
/

June 1995

STRING-DUST DISTRIBUTIONS WITH

THE KERR-NUT SYMMETRY

L.K. Patel1, N. Dadhich2 and A. Beesham1.

1. Department of Applied Mathematics, University of Zululand, Private Bag

X1001, Kwa-Dlangezwa 3886, South Africa.

2. Inter-University Centre for Astronomy & Astrophysics, Post Bag 4,

Ganeshkhind, Pune - 411 007, India.

Abstract

We attempt to solve the Einstein equations for string dust and null owing

radiation for the general axially symmetric metric, which we believe is being done

for the �rst time. We obtain the string-dust and radiating generalizations of the

Kerr and the NUT solutions. There also occurs an interesting case of radiating

string-dust which arises from string-dust generalization of Vaidya's solution of a

radiating star.
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Two empty space solutions of Einstein's equations admitting twisting, shear-

free and geodetic null rays are well-known in the literature. They are the Kerr

solution [1] and the so called Taub-NUT solution [2]. They are remarkable solutions,

the former has important astrophysical applications while the latter is interesting

on the formal grounds. Vaidya [3] has expressed the usual Kerr metric in the form

ds2 = 2(du+ ksin2�d�)dt� (r2 + k2cos2�)(d�2 + sin2�d�2)

�

�
1 +

2mr

r2 + k2cos2�

�
(du+ ksin2�d�)2

(1:1)

where u = t � r and m and k are arbitrary constants indicating mass and rotation

parameters of the Kerr particle. On the other hand the NUT solution is given by

ds2 = 2(du� 2bcos�d�)dr � (r2 + b2)(d�2 + sin2�d�2)

�

�
1 +

2mr � 2b2

r2 + b2

�
(du� 2bcos�d�)2

(1:2)

where constants m and b are the parameters of the NUT source. It can be easily

veri�ed that the Schwarzschild solution will result when k = 0 in (1.1) or b = 0 in

(1.2). The Kerr solution is asymptotically at while the NUT is not.

Further Vaidya et al [4] have synthesized the two into one by writing

ds2 = 2(du+ g sin�d�)dx �M2(d�2 + sin2�d�2) � 2L(du+ g sin�d�)2 (1:3)

with g = g(�), M and L are functions of u; x and �. The coordinate x = t for the

Kerr and x = r for the NUT, and u = t � r always. In this framework they have

obtained some radiating solutions; i.e. Kerr or NUT source with outowing null

radiation.

In this paper we wish to �nd for the metric (1.3) solutions of the equation

Rik = �8�K(uiuk � gik � wiwk) � 8���i�k (1:4)
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momentum of the owing null radiation of density � while the �rst corresponds to

the energy-momentum tensor

Tik = K(uiuk � wiwk) (1:5)

which is supposed to describe a string-dust distribution [5]. The string-dust

generalization of the Schwarzschild �eld is well known and some exact solutions

have been obtained [6-8] of the equation (1.4). It is perhaps for the �rst time

axially symmetric (metric (1.4)) solutions of this equation are being attempted.

Alternatively one of us [9] would like to interpret the �rst term in (1.4) as

de�ning the Machian vacuum. Eqn.(1.5) implies Riku
iuk = 0 and T 0

0 = T 1
1 = K,

the rest of T k

i
= 0. This means that the gravitational charge (� + 3p) density of

the distribution (1.5) is zero implying no inuence on free particles. Though it does

not produce gravitational force on free particles, the distribution (1.5) does produce

non-zero curvature which in spherical symmetry corresponds to constant (non-zero)

gravitational potential [9,10]. It is argued that by de�ning the vacuum by the �rst

term in (1.4), the Schwarzschild �eld can be made consistent with Mach's Principle

in the sense that homogeneous and isotropic matter distribution in the Universe

lying exterior to a spherical cavity centred at the mass point can manifest itself

by producing a constant potential. This is why it is called the equation for the

Machian vacuum [9].

The consideration of eqn. (1.4) can also be motivated by the fact that very

close to the big-bang singularity, the Universe is in highly dense state and hence

its matter content can have very unusual and exotic properties to allow for viscous

e�ects, heat ux, null radiation ow, string-dust etc. Some cylindrical models
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�nd the axially symmetric solutions of eqn. (1.4).

2. Field Equations

For the metric (1.3) we introduce the orthogonal tetrads as

�1 = du+ gsin�d�; �2 =Md�;

�3 =Msin�d�; �4 = dx � L�1

and in what follows all the quantitites will be referred to the tetrad frame. The

Ricci components of the metric (1.3) are given in the Appendix I [4]. Let us note

that g� = @g=@x�; Mxu = @22M=@x@u etc. and

2f = g� + gcot� (2:1)

and a new variable y is de�ned by gd� = dy.

We employ the comoving coordinates to write

ua = (1; 0; 0; 1=2); wa = (1; 0; 0;�1=2); �a = (1; 0; 0; 0)

where the null radiation is taken to ow along the �1 - direction.

