Nor-
mally, one of these conditions is used to determine the magnitude (but not the sign)
of � in terms of the other initial parameters of the theory, including the soft-SUSY-
breaking parameters. The other condition is used to determine the magnitude of
m2

3, appearing in the �m2
3(H1H2 + h:c:) mixing term in the scalar �eld potential.

Thus, � and m2
3 at the weak scale become functions of mt0, mb0, tan �, mZ , m0,

m1=2 and A. Since this radiative breaking mechanism is essential to the viability

of the MSSM plus minimal SUGRA, we describe its dynamics for Ng = 4 before
turning to predictions for the SUSY sparticle spectra, and experimental constraints
from direct particle searches and EW precision measurements. Not surprisingly, we
�nd that in a four-family scenario the additional large Yukawa couplings also feed
into the running of the Higgs �eld squared-masses, and modify the running signif-
icantly. To indicate the way in which radiative breaking occurs in the four-family
case, it is convenient to present the discussion at tree-level. A tree-level discussion
is adequate for general understanding, and is a good approximation so long as the

tree-level minima obey all of the necessary stability and consistency constraints.
[22]

However, we emphasize that our full numerical calculations are actually performed
by minimizing the full scalar potential at one-loop.

Figures 5a and 5b illustrate how radiative breaking occurs in the tree-level
approximation in one speci�c four-family case. We takemt = 165GeV, tan � = 1:5,
mt0 = 100GeV, mb0 = 100GeV and m� 0 = m�0 = 50GeV. As outlined in the
introduction, we specify our soft-SUSY-breaking parameter boundary conditions
in terms of �0 � m0=m1=2, �A = A=m1=2 and m1=2. For this illustration we

have adopted the string-motivated dilaton boundary condition scenario speci�ed
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by �0 = 1=
p
3, �A = �1. In the plots, m2

H1
;m2

H2
are the Higgs mass-squared

parameters appearing in the soft-SUSY-breaking potential (at MU they are equal

to m2
0), while m

2
1;2 = m2

H1;2
+ �2 are the parameters multiplying the H2

1 and H2
2

quadratic scalar �eld terms in the full scalar �eld potential; as de�ned earlier,
m2

3 is the coe�cient of the H1H2 mixing term in the scalar �eld potential. In

Fig. 5, we see that the m2
Hi

start out above zero at Q = MU , and then evolve

below MU so that both eventually take on negative values (but with m2
H2

being the

more negative). The � parameter is determined at the weak scale by minimization
of the RGE-improved tree-level Higgs potential, and is then evolved up to MU .
The fact that �2(mZ) > 0 for the chosen value of tan� and the given value of
mZ indicates that an allowed four-family EW symmetry breaking solution via the
radiative breaking mechanism exists.

However, some di�erences in comparison to Ng = 3 are apparent. Even for

the small tan� = 1:5 value, m2
H1

has signi�cant evolution due to the large �b0

and �� 0 Yukawa couplings. In the standard three-family case, m2
H1

only evolves
signi�cantly when tan � is so large as to require a large value for �b. In Fig. 5b,
one can see that although the scalar potential parameters m2

1, m
2
2 and m2

3 each
evolves separately and ends with a value that is > 0, in combination they serve
to trigger the breaking of the EW symmetry, measured by the tree-level stability
condition S = m2

1m
2
2 �m4

3. It is of course possible for the mechanism to fail, i.e.

if �2 < 0. This can happen in the case where m2
H1

is too large compared to m2
H2
.

4. The Ng = 4 Higgs Sector

We begin
?
by reminding the reader that at tree-level the Higgs sector is deter-

mined by just two parameters, tan � and mA0 (the mass of the CP-odd scalar Higgs
boson), and that if mA0 is large (as we shall see it is in all the SUGRA models

considered) then the lightest CP-even Higgs boson h0 is very SM-like and has mass
bounded from above bymZ . However, it is well-known that one-loop radiative cor-
rections to mh0 can signi�cantly increase the upper limit of mh0 (denoted mmax

h0 )
for the large mt value found in the CDF and D0 experiments. Exactly how large
the upper bound is depends upon other SUSY parameters, the most important sen-
sitivity being to the stop squark mass, m

et
. In the absence of a fourth generation,

if the running masses are m
et
= 1TeV and mt = 165GeV, then mh0 can be as large

as 120 � 125GeV at large tan �. However, in many SUGRA models (for example
the dilaton scenario) m0 and, consequently, m

et
are signi�cantly smaller than 1TeV

for m
eg values below 1 TeV. In such models mmax

h0 is typically <� 100GeV.

? An excellent brief overview of Higgs phenomenology and discovery techniques is now avail-
able in the Higgs subgroup summary appearing in Ref. [23]. A longer version of this review
will soon be available, Ref. [24]. References for statements not explicitly referenced below
can be found in these reports.
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The magnitude of mA0 determines the observability of the A0 and H0 Higgs
bosons, which are more or less degenerate when mA0 is large. For example, e+e�

colliders can only probe up to mA0 � mH0 � ps=2 � 30GeV in the Z� ! H0A0

mode (the only viable mode when h0 is SM-like). For Ng = 3, SUGRA model

predictions for mA0 can range from 200GeV on up, and an e+e� collider withp
s = 500GeV would at least have a small chance of seeing H0 + A0 production.

The parameter � is also of interest in that its origin in the SUGRA models is rather

uncertain. For Ng = 3, � tends to take on rather moderate values � 500GeV.
[16]

We now discuss the in
uence of a fourth generation.

First, we note that a fourth family will give an additional set of � 0; e� 0, �0; e�0,
b0;eb0 and t0;et0 loop contributions to the radiative corrections for mmax

h0 . (As noted
earlier, as a consequence of the many loop corrections for Ng = 4 it is essential
that the one-loop e�ective potential be used in the scalar potential minimization
as well as in the determination of the Higgs masses.) A fourth family will also
typically lead to a rather high m

eg scale, as discussed in the following sections; this

will in turn in
uence mA0 and �, which will often take on relatively large values.

Typical results for �, mA0 and mh0 are illustrated in Fig. 6, where we display
contours of constant �, mA0 and mh0 in mt0;mb0 parameter space for mt(mt) =

165GeV, tan � = 1:5 and m1=2 = 600GeV in the dilaton scenario: �0 = 1=
p
3,

�A = �1. We see that � is generally above 1TeV, a substantial increase over the
corresponding Ng = 3 dilaton scenario result; mA0 is typically also rather large,
ranging from � 600GeV to above 1TeV | a

p
s = 500GeV e+e� collider would

not allow detection of the Z� ! H0A0 pair production process. The large values of
mA0 � mH0 imply that one must also be cautious to account for supersymmetric
decays of the A0 and H0. These decays can deplete the more easily observed bb
decay channel, especially given that tan � cannot be large for Ng = 4, implying

that the H0; A0 ! bb coupling cannot be greatly enhanced relative to the SM-like
result. We will not attempt a detailed study of the H0 and A0 decays here.

The above results are not greatly altered by changing the MU boundary con-
ditions, keeping m1=2 �xed at 600GeV. In the high-m0 (�0 = 1) scenario, both

mA0 and � become somewhat (� 100GeV) larger over most of the mt0;mb0 param-
eter space. The only exception is the corner where mb0 is big and mt0 is small; in
this corner mA0 is slightly smaller (564GeV compared to 610GeV) in the high-
m0 scenario than in the dilaton scenario. In the case of the no-scale boundary
conditions, �0 = �A = 0, both � and mA0 move to lower values (shifts are of
order 50 � 100GeV). For example, in the small mt0, large mb0 corner one �nds
mA0 � 450GeV.

Fortunately as regards the prospects for h0 detection, the extra loops from
the fourth family do not yield overwhelmingly large radiative corrections to mmax

h0 .
They increase mmax

h0 by 10 to 25 GeV relative to corresponding Ng = 3 predic-
tions. As illustrated by the contours in Fig. 6, at worst mmax

h0 � 130GeV at the
perturbative boundary in the mb0 ;mt0 parameter space. For all the three MU sce-
narios, mh0 remains very much in the 115 � 122GeV range for most of allowed
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mb0;mt0 parameter space, for this relatively large m1=2 = 600GeV value. (Lower

mh0 values are predicted at lower m1=2.) The phenomenology of the h0 depends

upon whether or not it is SM-like. For the bulk of parameter space, and certainly
for the preferred scenarios and portions of parameter space, mA0 is large and the
h0 will be very SM-like. We discuss its phenomenology assuming that this is the
case.

Because mh0 is predicted to be >� 100GeV for many Ng = 4 scenarios, LEP

II would be less likely to �nd the h0 if there is a fourth family. However, a
p
s =

500GeV e+e� collider would have no di�culty in doing so in the Z� ! Zh0

production mode. At the TeV? upgrade of the Tevatron, detection of a SM-like

h0 is probably only possible in the Wh0 ! `�bb mode, and then only if mh0
<�

95GeV. (Although it is not impossible that the Wh0 ! `��+�� mode could be

used for 110 <� mh0
<� 120GeV.

[25]
) For the many four-family scenarios that lead

to mh0 above 100GeV, searches for the h0 at the Tevatron would be, at best,
problematical.

At the LHC, a SM-like Higgs boson (for which we use the generic notation

h below | the h0 might or might not be perfectly SM-like) in the mass region
being discussed would typically be found through production via gg ! h and
decay to either 

 or ZZ� (with ZZ� ! 4`). The gg ! h production rate,
proportional to �(h ! gg) would be greatly enhanced by the additional t0 and
b0 loop contributions to the one-loop gg ! h coupling. This is illustrated in
Fig. 7 where we plot for a SM-like h the ratio of Ng = 4 to Ng = 3 values for:
�(h ! gg), �(h ! 

), and �(h ! gg) � BR(h ! 

), taking tan � = 1:5,
mt = 165GeV, mt0 = mb0 = 100GeV, m� 0 = m�0 = 50GeV, and assuming
that superpartners are su�ciently heavy that their contributions to these one-loop
quantities are small. (As discussed in Sec. 7a, experimental limits tend to prefer
this type of scenario.) For �(h ! gg), and hence the gg ! h production rate, we
see an enhancement by a factor of 10. Thus, the 4` channel, which for Ng = 3 is
only viable for mh

>� 130GeV, would yield a detectable signal down to somewhat
lower masses, perhaps as low as mh = 120GeV. (BR(h! ZZ�) falls very rapidly
with decreasing mh so very few events would result for mh values much below this.)

The h! 

 decay also arises at one-loop. For Ng = 3, the main contribution is
from the W -loop diagram. Fermion loops (for massive fermions) cancel against the
W -loop contribution and decrease the h! 

 width. For Ng = 4 this cancellation

can be quite substantial, as illustrated in Fig. 7.
[26]

Combining the resulting reduc-

tion in BR(h! 

) with the enhanced gg ! h production rate, the resulting 


channel event rate tends to be substantially suppressed relative to the Ng = 3 rate
in the 100 � 130GeV mass range of interest. In fact, the preferred mt0, mb0, m� 0

mass choices delineated above are about the worst that can be made in this regard.
Thus, detection of the h0 in the 

 channel at the LHC becomes problematical,
even when mA0 is large and the h0 is SM-like.

Not investigated to date is whether the enhanced production rate from gg ! h

might make detection of a SM-like h0 in the inclusive bb channel possible (assuming
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high b-tagging e�ciency and purity). Finally, we note that the extra family has

essentially no impact on the pp ! tth0 ! `bbbbX LHC detection mode, which

would continue to be viable for mh0
<� 120GeV, when the h0 is SM-like.

[23]

Regarding the heavier A0 and H0, for our typical scenario they are so massive
that perhaps the only accelerator with adequate energy for their production and
possible detection will be the LHC. At the LHC, for Ng = 3 the detection of a

massiveA0 orH0 is possible only if tan � is so large (e.g. >� 10), that the gg ! bbH0

and gg ! bbA0 production rates signi�cantly exceed the inclusive gg ! H0; A0

rates.
[23;24]

However, for Ng = 4 the b0 and t0 loop contributions to gg ! A0 and

gg ! H0 will greatly increase these inclusive production rates, regardless of the
tan � value. The possibility of observing theH0 and A0 at the LHC in the inclusive

bb �nal state assuming such highly enhanced rates should be carefully examined.

As a �nal aside, we note that the standard relation,
[27]

m2
A0 '

m2
e�
+ �2

sin2 �
;

valid for tan� <� 20 if Ng = 3, is not necessarily maintained for Ng = 4 since there
will be corrections involving the �b0 ; �� 0 ; �b Yukawas (where �b can essentially be
neglected). In Fig. 6, for mt0;mb0 large, e.g. mt0 = mb0 = 100GeV, the relation is
satis�ed to within 3%; however for mb0 ' 110GeV;mt0 = 55GeV, the relation is
seriously violated: (m2

A0 sin
2 �)=(m2

e�
+ �2) ' 0:25. This latter situation is realized

in the region where mb0 > mt0, a region that is experimentally disfavored unless an
unnatural quark mixing pattern exists (see Ref. [1] and Sec. 7 for a more detailed
discussion of this point).

5. A Fourth-Generation Sparticle Constraint on the SUSY Scale

We turn now to an important additional constraint on soft-SUSY-breaking pa-
rameters that can arise from consistency of the sparticle mass spectrum with LEP
limits and a neutral LSP (lightest supersymmetric particle). (A charged LSP is
excluded experimentally.) A glance at Eqs. (A.11) through (A.19) in the Appendix

shows that dm2
i =dt (where t =

1
2� ln[Q(GeV)]) for squarks and sleptons receives

positive contributions from Yukawa terms and negative contributions from gauge
terms. Thus, starting from a universal m2

0 and evolving downwards in t to mZ ,
the lightest squark/slepton will be the one with the largest Yukawa contributions
relative to gauge contributions. This turns out to always be the e� 0R or the e�0R. After
including e� 0R � e� 0L mixing, the lightest e� 0 eigenstate is denoted e� 01, and similarly e�01
is the lightest e�0 eigenstate.

The e�01 can be even lighter than the e� 01 in scenarios with small �0, such as
the dilaton and no-scale models. However, we see no general phenomenological
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reason for not allowing the e�01 to be the LSP. Indeed, it is even quite likely that

the e�01 decays invisibly when m
e�0
1
> m

e�01
via e�01 ! ��e�01, assuming at least a small

non-zero value for the required 3 � 4 generation mixing angle. Thus, we will only
impose a phenomenological limit on the charged e� 01.

Eq. (A.15) shows that the Yukawa contributions to dm2
e� 0R
=dt (in the Appendix

we use the notation e� 0R = E0) are controlled by D� 0 = m2
H1

+m2
e� 0
L

+m2
e� 0
R

+A2
e� 0
. For

moderate initial values, m
e� 0
L
= m

e� 0
R
= m0, the more negative m

2
H1

is (see Fig. 5)

the larger will be m2
e� 0
R

; m2
H1

in turn becomes more negative for larger mb0 . Thus,

for some choices of soft-SUSY-breaking parameters it is possible that m
e� 01
will fall

below the 45GeV LEP limit and/or below the mass of the lightest supersymmetric

particle (the lightest neutralino, e�01, in the models we consider) for low values of
mb0 (but not for higher values).

To illustrate this, we return to Fig. 6, where we have chosen tan � = 1:5,
mt(mt) = 165GeV and dilaton boundary conditions for the soft-SUSY-breaking
parameters with m1=2 = 600GeV. The diamonds indicate the portion of parameter

space at low mb0 that is ruled out because one predictsm
e� 01
< 45GeV orm

e� 01
< m

e�0
1
.

(For this particular choice of m1=2, me�0
1
� 108GeV and it is the m

e� 01
> m

e�0
1

requirement that �xes the diamond region.) By raising m1=2, this problem region

is moved to lower mb0 values since the starting value of m2
0 / m2

1=2 for m2
e� 0R

is

increased more rapidly than the o�-diagonal mixing term A / m1=2. Conversely,

by lowering m1=2 we eventually reach a value for which no portion of parameter

space remains allowed.

