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(1) Introduction

In the following I discuss examples where basic structures from noncommutative geometry

(NCG) [1] naturally arise in quantum �eld theory. The discussion is based on work with the

ultimate aim to get better mathematical understanding of quantum gauge theory models

like QCD(3+1). (There is also a close connection with the representation theory of in�nite

dimensional Lie groups which I shall not discuss.) The examples are restricted to external

�eld problems, i.e. fermions coupled to non{dynamical Yang{Mills �elds. This simpli�cation

makes possible a complete mathematical analysis. Though rather drastic, it already allows

to study in detail several non{trivial aspects of QFT like the structure of UV divergences in

the fermion sector and how they lead to anomalies. Moreover, it motivates the development

of new e�cient calculation tools which, as I believe, should also be useful for analyzing the

fully quantized theories.

The philosophy of NCG | to generalize the di�erential geometric machinery to situa-

tions without underlying manifold but rather algebras of Hilbert space operator | seems to

be the natural way to understand the relation between the rich di�erential geometric struc-

ture of anomalies (anomalies as de Rham forms, characteristic classes, descendent equations

relating anomalies in di�erent dimensions etc.) and their explicit QFT derivation (`dirty'

calculations using Feynman diagrams, perturbation theory etc.). A general idea here is

to interpret Feynman diagrams as regularized traces of certain operators on some Hilbert

space, and to try to identify NCG structures based on the algebra of these operators. The

regularized traces are of operators which are not trace class. In the examples discussed

anomalies can be identi�ed as regularized traces of commutators [a; b] = ab� ba of certain

operators a and b (I believe this is true in general). Even though such an expression is

always zero if e.g. a is trace class and b bounded, it can still be de�ned in more general

cases and be non{zero then. Such regularized traces Trreg([a; b]) are also closely related to

the Wodzicki residue and the Dixmier trace playing a fundamental role in NCG [1].

(2) NCG and Schwinger Terms

Graded Di�erential Algebra (GDA). A basic object in NCG is a GDA generalizing the

notion of de Rham forms. To motivate this notion we recall the following purely algebraic

characterization of de Rham forms on Rd (for simplicity we restrict ourselves to manifolds

R
d, and all our mappings are C10 , i.e. smooth and compactly supported). One starts with

the algebra C
(0)

d � C10 (Rd; glN ) of N � N{matrix valued functions on R
d. With d the

usual exterior di�erentiation, one de�nes C
(n)
d as the space of all n{forms which are linear

combinations of !n = X0dX1 � � �dXn with Xi 2 C
(0)

d , and Cd =
L1

n=0 C
(n)
d (C

(n)
d = ; for
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n > d here). Then d de�nes a mapping C
(n)
d ! C

(n+1)

d with d2 = 0, and

!n!m 2 C
(n+m)

d ; d(!n!m) = d(!n)!m + (�)n!nd!m (1)

8!n 2 C
(n)
d , !m 2 C

(m)

d ; n;m 2 N0: Moreover, there a linear map
R
| integration of de

Rham forms | Z
!n =

( R
R
d trN (!n) for n = d

0 otherwise
; (2)

(trN is the usual trace of N � N{matrices) and Stokes' theorem holds,
R
d! = 0 for all

! 2 Cd. Such triple (Cd; d;
R
) is called a GDA.

An important example for a GDA based on algebras of Hilbert space operators is as

follows. Consider a separable Hilbert space H which is decomposed in two orthogonal

subspaces, H = H+ � H�. The operator " which is �1 on H� is a grading operator,

"� = "�1 = ", and H� = 1
2
(1� ")H (� is the Hilbert space adjoint). Denoting as B and B1

the bounded and trace class operators onH, respectively, and asB2p = fa 2 Bj(a�a)p 2 B1g