For the metric (1.3), eqns. (1.4) imply R23 = 0 and R22 = R33 and the

following system of equations.

R44 = 0; R42 = 0; R43 = 0 (2:2)

R41 = 0 (2:3)
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R12 = 0; R13 = 0 (2:4)

R22 = �8�K (2:5)

R11 = �8�� (2:6)

Eqns. (2.2) involve the only one function M (App. I) and their solution is given by

M2 =
f

Y
(X2 + Y 2) (2:7)

where X = X(x; u; y) and Y = Y (u; y) and they satisfy the conditions

Xx = �1; Xy = Yu; Xu = �Yy: (2:8)

Next consider (2.3) which can be solved for the metric function 2L,

2L = �
Yu

Y
X + 2G+

2FX + 2EY

X2 + Y 2
(2:9)

where E;F; and G are functions of u and y satisfying the relation

E = �2YG � Y Yy (2:10)

From (2.7) - (2.10), it follows after a lengthy algebraic manipulations,

Eu = Fy; Ey = �Fu (2:11)

Then the string density is given by (2.5),
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8�K =
1

(X2 + Y 2)

�
2G+

Y

f
f
g2

2
52 ln(Y=f) � fy + 3f

Yy

Y
+ 1g

�
(2:12)

where 52 = @2=@u2 + @2=@y2. Using the above relations, (2.6) will give the null

radiation density �, the expression for which is quite lengthy and it is given in the

Appendix II.

For �nding the explicit solutions we have to obtain X;Y and f from eqns.

(2.8), (2.10) and (2.11). For further investigation we shall assume f = Y .

3. The case f = Y

If f = Y , then Y becomes a function of y alone. Eqns. (2.7) and (2.8) then

give

M2 = X2 + Y 2; X = au� x; Y = �ay + b (3:1)

where a and b are constants of integration.

Eqns. (2.8), (2.10) and (2.11) will then lead to

Y 52 G� 2aGy = 0 (3:2)

of which we take the particular solution,

2G = const: = c (3:3)

Then (2.11) will give

E = (a� c)Y; F = a(a � c)U +N (3:4)

where N is a constant of integration.
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in view of (2.1) will read as

(1 � z2)Yzz � 2zYz + 2aY = 0; z = cos� (3:5)

As seen by Vaidya et al [4], this equation admits a power series solution for

a � �1=8. Writing 2a = n(n+ 1), it takes to the familiar Legendre equation,

(1� z2)Yzz � 2zYz + n(n + 1)Y = 0 (3:6)

which can be solved for Y . In view of gd� = dy; (3.1) gives the remaining metric

potential,

g = �
1

a
Y� =

1

a
Yzsin� (3:7)

Thus the metric (1.3) is completely determined for the �eld equations (1.4). The

string dust and the null radiation densities are then given by

8�K = �

�
2a � c� 1

X2 + Y 2

�
(3:8)

and

8�� =
2a(a � c)

X2 + Y 2
(3:9)

It should be noted that K = 0 for 1 + c = 2a and we recover the radiating

case of Vaidya et al [4]. On the other hand � = 0 for a = 0 or a = c presenting a

string-dust spacetime.
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When n is a positive integer, we can take the solution of (3.6) in the form

Y = APn(z) +BQn(z) (4:1)

where A and B are arbitrary constants, and Pn(z) and Qn(z) are respectively the

Legendre and associated Legendre polynomials of order n.

The metric (1.3) is then given by

2L = c+
2(a � c)(Y 2 + auX) + 2NX

X2 + Y 2

gsin� =
1

a

�
A
dPn

dz
+
BdQn

dz

�
sin2�

9>>=
>>;

(4:2)

where X = au � x and Y as given in (4.1). Here x is a timelike coordinate and

hence replace x by t in X as well as in (1.3).

When 1+ c = 2a, the string-dust density vanishes and we recover the radiating

Kerr metric [4] for B = 0 while A = 0 gives the associated radiating Kerr metric

[15]. The associated Legendre function Qn(z) has a singularity on the axis � = 0,

so would have the associated metric. The radiation density vanishes for a = 0 or

a = c but a = 0 leads to g = 0 in view of (3.1) and (2.1) and hence a = c for the

radiation free string-dust solution. Then

8�K =
1� c

X2 + Y 2
(4:3)

which means c � 1 for K � 0. Here we have X = cu � t; Y = �cy + b, the

time dependence in X is spurious can be removed by X = R = (c � 1)t � cr, the

new radial coordinate. We now take B = 0 to seek the string-dust generalization

of the Kerr metric, which results when c = 1; i.e. n = 1 and from (4.1)

Y = AP1(z) = Acos�. For the string-dust we shall hence have to take n > 1,
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straight way to get to the Kerr metric from the string-dust because (4.1) admits

di�erent solutions in the two cases for n = 1; 2. Since n = 2 implies c = 3, from

(4.3) the string density K will be negative and so would be the case for all n > 1.