The type of boundary condition applied is also important. For instance, for the
same m1=2 = 600GeV but �0 = 1, �A = �1 (the high-m0 scenario) no points with

mb0;mt0 > 50GeV are eliminated by virtue of the e� 01 constraint, whereas for the
no-scale choice of �0 = �A = 0, the portion of parameter space removed expands
to include slightly higher values of mb0 than in the dilaton scenario.

Let us further expand upon this point. From the above discussion we see that

in the generic one-loop formula, m2
i = m2

0 + Ĉim
2
1=2 +Dim

2
Z cos 2�, the evolution

parameter Ĉi for i = e� 0R is strongly a�ected by indirect e�ects from �b0 , due to the

absence of an �s contribution to Ĉi. In general, larger mb0 tends to raise Ĉ
e� 0R
. As we

have discussed above, this can be traced to an increasingly negative contribution
in the RGE for m2

e� 0R
from the increasingly negative value of m2

H1
as mb0 increases.

Fig. 8 demonstrates this sensitivity of the mZ-scale value of m
2
e� 0R

to mb0 in the case

of mt0 = 100GeV, tan � = 1:5, m1=2 = 600GeV with dilaton boundary conditions:

as mb0 is lowered from mb0 = 110GeV to mb0 = 90GeV, the mZ -scale value of
m2
e� 0R

is lowered by � 40%, with the lowest e� 0 physical eigenstate mass decreasing
dramatically, from m

e� 01
= 311GeV to 189GeV. In contrast, the evolution and
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mZ -scale values of m
2
e�R

and m2
e�0
R

are little a�ected. Note the subtlety of the log(Q)

behavior of m2
e� 0R
. In the region of small (and decreasing) log(Q) m2

e� 0R
rises due

to the increasingly more negative value for m2
H1

as log(Q) decreases (see Fig. 5).

Since this rise is less for smaller mb0, for small enough mb0 one can even obtain
m2
e� 0R

< 0, and EM will no longer be unbroken. However, as mb0 is decreased one

�rst arrives at a point where either m
e� 01
< m

e�0
1
and the LSP is no longer neutral,

or m
e� 01
< 45GeV, violating LEP limits. We re-emphasize that these requirements

result in the strongest additional RGE-related phenomenological constraint deriving
from the SUGRA extension of the four-family model.

To gain some additional insight regarding the stringency of this bound as a
function of MU -scale boundary conditions, we present the right-hand boundaries,
analogous to that of the diamond region shown in Fig. 6, for a selection of di�erent
possibilities in Fig. 9. The right-hand window shows results for the dilaton case of

(�0; �A) = (1=
p
3;�1) for m1=2 = 900; 600; 300; 250GeV. Very little of the Yukawa-

allowed parameter space survives for the lowest choice. In the left-hand window
we �x m1=2 = 400GeV and vary (�0; �A). For the no-scale choice of (0; 0) very

little of parameter space yields an acceptable e� 01.
Of course, the m

e� 01
> max

n
45GeV;m

e�0
1

o
constraint is signi�cant even if we

adopt a large (but allowed) value of mb0 and do not employ a speci�c scenario
for �0 and �A. This is illustrated in Fig. 10. There, we take (m(m) masses)
mt = 165GeV, mt0 = mb0 = 100GeV, m� 0 = m�0 = 50GeV and tan � = 1:5 (for
these mass choices, solutions are only allowed for tan � values very near 1.5) and
plot the smallest possible value for �0 = m0=m1=2 that is allowed as a function

of m1=2 after scanning over �A in the range [�3;+3]. A very important generic

feature emerges from the steep rise of the minimum �0 value as m1=2 decreases:

for given mt0;mb0;m� 0;m�0 there is a de�nite lower bound on m1=2 (for reasonable

values of �0) arising from the m
e� 01

> max
n
45GeV;m

e�0
1

o
constraint. For the

t0 and b0 masses considered, this bound is m1=2
>� 140GeV. If we recall that

m
eg � (�3(mZ)=�U )m1=2, and that �3(mZ)=�U � 1:4, we see that this m

eg bound

translates into a signi�cant lower bound of m
eg
>� 200GeV deriving purely from

limits on the fourth-generation e� 01 mass. This type of constraint does not arise in
the Ng = 3 MSSM.

The ultimate lower bound on m1=2 (along with the corresponding lower bound

on m
eg) is actually quite independent of mb0 . For instance, if mb0 is lowered to

50GeV, keeping mt and mt0 �xed, at �0 = 5 the lowest allowed value of m1=2

decreases by only about 5GeV compared to the mb0 = 100GeV value of � 140GeV
illustrated in Fig. 10. This is because, at the ultimate lower bound, m0 is very
large and the m2

H1
term in D� 0 (see above) is swamped by the m2

e� 0R
and m2

e� 0L
terms

which start o� of order m2
0 and remain large.
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We re-emphasize the fact that in a speci�c SUGRA scenario with a �xed value
of �0 (and of �A) the lower bound on m1=2 (and m

eg) can be much larger than the

high-�0 ultimate lower bound if �0 is small, as is illustrated in Fig. 10. (Of course,
whatever the lower bound on m

eg(meg), meg(pole) will be roughly 5-6% higher.) We

also note that at �xed �0 there is some dependence of the lower bound on m1=2

upon the value of �A. This dependence is extremely weak at high �0, where �A
values in the entire [�3;+3] range generally give an allowed solution for the lowest
acceptablem1=2 value. But for lower �0 values, the lower bound onm1=2 is generally

achieved only for �A values near 0. (In fact, the appropriate �A range more or less
scales with the magnitude of �0.)

Perhaps one other plot is useful in fully understanding the e� 01 constraint. In
Fig. 11 we consider various quantities as a function of �A (ranging from �3 to +3)
for �xed values of �0 in the range from 0 to 5. In all cases we take mb0(mb0) =
mt0(mt0) = 100GeV (corresponding to pole masses of approximately 105GeV).
For each �0; �A choice, we determine the minimum value of m1=2 (the scan being

con�ned to the region m1=2 � 10TeV) that is consistent with the e� 01 constraint.

We plot the (minimum) value of m
eg(meg) corresponding to this minimum value of

m1=2. (For later phenomenological use, we also plot the corresponding mh0 and

mb0(pole) �mh0 �mb values.) For curves of limited extent in �A, the termination
point(s) de�ne the range beyond which consistent solutions are not found with
m1=2 � 10TeV. The inconsistencies that arise at large �A are of two types: (i)

that the EWSB solution requires m2
A0 < 0; and/or (ii) that a 4th-family sparticle

with color or charge must have m2 < 0, thereby breaking the color and/or U(1)-
electromagnetic symmetries.

This plot de�nes precisely the minimum m
eg value that one can have for a

given �0; �A boundary condition choice. Once again we see an absolute lower limit
of order m

eg(meg) >� 200GeV for our choice of mb0 ;mt0; the value of tan � for which

the minimum m
eg value is reached is always in the range 1.5 to 1.6. Note that for

low �0, the allowed solution range for �A is limited, and that the minimum m
eg

achievable increases substantially when �A is not near 0.

6. The Sparticle Spectrum

We shall �nd in Sec. 7 that the �rst evidence for a fourth family is very likely
to be discovery of the b0, t0, � 0 and/or �0 at LEP-II and/or the Tevatron. If
one or more of these fourth-family members are found, the immediate question
will be how this impacts the supersymmetric particle spectrum, especially in the
standard renormalization group equation (RGE) context. It is this latter issue that
we address in this section. First, we highlight the main features of the sparticle
spectrum in a four-family scenario, and compare the results to those obtained in
the three-family case. As previewed in Sec. 4, we �nd that it is more than likely
that some of the fourth generation squarks and/or sleptons will be lighter than
their counterparts in the �rst three generations, with the e� 01 most probably being
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the lightest. However, testing consistency of their masses with uni�cation and the
RGE's is likely to be challenging given the possibly large A-term induced mixing,
and the probability that they will have strange decay patterns and be tricky to
observe. Thus, we will focus primarily on gaugino masses and on the masses
of the sleptons and squarks of the �rst two generations, focusing on when and
how correlations among these masses will be indirectly sensitive to the presence
of a fourth generation through the RGE's. Certain relationships between masses
are rather insensitive to whether Ng = 4 or Ng = 3, and thus provide a test
of the general RGE context and universality of boundary conditions, while other
mass correlations are very di�erent depending upon the value of Ng. These latter
relationships with strong Ng dependence would provide indirect evidence for the
presence of a fourth generation, even if no particle or sparticle belonging to the
fourth generation is directly observed.

We �rst present some sample mass spectra, then discuss mass sum rules and
relations, and �nally focus on a speci�c correlation between the �rst-family slepton
masses and the LSP mass that could reveal the presence of a fourth generation.

6a. Sample Mass Spectra

For our illustrations we shall adopt � > 0, mt0 = mb0 = 100GeV, and m� 0 =
m�0 = 50GeV. We scan over the allowed tan � values at any given choice for
m
eg(meg) and plot mass spectra in units of meg(meg). ThreeMU boundary conditions

will be considered:

1. the dilaton scenario, with �A � A=m1=2 = �1, �0 � m0=m1=2 = 1=
p
3;

2. the no-scale scenario, with �A = �0 = 0; and

3. the high-m0 scenario, with �A = �1, �0 = 1.

We begin by focusing on the spectrum for the e� 01 for these three models.
In Fig. 12, we plot the m

e� 01
spectra obtained by scanning over allowed tan �

values at various m
eg values. The lower limit on m

e� 01
is �xed by m

e� 01
> 45GeV in

the case of the high-m0 scenario, and by m
e� 01
> m

e�0
1
in the no-scale and dilaton

models. The dramatic decrease of m
e� 01

as m
eg decreases, discussed in Sec. 5, is

evident. Of course, at high m
eg values, the value of me� 01

is given roughly by m2
e� 01
�

m2
0 + Ĉ

e� 01
m2

1=2 / (�20 + Ĉ
e� 01
)m2

eg
, which is larger for larger values of �0.

Let us now turn to the typical mass spectra for all the other supersymmetric
particles. We begin with results for dilaton boundary conditions: Figure 13 shows
our results. These can be compared to the Ng = 3 results from Ref. [5] for this
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same boundary condition choice.
?

The �rst big di�erence between the Ng = 4 and Ng = 3 cases is the much larger
lower bound on m

eg in the former case. As discussed previously, this re
ects the

m
e� 01
> max

n
45GeV;m

e�0
1

o
requirement that is violated for low m

eg values. A less

dramatic di�erence is that the allowed range of tan � is smaller for Ng = 4, and
thus the value of m

eg almost completely �xes the chargino and neutralino masses,

whereas for Ng = 3 there is some scatter. The limitation of tan � to low values
for Ng = 4 also means that (unlike for Ng = 3) the e�1 remains almost degenerate
with the èR's of the �rst two families; thus, a separate plot for the e�1 is not given
in our �gures. At a given m

eg, the most signi�cant Ng = 4 vs. Ng = 3 di�erence is

the much larger masses for the squarks and sleptons of the �rst three generations.
Finally, there is the simple fact that fourth-generation squarks and sleptons are
present for Ng = 4. We have already noted that e� 01 and e�01 tend to be the lightest
of the sleptons. From Fig. 13 we see that the lightest squark is very likely to be

the eb01. This is a rather general result.
As already hinted and more directly demonstrated in the next subsection,

the large squark and slepton masses for the �rst three generation members can
be directly traced to the much larger value of �(MU ) for Ng = 4. The basic

idea is that m2
i = m2

0 + Ĉim
2
1=2 + Dim

2
Z cos 2�, where i indicates the squark or

slepton in question and m1=2 = m
eg�(MU )=�3(m

eg). Since the Ĉi are not terribly

di�erent in the three- and four-generation cases, the much larger �(MU ) in the
Ng = 4 case greatly increases the squark or slepton mass at given m

eg. Combining

this e�ect with the higher lower bound for m
eg in the Ng = 4 vs. Ng = 3 case

results in a large increase in the lower bounds on squark and slepton masses in
going to Ng = 4. For example, m

e`L
;m

e�;me`R
>� 250; 240; 200GeV compared to

m
e`L
;m

e�;me`R
>� 110; 52; 45GeV in the Ng = 4 and Ng = 3 cases, respectively. The

high lower bound values in the Ng = 4 case place these sleptons from the �rst
two families beyond the reach of LEP-II and almost beyond the reach of a

p
s =

500GeV NLC. We shall see that the large squark and slepton masses relative to
gaugino masses might well provide the most compelling indirect indication for the
presence of four generations that one can obtain using only particles and sparticles
belonging to the �rst three generations.

In Fig. 14 we give the corresponding results assuming no-scale boundary con-
ditions: �A = �0 = 0. The �rst noteworthy point is the much higher lower bound
on m

eg that arises in the no-scale case, as compared to dilaton boundary condi-

tions, when Ng = 4. Due to the zero value of m0 at MU , the slepton masses

? In making comparisons, it is necessary to note that for Ng = 3 the value of �3 = 0:12 was
employed in Ref. [5], as compared to �3 � 0:128 or so for our full two-loop four-generation
treatment here. Since M1 :M2 :M3 � �1 : �2 : �3 (all at mZ), m

e�0
1

, m
e�0
2

, m
e�
+

1

masses at a

given m
eg
in Ref. [5] for Ng = 3 are approximately 0:94 � 0:12=0:128 times those appearing

in Fig. 13.
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are smaller than for dilaton boundary conditions, and, in particular, m
e� 01
is more

easily driven to too low a value. In addition, for the lower m
eg values allowed by

the m
e� 01
> m

e�0
1
constraint, the e�01 can be the LSP; it is often very substantially

lighter than the e�01. However, the èL and e� masses for the �rst two families are
still much bigger than found in the comparison results for Ng = 3, see Ref. [5].

The èR is signi�cantly lighter than the èL in the no-scale scenario (whatever Ng)
because the associated soft-mass-squared evolution is fed only by the U(1) gaug-
ino mass terms, and moves to positive values (starting at MU from 0 for �0 = 0)

much more slowly than the soft-mass-squared that contributes to the èL and e�
masses, which is fed by SU(2) as well as U(1) gaugino mass terms (see Sec. 6b).
Squark masses remain very similar to the dilaton scenario results due to the fact

that the Ĉ
eq terms dominate the m0 terms for strongly-interacting sparticles. As

in the dilaton case, the large squark and slepton masses relative to m
eg provide a

signal for Ng = 4. Again there is a large di�erence between Ng = 4 and Ng = 3
in the lower bounds so crucial for LEP and NLC phenomenology. For example,
m
e`L
;m

e�;me`R
>� 265; 260; 150GeV compared to m

e`L
;m

e�;me`R
>� 110; 60; 70GeV for

Ng = 4 and Ng = 3, respectively. Thus, for Ng = 4 only the èR would be within
the kinematical reach of a

p
s = 500GeV NLC.

In Fig. 15 we give results assuming the high-m0 boundary condition case:
�0 = ��A = 1. Here, the e� 01 constraint is more easily satis�ed and m

eg can take

on lower values. Even at the lowest allowed m
eg values, the e�01 is heavier than

the e� 01 (see Fig. 12), which in turn is required to be heavier than the LSP; in

fact, even at low m
eg the e�01 (but not the e� 01) is heavier than the e�+1 . Squarks

and sleptons receive a signi�cant fraction of their mass from the large m0 value,

and are thus more similar in mass. However, the Ĉ
eq contributions are still very

important, and squark and slepton masses for members of the �rst two families
continue to be much larger for Ng = 4 than for Ng = 3. To repeat our previous
sample comparisons, m

e`L
;m

e�;me`R
>� 245; 240; 220GeV for Ng = 4 compared to

m
e`L
;m

e�;me`R
>� 120; 89; 107GeV for Ng = 3.