(these are the so{called Schatten classes) one de�nes the algebras

gp � fu 2 Bj["; u] 2 B2pg (3)

for 2p a positive integer. Then

!̂n = (i)nu0["; u1] � � � ["; un] � u0d̂u1 � � � d̂un 8ui 2 gp; n = 0; 1; : : : (4)

can be regarded as generalized di�erential forms. Indeed, denoting as Ĉ
(n)
p the space of all

linear combinations of n{forms (4) (Ĉ
(0)
p = gp),

d̂!̂n = i("!̂n � (�)n!̂n") (5)

de�nes a mapping Ĉ
(n)
p ! Ĉ

(n+1)
p such that d̂2 = 0. d̂ can therefore can be regarded as

exterior di�erentiation. One can easily check that the relations (1){hat hold. An integrationR̂
can be de�ned as Ẑ

!̂n =

(
TrC

�
�2p!̂n

�
for n = 2p� 1

0 otherwise
(6)

(�2p = � = 1 for 2p odd = even) where � is a grading operator on H such that "� = ��" and

TrC (a) �
1

2
Tr (a+ "a") (7)

is a conditional Hilbert space trace. Stokes' theorem holds here due to cyclicity of trace.

Then (Ĉp; d̂;
R̂
) with Ĉp =

L1
n=0 Ĉ

(n)
p is a GDA. As discussed below, it actually is a

natural generalization of the de Rham complex (Cd; d;
R
) if 2p = d+ 1.

Quasi{free Second Quantization (QFSQ). The abstract mathematical framework

which has been found useful for studying external �eld problems of fermions is very much

in the spirit of NCG, even though historically it has been developed independently. (For

a more detailed discussion see e.g. [2]; this approach mainly uses methods from functional

analysis [3]. For an alternative approach based on di�erential geometric methods see [4].

The generalization of the latter from g1 to gp�1 was �rst given in [5]. My discussion of this

is based on [6].)
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In an external �eld problem, the starting point is a 1-particle description of the fermions,

and the aim is to `second quantize' i.e. to �nd the corresponding QFT description. One

has a Hilbert space H describing the possible 1-particle states, a Hamiltonian H and other

observables which are given by self{adjoint operators on H. Note in the following that, even

though in most applications H is a L2{space over some space manifold, no reference to this

manifold or the explicit form of the observables is made, and this makes this framework

very general and 
exible.

The Hamiltonian H naturally de�nes a splitting of H in the subspaces of positive and

negative energy states, H = H+ 
H�. The corresponding grading operator " with "H� =

�H� can be written as sign(H) (using the spectral theorem of self{adjoint operators where

sign(x) = 1 (�1) for x � 0 (x < 0)).

Given these data one can construct the corresponding QFT model. The fermions �eld

algebra is de�ned as C�{algebra generated by the �eld operators  �(f) linear in f 2 H

and  (f) =  �(f)�, obeying the CAR ( �(f) +  (g))2 = (f; g) (inner product in H). The

physical representation of this algebra is then on the fermion Fock space F over H and is

uniquely determined by the `vacuum' 
 such that  (f+)
 =  �(f�)
 = 0 for all f� 2 H�,

which corresponds to the Dirac sea.

The aim then is to `second quantize' observables and construct for operators u on H the

corresponding multiparticle observables i.e. operators d�(u) on F such that [d�(u);  �(f)] =

 �(uf). One then �nds that it is not always possible to construct such an operator d�(u)

but only if u is in g1 introduced above. Thus the Schatten ideal conditions of NCG naturally

appear here. The d�(u) for u 2 g1 form an algebra of operators on F , and one has relations

[d�(u); d�(v)] = d�([u; v]) + ĉ1(u; v) (8)

where

ĉ1(u; v) =
1

2
TrC (u["; v]) (9)

is a term arising from the regularization (normal ordering) required in this construction. It

is called Schwinger term in the physics literature and is a non{trivial 2{cocycle of the Lie

algebra g1.

As discussed below, this general framework is su�cient only for QFT in 1+1 dimen-

sions since there the observables of interest actually are in g1. In higher dimensions the

interesting observables u are only in gp�2. Then d�(u) cannot be de�ned as operator.