6b. Sum Rule and Sparticle Spectrum Tests for Ng = 3 vs. Ng = 4

In the models considered here, having universal soft-SUSY-breaking scalar
massm0, there are many sum rules relating the gaugino, squark and slepton masses.
Here, we survey the impact of a fourth family on the masses and mass sum rules
for the gauginos and for the squarks and sleptons belonging to the �rst two fami-

lies;
[28]

we also point out several di�erences between the sum rules that relate only
fourth-family masses and those that involve only the third-family masses. Gener-
ally speaking, because of the large mixings that can be present in both third and
fourth generation squark and slepton mass matrices, the most precise tests of the
consistency of RGE evolution and grand uni�cation with sparticle mass spectra
may be those employing �rst and second generation members, for which the mass
matrices are very nearly diagonal.
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To proceed, we must �rst discuss gaugino masses in more detail. We employ the
notation k = 1; 2; 3 for the U(1), SU(2), and SU(3) groups; gk(t) are the associated
running coupling constants, and Mk(t) are the associated running gaugino masses,

where t = 1
2� log[Q(GeV)] | tU denotes t at Q = MU , tZ denotes t at Q = mZ ,

and so forth. If the gaugino masses do indeed take a universal value m1=2 at MU

then at one-loop we have the standard relations:

Mk(t) = [�k(t)=�(tU )]m1=2 ; (1)

see Eqs. (A.28) through (A.31) in Appendix A. For an approximate idea of the

numerics for Ng = 4 as compared to Ng = 3, we take ��1em(mZ) = 128, sin2 �W =
:2316 and �3(mZ) = 0:132 at t = tZ and �(tU ) = 0:0917 (0.043) for Ng = 4
(Ng = 3). This gives:

0
B@
M1(tZ)

M2(tZ)

M3(tZ)

1
CANg=4

=

0
B@
0:185

0:37

1:44

1
CAm1=2 ;

0
B@
M1(tZ)

M2(tZ)

M3(tZ)

1
CANg=3

=

0
B@
0:39

0:78

3

1
CAm1=2 : (2)

These results are slightly modi�ed when two-loop Yukawa contributions to the
running of the gauge coupling couplings are incorporated. One �nds coe�cients for
Ng = 4 of roughly 0.194, 0.386 and 1.47 for k = 1, 2 and 3, respectively. The main
e�ect derives from the simple fact that �(tU ) decreases so that the �i(tZ)=�(tU )
ratios increase. For example, for mt0 = mb0 = 100GeV, �(tU ) is shifted down by
about 5% to about 0.0874. This results in an increase of the Ng = 4, k = 1; 2
coe�cients in Eq. (2) by about 5%; for k = 3, �3(tZ) also decreases (to about
0.1288) and the net Eq. (2) coe�cient increase is only about 2%.

We also recall that simple asymptotic results for the low-energy masses of the
gauginos e�0i and e�+i arise if mW � jj�j � M2j (but not if mW � jj�j � M2j).
These results are summarized in the chargino mass formulas and neutralino mass
formulas given in Eqs. (36) and (37) (for charginos) and (40), (41), (42) and (43)
(for neutralinos) of Ref. [29]. (See also Eqs. (5.3) and (6.8) of Ref. [28].) An
example of such asymptotic results are the large � relations m

e�0
1
�M1 and m

e�+
1
�

m
e�0
2
� M2, where M1;2 are evaluated at energy scales of order mZ . As seen from

Figs. 13, 14 and 15, the above approximate mass formulae work reasonably well,
but not perfectly, at large m

eg. For instance, at high meg one �nds me�0
1
=m

eg � 0:135

compared to M1=M3 � 0:131 (with mt0 = mb0 = 100GeV two-loop e�ects included
in the gauge running).

One of the �rst priorities of a next linear e+e� collider (NLC) and the LHC
will be to test the MU -scale universality assumption for the Mi's. At the NLC it is

estimated that m
e�+
1
, m

e�0
1
and m

e�0
2
can be measured to within a few GeV.

[30]
This
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will allow a pretty good determination of M1(tU)=M2(tU ). The optimal situation
arises if � is large, as is essentially always the case in three-generation models, and
very often the case in the four-generation models. Then, as summarized above (and
making the approximation that m

e�0
1
and m

e�+
1
are of order mZ) m

e�0
1
�M1(tZ) and

m
e�+
1
� m

e�0
2
�M2(tZ) and we have the more general result:

M1(tU )

M2(tU )
=
�2(tZ)

�1(tZ)

M1(tZ)

M2(tZ)
� �2(tZ)

�1(tZ)

m
e�0
1

m
e�+
1

: (3)

(For greater accuracy, one will wish to include the two-loop corrections to this
relation when actually performing this test.) Our ability to test the universality
for i = 3 will probably be much more limited. At the LHC, m

eg is unlikely to be

measured to better than 50 to 100 GeV. Further, due to the small beta function
at one-loop for i = 3 in the case of four generations, two-loop corrections to the
running of �3 can be signi�cant, and these depend at least somewhat upon other
model parameters. Nonetheless, it should be possible to extract a �(20 � 30)%
value for M2(MU )=M3(MU ). The determination of the Mi(tU ) is crucial, not only
as a test of universality, but also in making predictions for the squark and slepton
masses and testing m0 universality.

But before turning to squarks and sleptons we must make a few more comments
on the gaugino sector. First, the universality test will not have any signi�cant
sensitivity to Ng = 4 vs. Ng = 3. Second, although the absolute mass scales are
sensitive to the limits on m1=2 discussed earlier that keep m1=2 from being as small

for Ng = 4 as it can be for Ng = 3, it is di�cult to use the absolute mass scale
for a reliable probe of the value of Ng since Ng = 3 models with Ng = 4 type m

eg

values are certainly entirely viable. Sum rules such as

m
e�+
1
m
e�+
2
= jM2��m2

W sin 2�j ; (4)

following from the determinant of the mass matrix, are sensitive to the Ng = 4

restriction 1 <� tan � <� 3 if M2� � m2
W . But such small values are not the norm,

and to use this particular sum rule we must detect both e�+1 and e�+2 . Thus, we must
include squark and slepton masses in our considerations in order to gain sensitivity
to Ng.

We shall see below that the squark and slepton masses at one-loop are deter-
mined by them0 soft scalar mass (or masses should them0 values not be universal),
by � and by the functions:

Ck(t)m
2
1=2 �

0
B@

3
5

3
4

4
3

1
CA� 1

�

tUZ
t

dt g2k(t)M
2
k (t) : (5)

If one-loop evolution is used, then the integrals can be analytically carried out to
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give:

Ck(t)m
2
1=2 = 2

0
B@

3
5

3
4

4
3

1
CAM2

k (t)

�
1 � �2(tU )

�2k(t)

�
b�1k with bk =

0
B@

9 � 2Ng

5 � 2Ng

�3
5 � 2Ng

1
CA (6)

where the bk are the one-loop beta function coe�cients for the gauge couplings:
d�k=dt = �bk�2k. If we input the relations of Eq. (1), then (at one-loop) we �nd:

Ck(t) = 2

0
B@

3
5

3
4

4
3

1
CA
�
�2k(t)

�2(tU )
� 1

�
b�1k : (7)

However, for four generations, one-loop evolution for �3 is generally not an ade-
quate approximation when calculating C3; the evolution of �3 is sensitive to two-
loop terms, due to the small value of b3, and �3 appears to the third power in the
expression for C3 in Eq. (5). The values of Ck for Ng = 4, computed numerically
with full two-loop evolution for the couplings, are compared to those for Ng = 3
in Table 1 at scales mZ and 1TeV. For the Ng = 4 computations we adopted
mt0 = mb0 = 90GeV, m� 0 = m�0 = 50GeV, and tan � = 1:5. Results are fairly
insensitive to these choices. In the case of Ng = 4, the results for Ck would have
been roughly 20% bigger had we neglected two-loop Yukawa terms in �3, which
keep �3 somewhat smaller (as described earlier) than otherwise.

Table 1: We tabulate the Ck values for Ng = 4 and Ng = 3 at the mZ and 1TeV energy scales.
For Ng = 4, we employ mt0 = mb0 = 90GeV, m� 0 = m�0 = 50GeV, and tan � = 1:5.

k Ck(tZ); Ng = 4 Ck(t1TeV); Ng = 4 Ck(tZ); Ng = 3 Ck(t1TeV); Ng = 3

1 0.131 0.130 0.151 0.148

2 0.376 0.371 0.484 0.459

3 4.59 4.06 7.30 5.40

We see a useful feature of the Ng = 4 results in Table 1: the Ck(t) are much
more independent of the low-energy scale choice than in the Ng = 3 case. This
can be understood from Eq. (7). If we make a change in �k(t), then one can easily
compute that:

�Ck(t)

Ck(t)
� 2��k(t)�k(t)�

�2(tU )h
�2
k(t)

�2(tU)
� 1

i : (8)

First, consider k = 1; 2. Referring back to Fig. 1, we see that to a reasonable
approximation ��1;2 for Ng = 3 and Ng = 4 are very similar in magnitude in going

22



from mZ to 1TeV. Also from Fig. 1, we see that for k = 1; 2 the denominator
of Eq. (8) is very substantially smaller, while �k(mZ)=�(tU ) is much larger, for
Ng = 3 compared to Ng = 4. In combination, these two e�ects lead to negligible
change in C1;2 in going from mZ to 1TeV when Ng = 4, compared to a modest
change for Ng = 3. For k = 3, the denominator is somewhat larger for Ng = 3 than
Ng = 4, but the numerator is very much smaller for Ng = 4, due not only to the

decrease of �(tU )
�2 by a factor of � 4, but also because ��3 (in going from mZ to

1TeV) is very much smaller for Ng = 4 than for Ng = 3 (see Fig. 1). A substantial
change in C3 for Ng = 3 is turned into a small change in the Ng = 4 case. This
is amusing both in its own right, but is particularly important for squark masses
in that the small scale-sensitivity of C3 means the exact low-energy scale down
to which we evolve will have a weak impact upon the squark masses. In the case
of Ng = 3, when determining the running mass of a heavy squark, it is crucial
to evaluate C3 at the squark mass scale; for a heavy squark C3(t

eq) can be very

substantially smaller than the mZ -scale value as seen in Table 1. In contrast, even
for Ng = 3, C1;2 are much less sensitive to a change in scale.

Table 2: We tabulate the fik and Di values for squarks and sleptons. Also given are the mZ -

scale Ĉi values for both Ng = 3 and Ng = 4. For Ng = 4, we employ mt0 = mb0 = 100GeV,

m� 0 = m�0 = 50GeV, and tan � = 1:5. We use the notation xW � sin2 �W .

fik Di Ĉi(Ng = 4) Ĉi(Ng = 3)

i \ k 1 2 3e� 1
4 1 0 1

2 0.41 0.52è
R 1 0 0 �xW 0.13 0.15è
L

1
4 1 0 �1

2 + xW 0.41 0.52edR 1
9 0 1 �1

3xW 4.43 7.32euR 4
9 0 1 2

3xW 4.48 7.37edL 1
36 1 1 �1

2 +
1
3xW 4.80 7.79euL 1

36 1 1 1
2 � 2

3xW 4.80 7.79

Let us now return to the squark and slepton masses. The primary sensitivity
of these masses to Ng is through the Ck and the Ng = 4 constraints on m0 and
m1=2. To see this let us recall that, in terms of the Ck, one �nds

m2
i = m2

0 + Ĉim
2
1=2 +Dim

2
Z cos 2� ; where Ĉi �

X
k

fikCk : (9)

The fik and Di are tabulated in Table 2, as are tZ-scale values for the Ĉi, for

both Ng = 3 and Ng = 4; in evaluating the Ĉi's we have employed full two-loop
evolution for all of the �k's in determining the Ck's, as noted earlier. Also noted
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above is the fact that, for Ng = 4, employing the mZ-scale values for the Ĉi should
be a reasonably good approximation, even in the case of heavy squarks, due to the
modest sensitivity of the Ck coe�cients to the energy scale. Of course, we must
keep in mind that the numbers given above have presumed the universal value
Mi = m1=2 at MU . Clearly, if the Mi do not have a common MU -scale value, one

would have to redo all the computations.

What about the value of � = tan�1 v2=v1? Whether or not the slepton and
squark masses are measurably sensitive to � depends upon the relative size of the

m2
0 and Ĉim

2
1=2 terms compared to m2

Z cos 2�. Certainly it would be nice to have

sensitivity, since then it could be determined if tan � falls in the 1 <� tan � <�
3 domain required if Ng = 4. There are two mass-squared di�erences that, in
principle, allow a direct determination of cos 2� independent of whether the m0's

are universal and independent of any knowledge of the numerical values of the Ĉi:

m2
e`L
�m2

e� = m2
edL
�m2

euL
= � cos 2�m2

Z(1 � xW ) ; (10)

where we employ the notation xW � sin2 �W . (Note that since tan � � 1, cos 2�
is always negative and these mass di�erences are positive.) For such di�erences to
be sensitive to cos 2� at just the 1� level, one must be able to measure a typicalem to accuracy �em=em < m2

W =2em2. For masses of 100; 250; 500; 1000GeV, this
means �em=em < 32%; 5%; 1:3%; 0:32%; clearly the last two accuracies are at a very
di�cult level even for an e+e� or �+�� collider of adequate energy. Determination
of cos 2� at the 3� level of accuracy would require factor of three smaller errors than
those listed above. To be more precise regarding the possibilities for measuring the
mass di�erences in Eq. (10), we outline some relevant issues and possible techniques
in Appendix B.

The conclusion from Appendix B is that it will be di�cult to measure m
e`L
and

m
e� to much better than about 5% accuracy. (Since the mass scales for m

edL
and

m
euL are even larger than for the sleptons, and errors in the determination of their

masses will be larger also (see Appendix B), it seems clear that it is the slepton
sector upon which we should focus.) Given the 5% accuracy estimate for m

e`L
and

m
e� determination and comparing to the criteria of the previous paragraph, we

conclude that a direct determination of cos 2� will be problematical, especially if
the slepton mass scales are as large as predicted for Ng = 4. The ability to de-
termine tan � could be even worse if tan � is large, since cos 2� varies slowly with
� once � approaches �=2. Of course, for Ng = 4 it is true that tan � is in the
1 <� tan � <� 3 range where our ability to extract tan � from a cos 2� measurement
would be maximal. Nonetheless, for the moment we must conclude that experi-
mental determination of cos 2� and thence tan � will be di�cult unless the slepton
masses are well below 200GeV, as is possible only if Ng = 3. Of course, further
study is undoubtedly warranted and could reverse this conclusion. Fortunately,
the uncertainty in cos 2� is not the limiting factor in our ability to test the other
crucial mass sum rules and relations discussed below. Other experimental and
theoretical uncertainties are much more important in determining the limitations.
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Sum rules that do not mix slepton/squark and gaugino masses

We can imagine two basic outcomes for our experimental attempts to determine
cos 2�: i) we are successful in getting at least a rough determination of m2

Z cos 2�;
or ii) our errors are too large to be sensitive to this kind of term. In either case,
one would proceed next to a series of additional sum rules and mass relations that
would provide tests of universality and the general uni�cation/RGE framework
and/or tests for Ng = 4 vs. Ng = 3. For the moment, let us assume that both

squarks and sleptons are observable, if not at an e+e� collider then perhaps at a

�+�� collider of very high energy.
[31]

If not, one must proceed quite di�erently; we
will return to this alternate case in Sec. 6c.

To check m0 universality independently of Ng, one must consider mass combi-
nations that are independent of the Ci. The only simple example is

2(m2
euR
�m2

edR
) + (m2

edR
�m2

edL
) + (m2

e`L
�m2

e`R
)

=
10

3
xWm2

Z cos 2� =
10

3
xW (1 � xW )�1(m2

e� �m2
e`L
) :

(11)

This relation would be violated if all the m0's appearing in Eq. (9) are not the
same. Because of the large number of mass di�erences appearing above, to detect
a violation of universality in just one of these di�erences at the �m0=m0 = f level
could require that the squark and slepton masses be measured with an accuracy
that is <� f=4. From the discussion of Appendix B, we conclude that it will be
di�cult to obtain accuracy f that is much better than 15�20%. However, this level
of accuracy is acceptable in the sense that we will �nd that tests of all other sum
rules are more or less restricted to this same rough level of accuracy even if the m0
were universal. This means that the limited accuracy of the test of m0 universality
will not dominate our ability to check various mass relations. Let us presume that
universality is shown to be satis�ed within the accuracy of measurement achievable.
Then we can proceed to extract m0 and test for Ng = 3 vs. Ng = 4 to about this
same level of accuracy.

There are various mass combinations that can be used to extract a universal
m0. However, we should note that the four quantities m0, C1, C2, and m2

Z cos 2�
cannot be extracted using just the three slepton masses | we must have some
squark-sector measurements. One simple combination is

m2
0 = m2

e`R
� 3(m2

euR
�m2

edR
) + 4xW (1 � xW )�1(m2

e�
�m2

e`L
) : (12)

Note that the C3 terms that cancel betweenm
2
euR

and m2
edR
will be evaluated at very

similar mass scales, so that the cancellation should be quite precise. The C1 terms
that cancel between m2

e`R
and �3(m2

euR
�m2

edR
) could in principle be evaluated at

25



somewhat di�erent mass scales. As discussed previously, this would not matter in
the Ng = 4 case, but would lead to a small uncertainty for Ng = 3; however, this
uncertainty is much less than that from simple experimental errors in determining
m2
euR
� m2

edR
. Indeed, if m0 is small, then experimental errors in evaluating the

right-hand side above could become a severe problem. We will not dwell further
on this issue here.

The primary sensitivity to Ng = 4 vs. Ng = 3 derives from the fact that the
gauge coupling at uni�cation, �(tU ), is approximately twice as large when Ng = 4
as it is when Ng = 3. This leads to the possibly large di�erence between the Ng = 4
and Ng = 3 values of C3, depending upon the energy scale of evaluation, illustrated
in Table 1. However, it is not straightforward to exploit this sensitivity through
mass relations involving squarks and sleptons alone, that is relations designed to
eliminate direct reference to m1=2. This is already apparent from the modest

changes in the Ck and Ĉi (see Tables 1 and 2) in going from 3 to 4 generations.
The very best that one can do is to consider ratios such as C3=C1. As seen from
Table 1, if squarks are at a low mass scale (of order mZ) then this ratio takes the
values 33.5 for Ng = 4 as compared to 48.3 for Ng = 3; but if squarks have masses
of order 1TeV, then we compute C3=C1 = 36:5, not very di�erent from the 33.5
value for Ng = 4. Experimental extraction of C1 and C3 can be done in a number
of ways. An example is:

C1m
2
1=2 =3(m

2
euR
�m2

edR
)� 3xW (1 � xW )�1(m2

e�
�m2

e`L
)

C3m
2
1=2 =(m

2
euL
�m2

e�
) +

2

3
(m2

euR
�m2

edR
) ;

(13)

where the C1m
2
1=2 result was already used in Eq. (12). Accuracy of about 10% or

better would be very desirable for the experimental determination of C1m
2
1=2 and

C3m
2
1=2 if we are to have a good chance of distinguishing Ng = 4 from Ng = 3, but

would require determination of the m
euL � m

e`L
and m

euR � m
edR

mass di�erences

to roughly 3%, a challenging task even at an e+e� collider, as we have already
discussed.

Some mass sum rules are quite insensitive to Ng = 3 vs. Ng = 4. Such mass
relations can be used to test the general RGE approach, somewhat independently of

the generation issue. To illustrate, consider the sample relation (3.19) in Ref. [28]:
?

m2
eeL
�m2

eeR
=
(C2 � 3

4C1)

(C3 � 8
9C1)

�
m2

edR
�m2

eeR

�

+cos 2�m2
Z

"
�2
3
xW

(C2 � 3
4C1)

(C3 � 8
9C1)

� (
1

2
� 2xW )

#
:

(14)

? We have corrected a sign error in this equation.
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We note that cos 2� < 0 (for tan � > 1) so that the sign of the second term is
opposite to the sign of the factor in brackets. Adopting our results from Table 1
for the Ck, we �nd at scale mZ :

m2
eeL
�m2

eeR
= (0:052 or 0:062)(m2

edR
�m2

eeR
)� [(19:3GeV)2 or (19:6GeV)2] cos 2� ;

(15)
for Ng = 3 or Ng = 4, respectively. Since this relation assumes universality among
the m0, the relatively minor changes in the coe�cients for Ng = 4 compared to
Ng = 3 implies greater sensitivity to possible universality violation among the m0

than to Ng. We note that for accurate examination of this sum rule, an accurate
value for C3 is absolutely necessary. As noted above, in computing C3 it is critical
when Ng = 4 to include the two-loop contributions to the running of �3 given that
the one-loop beta function is anomalously small, being proportional to 9� 2Ng.

Third-generation mass sum rules (4.5) and (4.10) of Ref. [28], which are in-
dependent of the m0 universality assumption, are una�ected by a fourth family.

However, since they require that the eb mass matrix is diagonal to a good ap-
proximation (which is generally true for the third family since mb is small), the
analogous sum rules do not apply for the fourth family due to the large value of
mb0.

A generalization of the sum rule (4.6) of Ref. [28] for the splitting m2
et1
�m2

et2
can be found in the four-family case. It is not especially useful, however, since it
relates m2

et01
�m2

et02
to m2

eb01
�m2

eb02
via At0 and Ab0 dependent terms; thus, we do not

display it here.

Sum rules that mix squark/slepton masses and gaugino masses

So far, we discussed only mass relations and sum rules that referred either
to squark/slepton masses only, or to gaugino masses only. However, it should
be clear from all our previous discussions that the real sensitivity to Ng = 4 vs.

Ng = 3 lies in the dramatic shift of slepton/squark masses at given m
eg. This was

already discussed in Sec. 6a, and is further evident from the relations of Eq. (13),
once the substitution m1=2 = m

eg�(tU )=�3(meg) is made and it is recalled that

�(tU )jNg=4 = 0:092 compared to �(tU )jNg=3 = 0:043. However, because of inherent

inaccuracies in experimentally measuring m
eg it is better to reference M1(tZ) or

M2(tZ), see Eq. (2), which can be quite well determined once the experimentally
more accessible masses m

e�0
1
and m

e�+
1
are measured. A particularly simple example

is provided by m2
edR
�m2

e`R
. From Table 2 we �nd that (using mZ-scale Ĉi values |

for 1TeV scale values the di�erence in coe�cients is even greater) and the relations
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of Eq. (2),

m2
edR
�m2

e`R
=�m2

0 + (4:3 or 7:17)m2
1=2 +

2

3
xWm2

Z cos 2�

=�m2
0 + (31:5 or 11:8)M2

2 (tZ) +
2

3
xWm2

Z cos 2� ;

(16)

for Ng = 4 or Ng = 3, respectively. Here, we have included a possible violation

of m0 universality, �m
2
0 � m2

0(
edR)�m2

0(
è
R). Experimental uncertainties in deter-

mining the coe�cient, CM2
, of M2

2 (tZ) will be dominated by experimental errors

in determining m2
edR
� m2

e`R
and �m2

0. The latter error, as discussed with regard

to Eq. (11), is expected to be several times as large as the former. Very crudely,
for experimental uncertainties in the squark/slepton mass measurements of size

�em=em � f , one expects an experimental uncertainty in the M2
2 coe�cient of

order �CM2 � 3 � 5 � f em2=M2
2 . We have already seen that f is very unlikely

to be better than f � 0:1. Taking em � 1TeV and M2 � 200GeV implies a
�CM2 � 7:5 � 12:5. This is smaller than the predicted Ng = 4 vs. Ng = 3 di�er-
ence, suggesting we would, in fact, be sensitive to Ng by measuring masses of the
gauginos and the squarks and sleptons of just the �rst two generations.

6c. Non-Squark Spectrum Tests for Universality and Four Generations

As repeatedly noted, mass determinations will be most easily performed at an
e+e� collider of appropriate energy. Regardless of the value of Ng, chargino pair

production is very likely to be within reach of a
p
s = 500GeV NLC. In the case of

Ng = 3, slepton pair production is also very likely to be possible for
p
s = 500GeV

if boundary conditions of the no-scale or dilaton type are appropriate. For Ng = 4,
however, these same boundary conditions predict much larger slepton masses, and
a higher energy machine would probably be required. However, for either Ng = 3

or Ng = 4, the squarks are much heavier still, and it is quite possible that an e+e�

or �+�� collider would be built that could produce the neutralinos, charginos
and sleptons, but not the gluino and squarks. Thus, it is desirable to consider
what kinds of tests of universality, the RGE framework, and Ng can be performed
without reference to either the gluino or the squarks. In particular, we wish to
determine if there is a test for Ng = 3 vs. Ng = 4 that can be performed using

only the e�01; e�+1 masses and the masses of the �rst or second family sleptons, which
are those most likely to be both easily accessible and most precisely predictable
(i.e. without reference to A parameters and L � R mixing). So, let us imagine
that the Mi for i = 1; 2 have been determined with reasonable accuracy from the
observed values of m

e�0
1
and m

e�+
1
, following the procedure described earlier. If we

then assume a value of Ng, m1=2 will also be computable from Eq. (2). Finally,

the Ci can also be computed for the assumed value of Ng.
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As mentioned earlier, the èL and è
R masses are very sensitive to Ng when

expressed in terms of the parameter �0. In what follows, we keep track of a possible
di�erence between the �0 values in the L and R sectors, i.e. of possible universality
violation. We have, from Table 2,

m2
e`L
�[�L0 ]2m2

1=2 + (0:41 or 0:52)m2
1=2 + (�1

2 + xW )m2
Z cos 2� ;

m2
e`R
�[�R0 ]2m2

1=2 + (0:13 or 0:15)m2
1=2 � xWm2

Z cos 2� ;
(17)

for Ng = 4 or Ng = 3, respectively. We note that the Ĉi for m
e`L

and m
e`R

are

quite di�erent, but not terribly sensitive to Ng = 3 vs. Ng = 4. However, by
converting to the value of, for example, M1(tZ) using Eq. (2), a large di�erence
between the Ng = 4 and Ng = 3 phenomenology emerges. In the approximation
that m

e�0
1
�M1(tZ) we have

r2
e`L
�

m2
e`L

m2
e�0
1

�(29 or 7)[�L0 ]2 + (12 or 3) + (�1
2 + xW )

m2
Z

m2
e�0
1

cos 2� ;

r2
e`R
�

m2
e`R

m2
e�0
1

�(29 or 7)[�R0 ]2 + (4 or 1) � xW
m2
Z

m2
e�0
1

cos 2� ;

(18)

for Ng = 4 or Ng = 3, respectively.

We plot our precise numerical results for r
e`L

and r
e`R

as a function of �0 in

Fig. 16. We have taken mt = 165GeV and tan � = 1:5. In the case of Ng = 4,
we choose mt0 = mb0 = 100GeV and m� 0 = m�0 = 50GeV. (All masses are
running masses in this discussion.) The graph is given for the speci�c value of
m

e�0
1
= 117GeV. For Ng = 4 (3) this corresponds to m1=2 � 600GeV (� 300GeV),

respectively. This kind of plot has a number of important advantages. First, there
is no sensitivity to the A parameter for the �rst and second generation masses
being considered. Second, tan � enters into the location of the �0 = 0 intercepts,

but only weakly if m
e�0
1
� mZ . Third, by measuring the èL and èR masses in units

of m
e�0
1
, the plot is quite independent of the actual value of m1=2 (or, equivalently,

m
e�0
1
), as seen in the approximate relations, Eq. (18).

Fig. 16 exhibits a rather big di�erence for the functional dependence of r
e`L

and r
e`R

on �0, depending on Ng. Suppose that experiment yields r
e`R

= 4:5. For

Ng = 3 this implies �R0 � 1:7 and, if �L0 = �R0 , i.e. the �0 are universal, re`L
� 4:7;

for Ng = 4 we �nd �R0 � 0:8 and r
e`L
� 5:3. Since m

e�0
1
� 117GeV in this case,

this corresponds to m
e`L
(Ng = 4) �m

e`L
(Ng = 3) � 70GeV compared to perhaps
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10 � 20GeV uncertainty in the èL mass measurement. Of course, to measure m
e`L

and m
e`R

in the mass range above 400GeV, required in this example, demands a

very high energy e+e� or �+�� collider.

As one moves to lower �0 values, the discriminating power of this procedure
slowly increases. Suppose the experimentally measured value is r

e`R
= 3. If Ng = 3

this would imply �R0 = 1:1, and �L0 = �R0 would then imply r
e`L
= 3:4. In contrast,

if Ng = 4, r
e`R

= 3 corresponds to �R0 = 0:45, yielding r
e`L

= 4:1, or m
e`L
(Ng =

4)�m
e`L
(Ng = 3) � 82GeV, a bit larger than our previous result.

How sensitive are we to a breaking of universality and the uncertainty in tan �?

Consider �rst the possibility that �L0 and �R0 are not the same. Returning to our �rst

example, and neglecting e�ects of the Tr(Y m2) evolution terms, a measurement of
r
e`L

= 5:3 in agreement with the Ng = 4 prediction without universality violation

could be reinterpreted as a prediction of Ng = 3 provided �L0 � 1:9, as compared to

the value �R0 = 1:7 required for r
e`R

= 4:5 for Ng = 3. This translates to a breaking

of universality in the amount:

�L0 � �R0
1
2 (�

L
0 + �R0 )

� 0:2

1:8
� 11% : (19)

Thus, � 10% universality violation could correct for the Ng = 4 vs. Ng = 3 dif-
ference. This is an intrinsic ambiguity when only slepton, chargino and neutralino
masses are available.

In the above, we have purposely chosen situations where consistent solutions
for both Ng = 3 and Ng = 4 are possible. It could easily happen that consistent

choices for �R0 and �L0 are simply not possible for the observed values of r
e`R

and/or

r
e`L
. In particular, if r

e`R
<� 2:0 or r

e`L
<� 3:5 thenNg = 4 is excluded, whereas Ng = 3

models would be possible. In fact, if Ng = 3 and �0 is in the preferred �0 <� 1 range,
then r

e`L
< 3 and Ng = 4 would be immediately excluded. The lower bounds on

r
e`L

and r
e`R

for Ng = 4 are, of course, equivalent to lower bounds on m
e`L
;m

e`R
of 410; 234GeV for this particular m

e�0
1
value. And, these lower bounds can only

be reached if one is willing to accept the no-scale m0 = 0 boundary conditions.
In another extreme, it could happen that one measures r

e`R
� r

e`L
>� 7 � 8. Such

large slepton masses relative to m
e�0
1
require very large �0 values if Ng = 3, well

beyond any acceptable model range. In contrast, if Ng = 4 the required �0 values
are perfectly reasonable.

We note that sensitivity of these results to cos 2� is really quite limited. For
m

e�0
1

>� mZ, and taking both xW and �1
2 + xW to be of magnitude � 0:25, the

full range of cos 2� between 0 and �1 corresponds to �r � 0:125=r �mZ=m
e�0
1
<�
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0:125=r. Since the r values are typically at least of order 1, most probably much
larger, we see that the cos 2� uncertainty is, at worst, roughly the same as the
experimental error, and is not signi�cant compared to the predicted r di�erences
or possible universality questions.

Finally, we note that even if we have an ambiguity in the decision between
non-universality and Ng = 3 vs. Ng = 4, in general we will have a very rough
determination of the general size of �0. In the above example, we would at least
know that the �0 values were >� 0:8 if Ng = 4 or >� 1:7 if Ng = 3. This would allow
us to set the overall boundary condition picture.

7. Experiment and a Fourth Family

In this section, unless otherwise indicated, all masses are pole masses. Where
appropriate, running masses will be explicitly written in the m(m) notation. Very
roughly, pole masses are higher than running m(m) masses by about 5 or 6%,

based on the dominant correction m(pole) = m(m)[1 + 4
3��s(m)].