It is, however, still possible to de�ne it as sesquilinear form. (Recall that for a s.l.f. A

only transition amplitudes (f; Ag) are de�ned for f; g in some dense set of the Hilbert

space.) To obtain suitable generalization of (8) one has to also consider splittings H given

by other grading operators F , namely those for which F � " is in gp. We denote this

set as Grp. This is because the unitary operators U = exp(iu) 2 gp generated by self{

adjoint operators u 2 gp, act as transformations changing " to F = U�1"U which are

in Grp, F � " = U�1["; U ]. In�nitesimally this action is described by the Lie derivative

L̂uf(F ) � �idf(exp(�itu)F exp(itu))/dtjt=0 on quantities f depending on F . The con-

struction of d�(u;F ) can then be done by an additional `wave function renormalization'.

One obtains an algebra of operatorsG(u; F ) = L̂u+d�(u;F ) similar to (8) with a Schwinger

term ĉ2p�1(u; v;F ) depending on F 2 Grp, e.g. for p = 2 [5]

ĉ3(u; v;F ) = �
1

8
TrC ((F � ")[["; u]; ["; v]]) : (10)
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The case p = 1 is special since one can choose d�(u;F ) and ĉ1 independent of F and

therefore can forget about Gr1.

Gauss law anomalies. We now describe how the abstract framework of quasi{free

second quantization above is used to derive the anomalous commutators of Gauss law

generators for chiral QCD, i.e. chiral fermions coupled to a Yang{Mills �eld. Our setting is

YM theory on Rdwith structure group SU(N) represented byN�N{matrices (for simplicity

we do not distinguish SU(N) from its representation i.e. we assume SU(N) � glN). The

space dimension is d = 1; 3; 5 : : :. We denote as Ad the set of all YM �eld con�guration, i.e.

1-formsA =
Pd

i=1Aidx
i withAi 2 C

1
0 (Rd; su(N)) (su(N) � glN the Lie algebra of SU(N)).

The gauge group is C10 (Rd; SU(N)) and acts on A as A 7! U �A � U�1AU � iU�1dU . Its

Lie algebra is C10 (Rd; su(N)) acting on functionals f of A by the Lie derivative, LXf(A) �

�idf( eitX �A)=dtjt=0.

We now consider chiral fermions coupled to external Yang{Mills �elds. Cohomological

arguments show that for odd dimensions d there are 2{cocycles cd(X; Y ;A), e.g.

c1(X; Y ) =
1

2�

Z
R1

trN (XdY ) (11)

for d = 1 [4] and

c3(X; Y ;A) =
i

24�2

Z
R3

trN (A[dX; dY ]) (12)

for d = 3 [7]. It has been suggested on cohomological grounds that these 2{cocycles should

arise as Schwinger terms commutators of the Gauss' law generators of chiral QCD [7].

This can be shown using the general formalism of QFSQ described above. (For a di�erent

solution to this problem for d = 3 see [8].)

The starting point is the 1-particle description of chiral fermions. The states at �xed

time are described by the Hilbert space h = L2(Rd)
 C
�
spin 
 C

N
color where � = 2(d�1)=2 is

the number of spin indices. For a given YM con�guration A, the 1-particle Hamiltonian

is D=A =
Pd

i=1 

i (�i@i +Ai) with 
i the usual 
{matrices acting on C

�
spin and obeying


i
j + 
j
i = 2�ij . This naturally de�nes a self{adjoint operator on h for all A 2 Ad,

and so do all X 2 C10 (Rd; glN ) (containing C
1
0 (Rd; SU(N)) and C10 (Rd; su(N)); we recall

that every X 2 C10 (Rd; glN ) de�nes a bounded operator on h, (Xf)(x) = X(x)f(x) for all

f 2 h, which we denote by the same symbol).