In all our discussions up to this point, we have adopted the conventional
interpretation that the CDF and D0 events derive from t ! bW decays, with
mt(pole) � 175GeV. Alternative possibilities in which the events at CDF and
D0 are reinterpreted as mt0 >� 175GeV events with t0 ! bW , while the t is not
currently observed, are not consistent within the perturbative MSSM GUT frame-
work. In the �rst such option, the t is not observed because it is too heavy,
mt(mt) � 165GeV. The di�culty with this option is that for such large values
of mt the maximum value of mt0(mt0) allowed by perturbativity is much below
165GeV and the t0�t0 events would not have the same characteristics (e.g. recon-
structed mass and cross section) as observed by CDF and D0. In the second such
option (emphasized in Ref. [14]), the t is much lighter than the t0, mt � mW , but

is not detected because its decays are dominated by t ! et1e�01. However, in the
MSSM GUT context, the latter decay does not occur if the soft-SUSY-breaking

parameters are approximately universal, since (as we have seen) the et1 is always
much heavier than the t. Further discussion of this latter case will appear in Sec.
7a. Certainly, the phenomenology of the t0 and b0 at the Tevatron that we present
depends crucially on the mt � 175GeV > mb0;mt0 hierarchy, not to mention the
relative size of mt0 vs. mb0 , and on the mixing pattern between the generations.

In Sec. 7a we will discuss direct limits on the fourth family fermions coming
from collider experiments, especially the CDF and D0 experiments at the Tevatron,
assuming that mt(pole) � 175GeV. We �nd that a relatively small portion of
mb0;mt0 parameter space survives all such constraints for the more natural choices
of CKM mixing between the fourth generation and lower generations. We also
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describe in more detail why the mt � mW scenario is not viable for universal soft-
SUSY-breaking boundary conditions. In Sec. 7b we give the constraints on mt0;mb0

arising from consistency with precision electroweak data. Not surprisingly, these
tend to rule out large mt0 compared to mb0. Finally, in Sec. 7c we speculate on
deviations in single-jet inclusive and di-jet spectra that could arise as a result of a
full four-family content at relatively low mass scales.

7a. Direct Collider Searches

As we have demonstrated, the requirement that all Yukawa couplings remain
perturbative places rather strict upper bounds on the t0, b0, �0 and � 0 masses, and
the possibility of an MSSM fourth generation may well be settled within the next
few years by searches (i) at the Tevatron, for an appropriate set of new signatures
(i.e. besides t! b+W ), and (ii) at LEP-II, via detection of direct � 0 + �� 0 and/or
�0 + ��0 production.

LEP has set the �rmest direct limit, namelymf
>� mZ=2 for f = b0; t0; � 0; �0. We

have also seen that the value of mt � 175GeV, as determined by the recent CDF

and D0 results,
[20]

is such as to imply mt > mb0;mt0 for perturbative consistency.

Let us begin by noting the critical di�erence between the mt0 < mb0 and mt0 >
mb0 cases, assuming that mt > mt0;mb0. If mt0 < mb0, then the t0 ! Wb decay
proceeds at tree-level at a rate determined by the CKM entry Vt0b. One-loop

processes, such t0 ! cg, t0 ! c
, t0 ! cZ(�) and so forth occur at rates determined
by Vt0sVcs and Vt0b0Vcb0 times a loop integration factor. It would be extremely
unnatural for the product of a loop integration factor times a two-generation-
skipping CKM matrix element to exceed the one-generation-skipping CKM Vt0b.
Thus, it is almost certain that t0 ! Wb decays would be completely dominant if
mt0 < mb0. This situation should be contrasted with the reverse case of mt0 >
mb0, for which the interesting issue is how the b0 decays. The decay b0 ! Wc
occurs at tree-level with rate determined by Vcb0. The one-loop rates for b0 ! bg,

b0 ! b
, b0 ! bZ(�) and so forth are determined by Vtb0Vtb and Vt0b0Vt0b times loop
integration factors. It is actually rather likely that the two-generation-skipping
CKM element Vcb0 is smaller than the one-generation-skipping Vtb0 or Vt0b times
the loop integration factor. In this case, the 
avor changing decays b0 ! bX would
dominate over the two-generation skipping b0 ! Wc decay. The di�erent decay
structure for mt0 < mb0 as compared to mt0 > mb0 has crucial phenomenological
implications.

To repeat, if mt0 < mb0 it is almost certain that the t0 will decay in a top-
quark-like manner to Wb (or W �b, depending on mt0). Events of this type are
clearly ruled out by early CDF and D0 `top-quark' limits for all mt0 < mb0 regions
allowed by the four-generation perturbativity constraints, see Fig. 2. Thus, we
immediately eliminate roughly half of the perturbatively allowed regions. We now
focus on experimental restrictions that arise if mt0 > mb0 .

b0�b0 Production at the Tevatron
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If mt0 > mb0, then in b0�b0 production at the Tevatron we must consider the two
more or less competitive b0 decay scenarios outlined above. If Vb0c (or, much less
likely, Vb0u) is su�ciently large that b0 ! cW (or b0 ! uW ) decays are dominant,

the published data
[32]

already rule out mb0 < 85GeV at 95% C.L. (Presumably this

old result will soon be updated using the full CDF and D0 data sets.) But, if the
b0 is essentially unmixed with light generations, it will decay via 
avor-changing
neutral current (FCNC) channels: b0 ! b
; bg or bZ� for mb0 < mZ , with b0 ! bZ
becoming dominant for mb0 > mZ +mb.

Present data would appear to rule out a signi�cant rate for b0 ! bZ decays
by virtue of there not being room for an excess number of Z's beyond that pre-
dicted on the basis of the standard qq annihilation mechanism. Taking a b0 mass
of 100GeV (roughly the maximum possible if mt0 > mb0), the cross section (with-
out inclusion of any K factor) at

p
s = 1:8TeV (Fermilab Tevatron) is about

60 pb. For an integrated luminosity of 67 pb�1 this implies roughly 4000 b0�b0

events. If we imagine looking for Z's from the decay of either (or both) b0's, then

this number is to be multiplied by [1�BR(b0 ! non�Z)2]. Given the small phase
space, mb0 �mZ �mb � 5GeV and the low value of mt0 � 100GeV required by
our perturbative constraints (which impacts the one-loop Penguin diagram cal-

culations), we expect
[7]
BR(b0 ! non�Z) to be signi�cant but probably <� 0:7,

implying >� 2000 events in which at least one of the b0's decays to a Z. Using
BR(Z ! `+`�) = 0:067, and an overall two-lepton cuts/acceptance/detection
e�ciency of about � = 0:5, we �nd >� 80 events where at least one Z appears
in the b0�b0 �nal state and has a clearly detectable leptonic decay. (If we take
BR(b0 ! Zb) = 1, and adjust for luminosity, this number is consistent with
the pre-pT (Z)-cut numbers of Agrawal, Ellis and Hou, Ref. [7], for the sum of
`+`� + jj +X and 4` +X event numbers at mb0 = 100GeV.) In addition, Fig. 2
shows that if mt0 is to be larger than mb0 and mb0 � 100GeV, then mt0 can only be
just larger than mb0. In this case, the t0�t0 production cross section would be more
or less the same as the b0�b0 cross section, thereby almost doubling the 80 events,
assuming that t0 ! b0W � decay is dominant. Although a speci�c analysis has not
been presented for the latest CDF or D0 data with regard to this point, we expect
that such a large number of additional relatively clean Z events can be ruled out.

For an integrated luminosity of L = 150 pb�1, it would seem that one could virtu-
ally eliminate the mb0 > mZ +mb case down to very near the threshold. However,
if b0 ! bh0 is also kinematically allowed, the number of extra Z events would be
much smaller and mb0 > mZ +mb would not be excluded. We shall return to this
issue shortly.

Thus, consistency with experiment probably requires that mb0 < mZ + mb,
and that b0 decays are dominated by the FCNC channels outlined above. These
`non-standard' decays would yield distinctly di�erent signatures than the lepton-
plus-jet signatures of charged current decays that are already mostly excluded,
and new search strategies are required. Perhaps the cleanest discovery channel
makes use of b0�b0 production followed by double b0 ! b
 decay. As an example
consider mb0 = 90GeV(95GeV). The Tevatron cross section (without including
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any QCD K factor enhancement) for b0�b0 production is � 100 pb(76 pb), corre-

sponding to � 6700(5100) events for L = 67 pb�1. Assuming BR(b0 ! b
) � 0:1
(typical of the low mt0 results given in Hou and Stewart, see Ref. [7]), we obtain

about 67(51) bb

 events. In order for these events to be su�ciently free of back-
ground, single b tagging is probably necessary. If we assume that the e�ciency
for tagging of at least one b (after appropriate kinematical cuts) is approximately

50% (as found in the most recent CDF top-quark analysis
[20]
) and that the overall

cuts/acceptance/detection e�ciency (after requiring minimum transverse momen-
tum, say pT > 15GeV, and central rapidity for the photons and b's) is about 35%,
we see that a clean sample of 11(8) or so events should be present in the CDF

data. Of course, t0�t0 production will also contribute to the bb

X signal assuming
t0 ! b0W � is the dominant decay of the t0. (For mt0 near mb0 the jets or leptons
from the W � will be quite soft, and the signal rather similar to that for direct
b0�b0 production). Events of the 2
 + 2j type with at least one tagged b quark

are currently under investigation by the CDF collaboration,
[33]

and we expect that
CDF will shortly be able to severely restrict the allowed four-generation scenarios.
Since event rates rise rapidly with decreasing mb0, it is hard to imagine that a b0

with mass much below 80 � 90GeV would escape detection. Referring to Fig. 2,
this means that the mb0(mb0) < 75 � 85GeV region for tan � = 1:5 and the entire
tan � = 2:2 region are on the verge of elimination if no signal is reported. An

integrated Tevatron luminosity of L = 150 pb�1 would surely allow one to use the
bb

 �nal state to eliminate all mb0

<� mb +mZ , extending up to mb0 values such
that the b0 ! bZ mode really becomes signi�cant enough to suppress the b0 ! b

branching ratio. At this point, as described above, one looks for extra Z's, which
also provide an excellent signal.

Of course, if a reasonable K factor is included in the b0�b0 cross section (K = 1:3

to 1.5), the event rates for the bb

 and/or extra Z events will increase above
those given above. This leaves even less room for the four-family model to avoid
detection.

The only possible escape from the b0 ! b
 and b0 ! bZ decay mode constraints
would be if b0 ! bh0 decay is kinematically allowed. If allowed, it will certainly
dominate all other modes when b0 ! bZ is kinematically forbidden. Even when
the b0 ! bZ channel is open, b0 ! bh0 will at the very least be competitive
and suppress the b0 ! bZ branching ratio | indeed, the bh0 channel could still

be the dominant mode.
[34]

However, as seen in Fig. 6 (after converting running

masses to pole masses), this escape is not available for the mt0 > mb0 portion of
parameter space in the case of the dilaton boundary condition scenario, since there
mb0 < mh0. Only in the extreme lower right-hand corner where the running masses
obey mh0 ' mb0 ' 100GeV and mt0 ' 50GeV, is the b0 ! bh0 decay kinematically
allowed, and this corner is almost certainly ruled out (as discussed in an earlier
paragraph) since mt0 < mb0 . However, for scenarios with larger (but not too large)

m0, the h
0 can be light enough to make the bh0 channel kinematically accessible.

In Fig. 11 we plotted as a function of �A, for various �xed �0 values, the
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minimum m
eg(meg) value that is allowed by the e� 01 constraints, taking mb0(mb0) =

mt0(mt0) = 100GeV (corresponding to pole masses of about 105GeV). We can
now use this minimum m

eg(meg) value to �x all other model parameters, thereby

determining the sparticle spectrum, in particular mh0. Since the m
2
H1;2

contribu-

tions to the m2
i = m2

Hi
+ �2 mass terms in the scalar potential will tend to be

smallest when m
eg is small (and � also tends to scale with m

eg), these minimum

m
eg values give mh0 values that will be very close to the minimum allowed for the

fourth-generation fermion masses chosen. To determine if b0 ! h0b is kinematically
allowed, we compute mb0(pole)�mh0 �mb. Plots of mh0 and this mass di�erence
also appeared in Fig. 11. From the mb0(pole) �mh0 �mb curves, we see that for

middle-of-the-road values of �0 the b0 ! bh0 decay can be kinematically allowed.
When the b0 ! bh0 decay channel is present, thereby suppressing the b0 ! bZ
channel branching ratio, a b0 with pole mass somewhat above 105GeV could have
escaped observation.

t0�t0 Production at the Tevatron

Let us now turn to a more thorough examination of t0�t0 events. For the mt0 >

100GeV mass region, there are two competing decay modes for the t0: t0 ! b0W (�)

and t0 ! bW . The b0W decay will certainly dominate over the bW mode when
the former W is real, since the bW channel is suppressed by the intra-generational
mixing factor Vt0b. However, when mt0�mb0 < mW , the two-body bW mode could
be competitive with the three-body b0W � decay. In Fig. 17 we plot the value
of Vt0b for which �(t0 ! b0W �) = �(t0 ! bW ) as a function of mt0 for several
mb0 values (we employ pole masses). For Vt0b larger than the values plotted, the
t0 ! bW mode is dominant. We see that for b0 (pole) masses larger than the rough
lower bound of 80GeV, discussed above, it is not at all impossible that Vt0b could
be large enough for t0 ! bW to be the dominant mode.

For mt0 <� 170GeV (as required by our Yukawa perturbativity bound), such
dominance would imply a large excess of events relative to those already present
by virtue of tt production and decay. As discussed in more detail below, the CDF
and D0 experimental results are now more or less consistent with the expected tt
rates for mt � 175 � 185GeV. Taken at face value, these results then imply that
t0 ! bW cannot be the dominant t0 decay mode.

In fact, we show below that it is only possible to obtain su�ciently few CDF
and D0 events if the t0 decay is to b0 plus a highly virtual W �. A typical case
that survives is mt0 � 115GeV and mb0 � 80GeV. From Fig. 17 we �nd that
Vt0b <� 0:02 (a value roughly the same as Vcb) is required for t0 ! bW to be
adequately suppressed for these mass choices. Such values for Vt0b are certainly
reasonable; in fact, one might expect considerably smaller values based on the fact
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that Vbc � Vus, but we must also consider implications for b0 decay. We noted
earlier that if b0 ! cW were the dominant b0 decay mode, then b0�b0 events would
have been detected. Consistency with experiment thus requires that the one-loop
b0 ! bX neutral current decays are dominant. This, in turn, requires (see Hou

and Stewart, Ref. [7]) that Vt0b=Vb0c; Vtb0=Vb0c >� 102 � 103. Combining with the

Vt0b restriction above, we �nd that Vb0c <� 10�4 is required. As seen from Fig. 17,
this limit would become stronger for larger values of mb0. Suppressions larger
than those suggested by measured Vcb and Vub values would be required for mb0

values much above 100GeV and thus become problematical. As discussed earlier,
mb0

>� 100GeV is also the range for which b0 ! h0b decay dominance is probably
required to avoid too many extra Z events from b0 ! Zb decays in b0�b0 events.

In our previous work,
[1]
we performed a rough Monte-Carlo study of the number

of t0�t0 production and decay events expected in the dilepton-plus-jets and lepton-

plus-jets channels, assuming that t0 ! b0W (�) is the primary t0 decay. At the time,
the number of additional events (beyond the predicted number from tt production)
in these two channels was not inconsistent with the then-available CDF data for any
of the larger mt0, mb0 choices within the perturbatively allowed region. However,

the luminosity accumulated by both CDF and D0 is now much larger (L � 67 pb�1

vs. 19 pb�1). Further, CDF now employs new b-tagging algorithms which roughly
double their b-tagging e�ciency. Consequently, the constraints on the model are
now much stronger. Exactly how severe the constraints are depends on the precise
predictions for event rates from normal tt production. The CDF collaboration
states that their results are in good agreement with a top-quark Monte Carlo. As
a cross check, we have also repeated the Monte Carlo study of our previous work,
Ref. [1], after adjusting for the new luminosity and new b-tagging procedures.
Despite the approximate nature of our implementation of the CDF cuts and b-
tagging procedures, agreement is good. For mt = 175GeV, the uncut tt cross
section is about 3:5 pb, and roughly 25 events pass the single-lepton plus b-tag
plus � 3-jets criteria, while � 3 events pass the dilepton cuts. CDF observes 37
events in in the W+ � 3 jet channel in which at least one b is tagged, with an
estimated background of 16, and 6 events in the di-lepton channel, with estimated

background of 1.3.
?
Thus, their number of signal events is 21 and 4:7 in these two

respective channels, to be compared to 25 and 3. Clearly, there is little room for
additional events passing their cuts from t0�t0 production.

The rates (after implementing the same cuts, etc.) in these two channels
deriving from t0�t0 production, followed by FCNC decays of the type b0 ! b+ jet(s)
(in particular, no extra photons or leptons from b0 decay are allowed) appear in
Table 3. (In Table 3 we have included several (mt0;mb0) pairs that are excluded
by the boundaries of Fig. 2 just to indicate the e�ects of di�erent mass choices
on the rates.) Restrictions on the perturbatively allowed regions of Fig. 2 are
now signi�cant. For tan � = 2:2, for which only values of mb0 < 85GeV (i.e.

? The number of background events, 16, in the W+ � 3-jets channel is estimated by scaling
the tag background estimate of 22 events by the ratio 37/50 of events/tags.
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Table 3: For L = 67 pb�1, we tabulate the number of t0�t0 events passing our approximations to
the CDF top-quark discovery cuts in the single lepton+b-tag and dilepton modes.

Lepton + b-tag Mode Dilepton Mode

mb0 (GeV) mb0 (GeV)

mt0 (GeV) 50 80 110 130 50 80 110 130

160 20 16 3.6 1.5 2.4 1.8 0.2 0.01

130 53 20 0.5 � 4.2 1.1 0.002 �
100 58 3.6 � � 2.8 0.01 � �

mb0(mb0) <� 80GeV are perturbatively allowed, Table 3 shows t0�t0 production will
yield su�ciently few CDF single-lepton + b-tag events only if mt0 <� 105�115GeV,
e�ectively eliminating the upper 50% of the allowed mt0(mt0) region. For mt0 <�
105�115GeV, Table 3 also shows thatmb0 can't be too light; roughlymb0

>� 70GeV

is required.
y
The underlying reason for these restrictions is easily summarized. For

mt0 <� mt, the only way the t0�t0 events can evade being included in the CDF event
sample is if mt0 �mb0 is su�ciently small that the W in t0 ! Wb0 is virtual and
the jets and leptons from the two W �'s are quite soft. For such cases, additional
t0�t0 events could be included in the event sample if CDF and D0 could soften their
cuts. However, backgrounds probably increase dramatically. If this is the case,
then additional luminosity is the only way to improve sensitivity; for example,

L = 150 pb�1 would yield about 8 CDF events (for current cuts and b-tagging
e�ciency) if mt0 = 100 and mb0 = 80. This would probably constitute a detectable
signal.

Combined Restrictions

Combining the t0 restrictions with the existing and probable b0 CDF data con-
straints, and accounting for the limited range allowed for mb0 by perturbativity (es-
pecially for tan � = 2:2) and the mt0 > mb0 requirement, we are clearly forced into
the running mass domain 110GeV >� mt0(mt0) >� mb0(mb0), 95GeV >� mb0(mb0) >�
75GeV. For tan � = 1:5 this is the region that is as close to a �xed-point limit as
the perturbativity constraints allow and is also the region for which the uni�cation
prediction for �s(mZ) is smallest and, thus, in best agreement with data. We have
also seen that it is a region for which Vt0b and Vb0c can both take on values that
are reasonable extraplolations from those already measured in the lighter quark
sectors, while at the same time being consistent with dominance of t0 ! b0W � over
(probably excluded) t0 ! bW decays in t0�t0 events and of b0 ! Xb neutral current

decays over (probably excluded) b0 ! cW decays in b0�b0 events, provided mt0 (mb0)
lies in the upper (lower) portion of its allowed region. A tripling of the Tevatron's

y Note that the t0 ! eb01e�
+

1 decay, that could provide an escape from these restrictions, is not
kinematically allowed for any of the mass spectra scenarios of Figs. 13-15.
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integrated luminosity to L � 150 pb�1 would almost certainly either close the mb0

window above, or lead to b0 discovery.

The Hidden-Top Scenario

To escape from the experimental constraints on t0�t0 production and decay
discussed above would require that the `top-quark' events not come from third-
generation tt production. As described earlier, in one such scenario mt � mW

and t ! et1e�01 decays are dominant. Typical (pole) masses required for this sce-
nario to be viable are those discussed in Ref. [14]: mt � mW , mt0 � 170GeV,
mb0 � 110GeV, m

e�0
1

<� 25GeV, and m
et
<� 60GeV. We have explicitly analyzed

this scenario using our full SUSY GUT framework. We �nd that for m� 0 = 50GeV
(the choice of Ref. [14]) and m�0 <� 78GeV, the above mt, mt0 and mb0 masses are
consistent with gauge coupling uni�cation and with perturbative evolution for the
Yukawas up to the scale MU . (Our criteria do not quite allow consistency with
Yukawa perturbativity for the m�0 = 80GeV choice of Ref. [14].)

However, we �nd that it is not possible to obtain m
e�0
1
+m

et1
< mt (where et1

is the lighter stop mass eigenstate) in the context of SUSY GUT scenarios with
universal m0 and A parameters at MU . Since both m

e�0
1
and m

et1
scale with m

eg, the

minimum value for the mass sum will occur at the smallest possible value of m
eg.

As described earlier, the minimum m
eg (or equivalently m1=2) value is set by thee� 01 constraint. We �nd that the e� 01 constraint (for the mass scenario just outlined)

implies an absolute lower bound on the MU -scale parameter m1=2 that is similar

in nature to that illustrated in Fig. 10, except that lower values of m1=2 (close to

100GeV) are allowed at high �0. This translates into m
eg
>� 150GeV. Analogously

to Fig. 11, much higher values are required when �0 � m0=m1=2
<� 1. Also as in

Fig. 11, the minimum value of m1=2 is achieved for a range of �A � A=m1=2 values

centered about 0 which is broad for large �0, but increasingly narrow for �0 <� 1.
However, even at large �0, arbitrariy large values of j�Aj do not yield consistent
solutions for any m1=2, as illustrated by the termination of the low-�0 curves in

Fig. 11. Too large a value for j�Aj (typically j�Aj=�0 >� 4 � 5 at large �0) results

in either m2
A0 < 0 at the EWSB minimum, and/or m2 < 0 for one of the colored

and/or charged 4th-family sparticles.

We describe two typical cases: �0 � 1 and �0 � 5. For �0 � 1, m
eg
>� 400GeV

is required, with m
e�0
1
� 0:125 � 0:13m

eg implying m
e�0
1

>� 50GeV. For �0 >� 5, we

�nd m
eg
>� 150GeV and m

e�0
1
� 0:14m

eg, implying m
e�0
1
>� 21GeV. ( Both of these

minimum values only apply for small �A=�0. As �A=�0 increases, the minimum
allowed value of m

eg increases, but very slowly in the case of �0 = 5.) Although

the latter m
e�0
1
value is in an acceptable range for the scenario, m

et1
is always quite

large for �A values that do not imply m2
A0 < 0 and/or color/U(1) breaking. This

is because m
et1
is always well above mt = 80GeV at small �A (typically by three
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hundred GeV or more for �0 = 5). Thus, even though etL � etR mixing increases
so that m

et1
decreases as one moves to higher j�Aj in the �A < 0 direction, m

et1

only declines by some 50 GeV before j�Aj is large enough that m2
A0 < 0 and/or

color/U(1) breaking arises.

For allowed �A values, what prevents a su�ciently small mass for the et1 is
the fact that the e� 01 cannot be too light. The simplest way to avoid this lock-step
arrangement is to break the universality assumption for the m0 parameters at MU ,

allowing much smaller m0 in the et sector than in the e� 0 sector of the theory. We
have not explored this option.

7b. Four-Family Precision EW tests
?

In addition to direct collider searches for the presence of a possible fourth
family, indirect e�ects arising from virtual quantum e�ects can be probed through
precision measurements of many observables and can lead to indirect limits or
bounds on the parameters of the theory. For example, the well-known �-parameter
limits the magnitude of iso-spin breaking, and thus bounds the m2

t0 � m2
b0 and

m2
� 0 � m2

�0 splittings of a possible fourth family. On the other hand, although

the LEP measurement of Z ! b�b is a particularly sensitive probe to any new
physics involving possible coupling to the top quark, the vertex contribution to
Z ! b�b arising from a fourth family is expected to be small due to CKM mixing
suppression. We therefore neglect all vertex contributions in our analysis, focusing
instead on vacuum polarization e�ects.

Overall, it desirable to perform a global �t to the present experimental data
using several di�erent observables. The most comprehensive approach would be
to perform the complete, one-loop calculation for each observable in question, and
do a best �t of the new physical parameters of the model, (i.e. mt0, mb0 , m� 0,
m�0, tan �, �, : : :). This rather ambitious approach has only recently been at-
tempted for the MSSM, and will not be attempted here. A more modest approach
inevitably involves making certain assumptions and approximations. i) As previ-
ously explained, a fourth-family added to the MSSM contributes dominantly via
'oblique', or vacuum polarization e�ects. ii) We assume that the contributions
from the sparticles are small enough to be neglected. This is likely to be a good
approximation for Ng = 4 models. Indeed, we have seen that for Ng = 4 the su-
pergravity boundary conditions and evolution equations imply a fairly large lower
bound on m

eg (especially for the dilaton and no-scale boundary condition choices)

which, in turn, implies that most of the sparticle masses are large. According to
the decoupling theorem, loops involving massive SUSY particles contribute negli-
gibly to vacuum polarization amplitudes. The particles most likely to violate this
approximation are the sometimes-light e� 01 and e�01, and even these are heavy for

? In this sub-section we will exclusively employ running masses.
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larger m
eg values, independent of model. Finally, iii) we assume that the h

0 of the

Higgs sector is SM-like, implying that the SUSY Higgs sector is equivalent to a SM
Higgs sector with a light Higgs boson. Given the four-family constraint tan � <� 3,
this is true for mA0 >� 200GeV, as is essentially always the case for the models
considered.

In the following analysis, we perform a global �t to the latest LEP+SLD data
[35]

and we employ an extension of the Peskin/Takeuchi S,T,U formalism
[36]

in order

to �nd the 90%; 95% allowed regions of parameter space. In this approach, for
a given `reference' SM (i.e. with chosen mt;mH values), S; T; U � 0, and the
(non-zero) best-�t values to experimental data are a measure of the oblique, or
vacuum polarization, contributions that should be explained by `new physics'. For
our reference SM we adopt Ng = 3 with mt(mt) = 165GeV and Higgs mass
mH = 100GeV (typical of the mh0 values found in our computations). We then
treat the contributions from t0; b0; �0; � 0 as new physics.

At this point, there are several parameter choices and assumptions that a�ect
our results. i) What values of �em(mZ); �s(mZ) are chosen for the reference SM?
As was recently shown, new estimates of �em(mZ) can shift the best-�t for the
experimental value of the S-parameter relative to S = 0 for the reference SM
by +10%. Similarly, the choice of �s(mZ) is quite important. Secondly, ii) one
should be careful when using the S; T; U formalism in the presence of new light
physics, since in this case it has recently been shown that the standard S; T; U

formalism is simply not an adequate parameterization.
[37;38]

In the original work
of Peskin and Takeuchi, the S; T; U parameters were explicitly de�ned using the

linear approximation in an expansion in q2=M2
Z .

[36]
Although perfectly valid when

considering new physics with scales much higher than mZ , such as technicolor,
this expansion is not accurate for new physics near or below mZ . It is possible to
de�ne a set of parameters which do not rely on a q2=M2

Z expansion. In a complete
comparison to all available experimental observables, this results in a proliferation

of new parameters that must be simultaneously �t.
y
However, if one restricts the

`global' �t to Z-pole plus m2
W =m2

Z measurements, then one can show that a re-

de�nition of S ! S0; T ! T 0; U ! U 0 is possible, where the primed variables can
be computed in the presence of additional light physics without approximation.
Further all the observables in question are linear functions of S 0; T 0; U 0. Thus, the
procedure is to restrict the �t to measurables which are de�ned at the Z-peak (along
with the mW=mZ measurement), employ the standard three-parameter S; T; U
global �t to the experimental data (relative to a reference SM with S = T = U = 0
by de�nition), and �nally re-interpret the best �t S; T; U values as S 0; T 0; U 0.

In order to compare to predictions of a four-generation model, we calculate the
exact (no expansion is performed) contributions to S 0; T 0; U 0 from loops involving

y In a quadratic expansion, in general seven independent parameters arise
[37;38]

, and in a fully

exact treatment, eleven parameters must be speci�ed
[39]
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fourth-generation particles for a given set of mt;mt0;mb0;m�0;m� 0 values; denote
these contributions as S04; T

0
4; U

0
4. Since the observables O are linear functions of

S0; T 0; U 0, we can then compute Oi(Ng = 4) � Oi(S
0
4; T

0
4; U

0
4). The predicted

values of Oi(Ng = 4) are then compared to the best �t experimental values as
obtained using ZFITTER (relative to the reference SM assumed) and an overall

��2 computed. This computation is performed for each point of interest in the
fourth-generation parameter space. As noted earlier, we use a reference SM with

mt(mt) = 165GeV andmH = 100GeV and take ��1em(mZ) = 129:08
[17]
. We employ

the latest values for the following measurements: mW=mZ ;�Z ; �
0
h, Rl; Rb; Rc; A

0;l
FB,

A
0;b
FB; A

0;c
FB; A� ; Ae from LEP and A0

LR from SLD.
[35]

Finally, because of sensitivity
of the reference SM prediction from ZFITTER for these observables to �s, we give
results for the two values, �3(mZ) = (0:12; 0:13).

The solid and dashed lines in Fig. 18 summarize the �nal results of this global
�t. There, we have adopted m� 0 = m�0 = 50GeV, tan � = 1:5 and have allowed
mt0(mt0) and mb0(mb0) to vary. The region in the mt0;mb0 parameter space above
the lower (upper) solid line is excluded at 90%(95%) C.L. if the reference SM has
�3(mZ) = 0:13. The two dashed lines give the same C.L. boundaries in the case
�3(mZ) = 0:12; in this latter case, Fig. 18 shows that there is a region at small mt0

that is also excluded. As one might have naively anticipated, the region of large
mt0 compared to mb0 has a poor C.L.; however, we also see that if both mb0 and
mt0 are small, then predictions of the fourth-generation model for S 0; T 0; U 0 can
again deviate signi�cantly from the experimentally preferred values, depending
upon �s(mZ). The region of modest mt0(mt0) � mb0(mb0) � 100GeV, preferred on
the basis of current and anticipated Tevatron results, lies well within even the 90%
C.L. limits.

7c. In
uence on jet and di-jet spectra of a slowly running four-family �s

One other indirect e�ect of the presence of a fourth family, along with its
full complement of supersymmetric partners, all at relatively low energy scales,
has recurred throughout our discussion: �s(Q) decreases much more slowly with
increasing Q than in a standard three-family model, especially if the comparison
is with the case where the masses of the superpartners of the three-family model
are taken to be large. Thus, it is important to not forget that �s(Q) is, in fact,
directly measurable through the single-jet and di-jet spectra of light quark jets. Of
course, the exact scale Q at which �s is evaluated will be an important issue. In

the MS scheme, higher order calculations suggest that an appropriate Q value for
single-jet inclusive spectra and di-jet mass spectra is the subprocess center-of-mass
energy, roughly given by 2ET and m2j, respectively. How large can the deviations
be? To illustrate, we consider as a function of Q the fractional enhancement ratio

R�s �
[�s(Ng = 4)]2 � [�SMs (Ng = 3)]2

[�SMs (Ng = 3)]2
; (20)

where �SMs is the �s predicted in the three-family case with no superpartner e�ects,
(i.e. with all superparticle masses taken to be large); results for �s(Ng = 4) will
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be illustrated for mb0(pole) = mt0(pole) = 105GeV (our preferred mass range) and

M
QCD
SUSY values of 200GeV and 400GeV. Such values are quite typical of the overall

mass scales for the strongly-interacting sparticles (that contribute to �s evolution)

in the model scenarios we have studied.
z
We employ �2s in Eq. (20) because this is

what appears in the QCD subprocess cross sections.