The essential property now is that for h and " = sign(D=0) above, there are natural

embeddings of C10 (Rd; glN ) in gp and of Ad in Grp,

X 2 C10 (Rd; glN), A 2 Ad ) X 2 gp, FA � sign(D=A) 2 Grp for 2p = d+ 1: (13)

Thus QFSQ gives by restriction the algebra of Gauss law generators of chiral QCD with

Schwinger terms ĉd(X; Y ;FA), and the question of whether the Schwinger terms (11) and

(12) arise in chiral QCD reduces to the question whether the 2{cocycles (11) and (9) (for

d = 1) and (12) and (10) (for d = 3) are cohomologous. This is very nontrivial since

the abstract Schwinger terms ĉd are given by highly non{local expressions whereas the

Schwinger terms cd are local integrals of de Rham forms. For d = 1 it has been known to

be true since quite some time [2], and for d = 3 it was shown by explicit calculation recently

[9]. However, given our discussion of graded di�erential algebras above, this result becomes

very plausible since ĉd is (up to a constant) just the noncommutative generalization of cd.

For d = 1 this is obvious, and for d = 3 it follows if we regard F �" as the noncommutative
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generalization of A. The latter, however, is very natural: If the YM �eld is a pure gauge,

A = �iU�1dU we have FA � " = U�1"U � " = �iU�1d̂U . Equivalence of Schwinger

terms thus is just a special case of a general embedding theorem of the de Rham complex

(Ĉp; d̂;
R̂
) in the complex (Cd; d;

R
), especially that the noncommutative integral

R̂
generalizes

integration of de Rham forms
R
,

(i)dTrC (�X0[";X1] � � � [";Xd]) = cd

Z
R

tr (X0dX1 � � �dXd) (14)

8Xi 2 C
1
0 (Rd; glN ), with some constants cd and � = 1 for d odd and � = 
d+1 for d even.

A simple proof of this (motivated by the calculation in [9]) was recently given in [10] (one

gets cd = (2i)[d=2]2�d=2=d(2�)d�(d=2)). For d = 1 this proves that the Schwinger terms are

in fact identical (as c1 = 1=�), for d = 3 it proves identity for pure YM �eld con�gurations

which are pure gauges (as c3 = i=3�2).

(3) E�cient Anomaly Calculations

In [9] we found that the calculus of pseudodi�erential operators is an extremely powerful

calculational tool in anomaly calculations: it gives a simple way of calculating regularized

traces Trreg of commutators of operators (these methods were used earlier in a similar

context in [8]). The same tool was essential in [10]. Recently we used this very tool for a

very short QFT derivation of the axial anomalies for all even dimensions [11]. The strategy

was as usual, to write the e�ective action for fermions in an external YM �eld as Trreg of a

Dirac operatorD=A and calculate its variation under axial gauge transformations. Using only

elementary rules for manipulating Hilbert space operators, we could write the latter as a

sum of terms Trreg([a; b]). To my opinion, this very short derivation makes mathematically

precise traditional perturbative calculations of the anomaly and is very much in the spirit

of NCG.

(4) Final Remarks

In my discussion in (2) I tried to convince the reader that the NCG viewpoint (i.e. gener-

alizing from the di�erential algebra (Cd; d;
R
) to (Ĉp; d̂;

R̂
)) is very useful for general QFT

calculations concentrating on the essential QFT aspects, namely the nature of the UV di-

vergences characteristic for a speci�c dimension. It naturally leads to generalizations of

Schwinger terms to the noncommutative setting. This and the anomaly calculation dis-

cussed in (3) suggest that all YM fermion anomalies should have noncommutative gener-

alizations. I recently found that this is indeed the case. In fact, there is a noncommutative

generalization of the whole tower of descent equations [12]. It involves a generalization

of the noncommutative integration formula (14) to (d � n){dimensional submanifolds of

R
d such that Stokes' theorem holds (details will appear elsewhere). To my opinion, this

noncommutative version of the descent equations provides a nice explanation of how the

rich geometric structure of anomalies arises from QFT: it is present already on the level of

Hilbert space operators entering the Feynman diagrams.
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