The results appear in Fig. 19. We see that for M
QCD
SUSY = 200GeV, percentage

deviations are, for example, about 25% at Q = 1TeV. This would correspond to
subprocess energies of 1TeV for the standard MS scale choice mentioned above.

The corresponding value for the (probably more reasonable) choice of M
QCD
SUSY =

400GeV is 12%. If there are only three families with superpartners at a light mass
scale, the values of R�s, Eq. (20)( with �s(Ng = 3) in place of �s(Ng = 4)) are
very much smaller in all cases. Thus, it is not entirely impossible that preliminary

observations of this type of deviation by CDF and D0
[40]

could be a hint that four
generations with relatively light superpartners are present.

8. Conclusions

We have shown that a four-generation MSSM model is an attractive exten-
sion of the usual three-generation MSSM in that gauge uni�cation and automatic
electroweak symmetry breaking via RGE renormalization both occur naturally for
typical soft-SUSY-parameter boundary conditions at MU . A signi�cant, but re-
stricted range of t0 and b0 masses is allowed (see below) even after requiring that all
Yukawa couplings remain in the perturbative domain throughout mZ to MU evolu-
tion; however, Yukawa uni�cation is generally not possible. The domain of allowed
t0 and b0 masses is impacted by constraints coming from the SUSY sparticle sec-
tor, the most important of which is the requirement that the lighter e� 0 eigenstate
(e� 01) be more massive than the LEP-I limit of 45GeV and also heavier than thee�01 LSP. This constraint can rule out a range of lighter b0 masses; the smaller the
soft-SUSY-breaking m0 and m1=2 parameters, the larger the range. For given t0

and b0 masses the e� 01 constraint places signi�cant restrictions on m0 and m1=2, and
thence on other sparticle masses. Generally, small m0 values are disfavored unless
m
eg is large, and there is a signi�cant lower bound on meg such that no m0; A choices

yield a satisfactory e� 01 mass. There is no analogous bound in the three-generation
case. Thus, the sparticle mass scale must be larger in four- vs. three-generation
MSSM models.

z Note thatMQCD
SUSY is not generally the same as the e�ective MSUSY appropriate in discussing

gauge coupling uni�cation, which is sensitive to the entire particle content of the theory
and not just the strongly interacting particles.
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Signi�cant di�erences are also found for the relations between di�erent sparticle
masses in comparing Ng = 4 results to those for Ng = 3. The most dramatic
di�erence arises directly from the roughly factor of two larger value of the uni�ed
gauge coupling �(MU ) in the Ng = 4 case. This leads to ratios such as m

e`R
=m

e�0
1

and m
e`L
=m

e�0
1
being approximately a factor of two larger for Ng = 4 compared to

Ng = 3 for a given choice of m0=m1=2. Indirect tests/veri�cations of the presence

of a fourth generation by observing only a light gaugino and sparticles belonging
to the �rst two families are thus possible.

Direct experimental constraints on the perturbative four-generation MSSM
model are becoming very strong, and near-term experiments could easily eliminate
the model altogether. The �0 and � 0 have masses that are strongly bounded from
above for all mt0;mb0 > 45GeV (the current LEP-I bound) and will be readily seen
at LEP-176. For �0 and � 0 masses just above the current LEP lower bounds (we
take 50GeV for these masses) perturbativity constraints forcemt0(pole) <� 160GeV
and mb0(pole) <� 120GeV. We also can be quite certain that the t0 is heavier
than the b0 since otherwise the t0 decays to bW (or bW �), and t0�t0 �nal states
would have led to top-quark-like events at a rate inconsistent with CDF and D0
results. For mt0(pole) > mb0(pole), the b

0 can (and must, if it is to have evaded
detection to date) decay via 
avor changing neutral current processes to b + X

(X = 
; g; qq; Z(�); h0; : : :). For expected branching ratios, non-observation of b0�b0

production events at the Tevatron in which both b0's decay to b + 
 probably
excludesmb0(pole) <� 80�85GeV. The rangemb0(pole) > mZ+mb(pole)+ � 5GeV
(for which b0 ! bZ decays have signi�cant branching ratio) is probably excluded by
the non-observation of the extra Z's expected from b0�b0 production events, except
for soft-SUSY-breaking parameter scenarios such that mh0 is small enough for
b0 ! bh0 decays to dominate over b0 ! bZ | the scenarios for which the h0

channel can be open have a large soft-SUSY-breaking scalar mass, m0. The top
quark searches of CDF and D0 would have detected production of t0�t0 with t0 ! b0W
(or W �) and b0 decaying hadronically, unless mt0(pole) is quite close to mb0(pole)
(implying softW � decay products that evade their hard cuts). We roughly estimate
that mt0(pole) must be <� 115� 120GeV on this basis. All of this leads to a highly
preferred mass range for the b0 and t0:

120GeV >� mt0(pole) >� mb0(pole) with 100GeV >� mb0(pole) >� 80GeV : (21)

We estimate that, for an integrated luminosity of L = 150 pb�1, it is well within
the capability of the Tevatron to either exclude all reasonable allowed models or
detect a signal.

Of course, some of the above restrictions follow from the assumption that the
`top-quark' events at CDF and D0 arise from the third-generation top. We have
noted that the alternative case (emphasized in Ref. [14]) where these are t0�t0 events
in which t0 ! bW , while the normal t has mt � mW and decays via the di�cult-

to-detect t ! et1e�01 channel is not possible in the SUSY GUT context assuming

43



universal m0 and A parameters. As one adjusts parameters so as to minimize
m
et1
+ m

e�0
1
, the e� 01 always becomes too light, its mass falling below the LEP-I

bound or below the LSP mass, or the theory becomes inconsistent by virtue of the
CP-odd Higgs or some colored and/or charged 4th-family sparticle being required

to have m2 < 0, long before the lighter et1 reaches masses below mW .

Certainly, if there is a fourth generation with Yukawa couplings that remain
perturbative up to MU , experimentalists will discover a plethora of new signals at
LEP-II and with increased luminosity at the Tevatron. If in the end no signal is
found, requiring (roughly) m� 0;m�0 >� 95GeV and mt0;mb0

>� 200GeV, determined
four-generation model builders must become resigned to having one or more of
the Yukawa coupling constants becoming non-perturbative before evolution up to
MU is complete. While there is no known fundamental reason to disallow this,
such a scenario is distinctly less predictive, and therefore less attractive, than full
perturbative evolution up to the uni�cation scale for all parameters.
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APPENDIX

In this Appendix we collect all of the renormalization group equations for
the four-generation extension of the MSSM that are used in our calculations.
Among the many references available, we primarily employed Bjorkman and Jones,

Ref. [15], Martin and Vaughn,
[41]

and Cvetic and Preitschopf
[6]
for the various beta-

functions required.

Assuming no KM mixing and universal scalar masses at MU , and de�ning t =
( 1
2� )log[Q(GeV)], yi = �2i =(4�), and �i = g2i =(4�), we summarize the RGE's

below. We denote the anomalous{dimension contributions to dyi
dt by 4�


(1)
i at one

loop and (4�)2

(2)
i at two loops for the ith (unmixed) fermion.

For the Yukawa couplings we write

dyi

dt
= yi(4�


(1)
i + (4�)2


(2)
i ) ; (A:1)

where i = t; b; � , t0; b0; �0; � 0. The expressions for 4�

(1)
i and (4�)2


(2)
i are as follows:
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4�

(1)
t = �13

15
�1 � 3�2 � 16

3
�3 + 6yt + 3yt0 + yb + y�0

(4�)2

(2)
t =

3523

450
�21 +

27

2
�22 +

80

9
�23 + �1�2 +

136

45
�1�3

+ 8�2�3 + 16yt�3 + 16yt0�3 +
6

5
yt�1 +

4

5
yt0�1

+
2

5
yb�1 + 6yt�2 � 22y2t � 9y2t0 � 3y2�0 � 5ybyt

� 3yb0yt0 � y� 0y�0 � 5y2b � 9ytyt0 � 3ybyb0 � yby�

� yby� 0 � 3yty�0 ;

(A:2)

4�

(1)
b = � 7

15
�1 � 3�2 � 16

3
�3 + 6yb + 3yb0 + yt + y� + y� 0

(4�)2

(2)
b =

371

90
�21 +

27

2
�22 +

80

9
�23 + �1�2 +

8

9
�1�3

+ 8�2�3 + 16yb�3 + 16yb0�3 +
2

5
yb�1 +

4

5
yt�1

� 2

5
yb0�1 +

6

5
y��1 +

6

5
y� 0�1 + 6yb�2

� 22y2b � 9y2b0 � 3y2� � 3y2� 0 � 5ybyt � 3yb0yt0 � y� 0y�0

� 5y2t � 9ybyb0 � 3ytyt0 � 3yby� � 3yby� 0 � yty�0 ;

(A:3)

4�

(1)
� = �9

5
�1 � 3�2 + 3yb + 3yb0 + 4y� + y� 0

(4�)2

(2)
� =

171

10
�21 +

27

2
�22 +

9

5
�1�2 + 16yb�3 + 16yb0�3

� 2

5
yb�1 �

2

5
yb0�1 +

6

5
y��1 +

6

5
y� 0�1 + 6y��2

� 9y2b � 9y2b0 � 10y2� � 3y2� 0 � 3ybyt � 3yb0yt0 � y� 0y�0

� 3y�y� 0 � 9y�yb � 9y�yb0 ;

(A:4)
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4�

(1)
t0 = �13

15
�1 � 3�2 � 16

3
�3 + 6yt0 + 3yt + yb0 + y�0

(4�)2

(2)
t0 =

3523

450
�21 +

27

2
�22 +

80

9
�23 + �1�2 +

136

45
�1�3

+ 8�2�3 + 16yt0�3 + 16yt�3 +
6

5
yt0�1 +

4

5
yt�1

+
2

5
yb0�1 + 6yt0�2 � 22y2t0 � 9y2t � 3y2�0 � 5yb0yt0

� 3ybyt � y� 0y�0 � 5y2b0 � 9yt0yt � 3yb0yb � yb0y� 0 � yb0y� � 3yt0y�0 ;

(A:5)

4�

(1)
b0 = � 7

15
�1 � 3�2 � 16

3
�3 + 6yb0 + 3yb + yt0 + y� + y� 0

(4�)2

(2)
b0 =

371

90
�21 +

27

2
�22 +

80

9
�23 + �1�2 +

8

9
�1�3

+ 8�2�3 + 16yb0�3 + 16yb�3 +
2

5
yb0�1 +

4

5
yt0�1

� 2

5
yb�1 +

6

5
y� 0�1 +

6

5
y��1 + 6yb0�2

� 22y2b0 � 9y2b � 3y2� 0 � 3y2� � 5yb0yt0 � 3ybyt

� y� 0y�0 � 5y2t0 � 9yb0yb � 3ytyt0 � 3yb0y� � 3yb0y� 0 � yt0y�0 ;

(A:6)

4�

(1)
� 0 = �9

5
�1 � 3�2 + 3yb0 + 3yb + y� + 4y� 0 + y�0

(4�)2

(2)
� 0 =

171

10
�21 +

27

2
�22 +

9

5
�1�2 + 16yb0�3 + 16yb�3

� 2

5
yb0�1 �

2

5
yb�1 +

6

5
y� 0�1 +

6

5
y��1 + 6y� 0�2

� 9y2b0 � 9y2b � 10y2� 0 � 3y2� � 3yb0yt0 � 3ybyt

� y� 0y�0 � 3y�y� 0 � 9y� 0yb0 � 9y� 0yb � 3y�0

� 3y�0yt � 3�0yt0 � 2y� 0y�0 ;

(A:7)
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4�

(1)
�0 = �3

5
�1 � 3�2 + 3yt0 + 3yt + 4y�0 + y� 0

(4�)2

(2)
�0 =

267

50
�21 +

27

2
�22 +

9

5
�1�2 + 16yt�3 + 16yt0�3 +

6

5
y� 0�1 + 6y�0�2

+
6

5
y�0�1 +

4

5
yt�1 +

4

5
yt0�1 � 9y2t � 9y2t0 � 10y2�0 � 3ybyt � 3yb0yt0

� 3y� 0y�0 � 3y2� 0 � y�y� 0 � 3y� 0yb � 3y� 0yb0 � 9y�0yt

� 9y�0yt0 :

(A:8)
For the Higgs mass terms, we have:

dm2
H2

dt
= 3

X
q=t;t0

yqUq + y�0U�0 � 3

5
�1M

2
1 � 3�2M

2
2 ; (A:9)

dm2
H1

dt
= 3

X
q=b;b0

yqDq +
X
l=�;� 0

ylDl �
3

5
�1M

2
1 � 3�2M

2
2 : (A:10)

The third and fourth generation scalar quark and lepton soft mass terms evolve
according to:

dm2
Q;Q0

dt
= yt;t0Ut;t0 + yb;b0Db;b0 �

1

15
�1M

2
1 � 3�2M

2
2 �

16

3
�3M

2
3 ; (A:11)

dm2
U;U 0

dt
= 2yt;t0Ut;t0 � 16

15
�1M

2
1 �

16

3
�3M

2
3 ; (A:12)

dm2
D;D0

dt
= 2yb;b0Db;b0 �

4

15
�1M

2
1 �

16

3
�3M

2
3 ; (A:13)

dm2
L;L0

dt
= y�;� 0D�;� 0 + �iL0y�0U�0 �

3

5
�1M

2
1 � 3�2M

2
2 ; (A:14)

dm2
E;E0

dt
= 2y�;� 0D�;� 0 � 12

5
�1M

2
1 ;

dm2
N

dt
= 2y�0U�0 : (A:15)
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In the above,

Ut;t0 = m2
H2

+m2
Q;Q0 +m2

U;U 0 +A2
t;t0; (A:16)

U�0 = m2
H2

+m2
L0 +m2

N +A2
�0; (A:17)

Db;b0 = m2
H1

+m2
Q;Q0 +m2

D;D0 +A2
b;b0 ; (A:18)

D�;� 0 = m2
H1

+m2
L;L0 +m2

E;E0 +A2
�;� 0: (A:19)

The running of the �rst and second generation scalar quark and lepton soft-SUSY-
breaking masses is obtained by neglecting all Yukawa couplings in the expressions
above. The parameters �, specifying mixing of the Higgs super�elds in the super-
potential, and B, such that B� is the coe�cient of the H1H2 scalar �eld mixing
term in the soft-SUSY-breaking potential, evolve according to:

dlog(�)

dt
=

3

2

X
q=t;t0;b;b0

yq +
1

2

X
l=�;� 0;�0

yl �
3

10
�1 � 3

2
�2 ; (A:20)

dB

dt
= 3

X
q=t;t0;b;b0

yqAq +
X

l=�;� 0;�0

ylAl +
3

5
�1M1 + 3�2M2 : (A:21)

The running of the third and fourth family soft-SUSY-breaking potential tri-linear
term A coe�cients is given by:

dAt;t0

dt
=6At;t0yt;t0 +Ab;b0yb;b0 + 3At0;tyt0;t +A�0y�0

+
13

15
�1M1 + 3�2M2 +

16

3
�3M3 ;

(A:22)

dAb;b0

dt
=6Ab;b0yb;b0 +At;t0yt;t0 + 3Ab0;byb0;b +

X
l=�;� 0

Alyl

+
7

15
�1M1 + 3�2M2 +

16

3
�3M3 ;

(A:23)

dA�;� 0

dt
=4A�;� 0y�;� 0 +A� 0;�y� 0;� + 3

X
q=b;b0

Aqyq + �i;� 0A�0y�0

+
9

5
�1M1 + 3�2M2 ;

(A:24)
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dA�0

dt
= 4A�0y�0 +A� 0y� 0 + 3

X
q=t;t0

Aqyq + 3�2M2 +
3

5
�1M1 : (A:25)

The Higgs boson, scalar quark and scalar lepton mass{squared RGE's generally
include a term in each equation that is a numerical factor times �1S 0; where

S 0 � m2
H2
�m2

H1
+m2

Q +m2
Q0 � 2m2

U +m2
D

� 2m2
U 0 +m2

D0 �m2
L �m2

L0 +m2
E +m2

E0 :
(A:26)

Substituting from the RGE's with S 0 terms included, one �nds

dS 0
dt

=
46

5
�1S 0 : (A:27)

Because of the universal scalar mass boundary condition at MU that we assume,
S 0(MU ) = 0. Therefore S 0(t) = 0 for all t and we do not include this term in the
mass{squared RGE's presented above.

The �nal soft-SUSY-breaking parameters are the gaugino masses. Using the
notation Ng for the number of generations, these evolve according to:

dM1

dt
=
�
2Ng +

3

5

�
�1M1 ;

dM2

dt
=
�
2Ng � 5

�
�2M2 ;

dM3

dt
=
�
2Ng � 9

�
�3M3 :

(A:28)

Finally, we present the gauge coupling RGE's for completeness. These are the
same as the massless fourth generation neutrino case, since the extra right handed
neutrino that provides a mass term in our case is decoupled from the gauge sector.
Keeping the number of generations, Ng, explicit, including the third and fourth
(unmixed) generation Yukawa couplings, and including exactly two Higgs doublets
(as appropriate for the MSSM), one has the gauge RGE's:

d�1

dt
=

�
2Ng +

3

5

�
�21 +

�21
4�

��
38

15
Ng +

9

25

�
�1 +

�
6

5
Ng +

9

5

�
�2 +

88

15
Ng�3

� 18

5
(y� + y� 0)� 14

5
(yb + yb0)�

26

5
(yt + yt0)

�
;

(A:29)
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d�2

dt
= (2Ng � 5)�22 +

�22
4�

��
2

5
Ng +

3

5

�
�1 + (14Ng � 17)�2 + 8Ng�3

� 2(y� + y� 0)� 6(yb + yb0 + yt + yt0)

�
;

(A:30)

d�3

dt
= (2Ng � 9)�23 +

�23
4�

�
11

15
Ng�1 + 3Ng�2 +

�
68

3
Ng � 54

�
�3

� 4(yb + yb0 + yt + yt0)

�
:

(A:31)

The renormalization group equations were implemented numerically, and iter-
ation was employed to �nd a fully consistent solution for the complete evolution
between MU and mZ.

APPENDIX

In this appendix we discuss the question of the accuracy with which cos 2�

and, thence, tan �, can be determined using the mass di�erences of Eq. (10).
[42]

To usem2
e`L
�m2

e�
requires accurate determinations ofm

e� andme`L
. The required

measurements are best performed at an e+e� collider where the center-of-mass
energy is precisely known and the energy spectra of �nal leptons can then be
directly related to the masses of the produced particles and their decay products.

Determination of m
e`L
is relatively straightforward since èL ! le�01 is almost always

an important, if not dominant, mode | if m
e`L

> m
e�+
1
� m

e�0
2
, then èL ! e�+1 �

and èL ! e�02` can be competitive. A �t to the ` spectrum will yield the masses

of both the èL and the e�01. Should the e�+1 � and e�02` modes also be important,
the �t would presumably reveal the presence of several upper end points, and
allow determination of both m

e�0
1
and m

e�0
2
. A Monte Carlo study is desirable to

determine the exact accuracy with which all masses could be determined in the
multiple decay case. Perhaps accuracies of about �10GeV could be achieved. For
m
e`L
� 240GeV (near our lower limit in the Ng = 4 case scenarios, but already

rather marginal for a
p
s = 500GeV NLC) this would correspond to accuracies of

� 4%, i.e. on the edge of what would be useful.

Determination of m
e� follows a similar pattern. We give below discussions for

two scenarios: a) m
e� < m

e�+
1
and b) m

e� > m
e�+
1
. Scenario a) does not arise for the

speci�c Ng = 4 models illustrated in Figs. 13-15, but might be relevant if there
was signi�cant non-universality in the MU -scale soft-SUSY-breaking parameters.
For Ng = 4, universal m0 and Mi values always lead to m

e� > m
e�+
1
, as shown.
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If m
e� < m

e�+
1
then the e�+1 decays to a mixture of èL� and `e�; since m

e`L
> m

e�

the latter decay is usually the dominant one | indeed, in many cases m
e`L
�m

e�

is large enough that the e�+1 ! è
L� channel is forbidden even though the e�+1 ! `e�

channel is open. At an e+e� collider the end-points of the ` spectrum from e�+1 e��1
production followed by e��1 ! `e� decay provide a determination of both m

e�+
1
and

m
e�; direct observation of the e� is not required, a fortunate fact given that it decays

invisibly to �e�01.
If m

e� > m
e�+
1
, then e� ! e�+1 `, and the e�+1 decays via a virtual sneutrino or

slepton to the three-body mode `�e�01, via virtual squark to qqe�01, or via virtual or
real W to a mixture of these two �nal states. Analogous to the previous case, the
` spectrum end-points will allow determination of m

e� and m
e�+
1
, although one will

have to carefully account for the underlying smooth ` spectrum from the e�+1 decay
if events containing only 2`+4j+missing energy (which avoid contamination from

the soft `(s) from e��1 decay) do not occur at a su�cient rate. Ideally, it would be

good to learn �rst about the e�+1 e��1 channel by setting
p
s to a value above 2m

e��1

but below (or not far above) 2m
e� | due to the rapid turn-on of a two-fermion

channel, the rate for e�+1 e��1 production might be reasonable, while the e�e� rate could
be zero or quite small (due to a large m

e� �m
e�+
1
splitting and/or the slow turn-on

of the e�e� spin-0 pair channel). To study e�e�, one would then up the energy to a
level such that the e�e� rate was large.

A signi�cant complication is the fact that èLèL production would also be
present at a similar rate to e�e� (recall that m

e`L
>� m

e�). For the present case of

m
e� > m

e��1
, èL ! `e�01; �e�+1 ; `e�02 will all occur, most probably with similar branch-

ing ratios. Events in which both èL's decay to `e�01 can be eliminated by requiring

some jet activity (which is generally present for the e�e� �nal states). If both èL's
decay to e��1 �, then the only charged `'s would be from decays of the e��1 's, which
would yield a smooth (and relatively soft) ` spectrum; in addition, these èL èL
events would tend to have larger missing energy than the e�e� events. If one èL
decays to `e�01 and the other to �e�+1 , followed by e�+1 ! `�e�01, then we could end up
with a 2` + 2j+missing energy �nal state that might not be easily distinguished
from the 2` + 4j+missing energy state of interest for e�e� events (certainly not all
jets in the latter case would be detectable). But, the spectrum of the ` from thee�+1 decay would be soft and smooth, so that the `-spectrum thresholds present ine� ! `e��1 might still stand out.

Thus, it would seem that there are means for isolating the e�e� events of interest
and extracting the ` spectrum thresholds that would allow a reasonable deter-
mination of m

e� (especially if m
e��1

is known from a lower energy measurement).

Unfortunately, these complicated scenarios have not been explicitly studied for
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an e+e� collider. The results for simpler scenarios (see Ref. [30] and references
therein) suggest the crude estimate that mass determinations for m

e� might be
possible within �5%, at least for masses of order 200GeV and below (i.e. compa-
rable to the minimum possible m

e� values in the scenarios discussed in the previous
sub-section.) However, including the fact that the m

e`L
and m

e� errors must be

combined in quadrature, despite this fairly small uncertainty in the mass measure-
ments we would not have the accuracy required for a 3� sensitivity to cos 2�, even
for the smallest possible masses allowed in the Ng = 4 case.

Let us now turn to the m2
edL
� m2

euL
measurement. First, there is a very real

possibility (a near certainty for Ng = 4) that the squarks are simply so heavy,
m
eq
>� 300GeV, that impossible accuracy would be required for sensitivity to cos 2�.

Even for masses below this level, it is still far from clear that the required accuracy
can be achieved. Squarks will decay to a quark plus real or virtual gluino, the latter
then decaying to a variety of �nal states (with qqe�01 unlikely to be dominant for the
larger m

eg predicted for Ng = 4). Jet spectra end-points (which would appear on

top of a smooth jet-spectrum background from the real or virtual eg decays) could
provide a certain level of accuracy in the squark mass determination, but there
would be a lot of overlap of the spectra from di�erent eg decay channels, and of the

spectra from the ed and eu decays themselves, that might very well prevent a good
determination of m

ed
�m

eu. An extremely careful Monte Carlo study is required to

be able to determine with any certainty the level of accuracy that can be achieved.

Overall, we conclude that our ability to determine cos 2� and thence tan �
must remain a topic of further study. Fortunately, the uncertainty in cos 2� is not
the limiting factor determining the level of accuracy with which other mass sum
rules and relations can be tested. Other experimental and theoretical uncertainties
are almost certainly more important.
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FIGURE CAPTIONS

1) Gauge coupling uni�cation, including two-loop gauge contributions but not
two-loop Yukawa contributions; dashed (solid) curves correspond to Ng =

3 (4). The illustration is for sin2 �W = 0:2316 and ��1em(mZ) = 127:9.

2) We give the allowed mt0;mb0 parameter space regions for mt(mt) = 165GeV
in the cases tan � = 1:5 and 2.2. We have taken m�0 = m� 0 = 50GeV. Full
two-loop contributions to the gauge coupling beta functions are included.
Small dots indicate regions of mt0;mb0 disallowed by demanding perturbative
Yukawas (�i � 3:3) and gauge coupling uni�cation to within 2.5%. Small
squares indicate additional points excluded if gauge uni�cation is required to
better than 0.01%.

3) Contours in mb0 and mt0 (running mass) parameter space of constantMU and
�3(mZ) after the inclusion of Yukawa terms in the two-loop gauge coupling
beta functions, assuming mt(mt) = 165GeV and tan� = 1:5. We have taken
m�0 = m� 0 = 50GeV.

4) We display contours of constant �b0 , �t0 and �� 0 atMU in the region ofmt0;mb0

parameter choices allowed for 2.5% uni�cation accuracy with mt(mt) =
165GeV and tan � = 1:5 or 2.2. We have taken m�0 = m� 0 = 50GeV.
Two-loop contributions to the gauge coupling beta functions are included.

5) In a) we illustrate the evolution of the soft-SUSY-breaking scalar mass-

squared parameters m2
H1

and m2
H2

as well as the value of j�j. In b) we show
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the evolution of the coe�cients m2
1, m

2
2 and m2

3 of the H
2
1 , H

2
2 and 2H1H2

scalar �eld potential terms, as well as that of S � m2
1m

2
2 � m4

3. We have

taken �0 = 1=
p
3, �A = �1, m1=2 = 400GeV, tan � = 1:5, mt0 = 100GeV,

mb0 = 100GeV, and m� 0 = m�0 = 50GeV. All masses are given in units of
m1=2.

6) Contours of �, mA0 and mh0 in the mt0;mb0 parameter plane for tan � = 1:5,
mt(mt) = 165GeV and m1=2 = 600GeV. We give results for the MU -scale

dilaton boundary conditions: �0 = 1=
p
3, �A = �1. The diamonds indicate

regions of parameter space disallowed because m
e� 01
< max

n
45GeV;m

e�0
1

o
at

energy scale mZ .

7) We plot the ratio of Ng = 4 to Ng = 3 values for: �(h ! gg), �(h ! 

),
and �(h ! gg) � BR(h ! 

). We adopt the scenario of tan � = 1:5,
mt = 165GeV, mt0 = mb0 = 100GeV, m� 0 = m�0 = 50GeV, and assume
superpartners are su�ciently heavy that their contributions to these one-loop
quantities are small.

8) Evolution of m2
e� 0R
, m2

e�R
, and m2

e�0R
(in units of m2

1=2). We have chosen tan� =

1:5, �0 = 1=
p
3, �A = �1, and m1=2 = 600GeV. Results for mt0 = 100GeV

and mb0 = 90GeV are compared to those for mt0 = 100GeV and mb0 =
110GeV. The corresponding mZ -scale m

e� 01
values are 189 and 311GeV,

respectively.

9) We display the e� 01 constraint boundaries for a variety of MU -scale scenarios.
Regions to the left of the boundaries are disallowed. We have taken mt =
165GeV, m� 0 = m�0 = 50GeV, and tan� = 1:5.

10) We plot the minimum value of �0 that is allowed by the constraint m
e� 01
>

max
n
45GeV;m

e�0
1

o
for a given value of m1=2 after scanning over all possible

values of A, assuming running masses mt = 165GeV, m� 0 = m�0 = 50GeV,
mb0 = mt0 = 100GeV, and tan � = 1:5.

11) We plot the minimum possible value ofm
eg(meg), and the corresponding values

of mh0 and mb0(pole)�mh0�mb, as a function of �A for a series of �0 values:
�0 = 0 (solid); �0 = 0:5 (long dashes); �0 = 1 (dots); �0 = 2 (dot-dash);
�0 = 3 (short dashes); �0 = 5 (dash-dot-dot). We have taken mt(mt) =
165GeV, mb0(mb0) = mt0(mt0) = 100GeV (corresponding to pole masses of
approximately 175GeV and 105GeV). The minimum m

eg is that allowed by

the e� 01 constraint for a given �0; �A choice. The corresponding tan � value is
either 1.5 or 1.6 in all cases. At each �0 and �A value, all values of m1=2 �
10TeV were scanned. Curves terminate when no consistent solution is found.

12) Mass spectra for the e� 01 for the three standard (�0; �A) choices. At the lower
values of m

eg the spectrum terminates either because m
e� 01
falls below 45GeV

(high-m0 scenario), or because m
e� 01
< m

e�0
1
(dilaton and no-scale scenarios).
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We have scanned in tan �, �xing mt(mt) = 165GeV, m�0 = m� 0 = 50GeV
and mt0 = mb0 = 100GeV.

13) Mass spectra for dilaton boundary conditions. Masses are given in units of
m
eg. We have taken m� 0 = m�0 = 50GeV, mt0 = mb0 = 100GeV, � > 0, and

scanned in tan �.

14) Mass spectra for no-scale boundary conditions.

15) Mass spectra for the large m0 boundary condition case.

16) A plot of r
e`L

and r
e`R

(see text) as a function of �0 for the typical case of

m
e�0
1
= 117GeV. We have taken tan � = 1:5, mt = 165GeV, and, in the

Ng = 4 case, mt0 = mb0 = 100GeV, m� 0 = m�0 = 50GeV.

17) We plot the maximum value of Vt0b for which �(t0 ! b0W �) > �(t0 ! bW ) as
a function of mt0 for �xed values of mb0 = 80GeV and 100GeV. All masses
are pole masses.

18) We show the 95% C.L. and 90% C.L. constraints on the mb0(mb0);mt0(mt0)
parameter space (assuming m� 0 = m�0 = 50GeV and tan � = 1:5) from
Z-pole precision electroweak measurements (coupled with mW=mZ). We
consider two reference SM's speci�ed by mt(mt) = 165GeV, mH = 100GeV,
and the two values, �s(mZ) = 0:12 (dashed lines) and 0:13 (solid lines), see
text.

19) We plot the percentage enhancement R�s (see text) as a function of Q for

Ng = 4 choices of MQCD
SUSY = 200GeV and M

QCD
SUSY = 400GeV.
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