Following the standard procedure [16], we can bring the metric to the standard

Boyer-Lindquist form,

ds2 =
2c� �

c2
dt2 � (R2 + Y 2)(9A2cos2�sin2�+ (R2 + Y 2)(2c� �))�1dR2

� (R2 + Y 2)d�2 � (R2 + Y 2 + 9
A2

c2
�cos2�sin2�)sin2�d�2

+ 6
A

c2
(c� �)cos�sin2�dtd�

(4:4)

where

� = c+
2mR

R2 + Y 2
(4:5)

Similarly one can easily obtain the metric for the string-dust generalization of

the associated Kerr metric. Clearly A is the rotation parameter and m is the mass.

A = 0 will give the Schwarzschild string-dust. The above metric apparently has

many interesting properties, such as the inherent angular velocity w = �g03=g33

vanishes at both � = 0 and � = �=2, which will be considered separately [17].

5. The NUT- like solutions.

We now consider the equation (3.6) for 0 � n � 1, a particular solution of

which is given by [4],

Y = b[1 � n(n + 1)pn(z)] (5:1)

where pn(z) stands for the sum of the in�nite convergent series,
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1

2
z2 +

1

4!
(2� n)(3 + n)z4 +

1

6!
(2� n)(4 � n)(3 + n)(5 + n)z6 + : : : (5:2)

The metric functions 2L as given by (4.2) and

gsin� = �2b
dpn

dz
sin2� (5:3)

where X = au � r (replacing the spacelike coordinate x by r) and Y as given by

(5.1). The solution is hence given by 2L in (4.2), (5.1) and (5.3), with 2a = n(n+1).

The series (5.2) diverges as z �! 1 and consequently the solution has a singularity

at � = 0, for all n 6= 0. The axis is thus singular. The densities are as given by

(3.8) and (3.9) with X and Y as given above. This is the string-dust generalization

of the radiaing NUT metric, discussed by Vaidya et al [4].

When a = 0, i.e. n = 0, the radiation density � = 0 (recall in the Kerr case

the appropriate conditin for � = 0 was a = c, while here it is a = 0) and in that

case the metric will describe the NUT with string-dust and is given by

ds2 = 2(du� 2bcos�d�)dr � (r2 + b2)(d�2 + sin2�d�2)

�

�
c+ 2

mr � cb2

r2 + b2

�
(du� 2bcos�d�)2

(5:4)

where N = m. The string density is now given by

8�K =
c+ 1

r2 + b2
(5:5)

The above metric can be transformed to the BL form to read as

ds2 = �dt2 � ��1dr2 � (r2 + b2)d�2 � (r2 + b2 + 4�b2cos2�sin2�)

sin2�d�2 + 4�bcos�sin2�dtd�
(5:6)
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the usual NUT metric on the other hand b = 0 implies vanishing of rotation of the

null congruence and we get the Schwarzschild string-dust.

6. Discussion

There is an important di�erence between the string-dust generalizations of the

Kerr (4.4) and the NUT (5.6). From (4.4), the Kerr metric does not result when

string-dust is switched o� by putting c = 1, while (5.6) yields the usual NUT metric

for c = �1. It would not be possible to match (4.4) continuously to the Kerr metric

where as (5.6) will match continuously across the boundary, r = r0 to the NUT

metric with mass parameter m being given as

m =m+
1 + c

2r2
0

(r20 + b2) (6:1)

We shall now consider an important particular case. Consider g = 0, the

spacetime (1.3) then admits a null congruence which is geodetic as well as shear

and twist free. Further take M = M(r); L = L(r; u); u = t � r, then R44 = 0

determines M = r and eqns. R24 = R34 = R12 = R13 = 0 become identities. Eqn.

R14 = 0 integrates to give

2L = c(u)� 2
m(u)

r
(6:2)

where c(u) and m(u) are arbitrary functions of u. We have

8�K =
c� 1

r2
; 8�� =

2mu

r2
�
cu

r
(6:3)

and the metric reads

ds2 = 2dudt�

�
c(u)�

2m(u)

r

�
du2 � r2(d�2 + sin2�d�2): (6:4)
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results when c = 1. The string-density will not depend upon t for c = const: 6= 1.

The Schwarzschild string-dust will follow when m and c are constants. The

interesting case occurs when m = const: but c = c(u). This is the radiating string-

dust.
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R23 = 0

R24 = (g=M)

�
(Mx=M)y � (f=M2)u

�

R34 = �(g=M)

�
(Mx=M)u + (f=M2)y

�

R44 = (2=M)

�
Mxx � f2=M3

�

R14 = (2=M)

�
Mxu + (LMx)x + (Lf2=M3)

�
+Lxx

R12 = LR24 + (g=M)

�
(Lx +Mu=M)y + (2fL=M2)u

�

R13 = LR34 + (g=M)

�
� (Lx +Mu=M)u + (2fL=M2)y

�

R22 = R33 = (1=M2)

�
g2(Mu=M)u + g2(My=M)y � 1

+ 2f(My=M) + 4(f2L=M2)� (M2)ux � fL(M
2)xgx

�

R11 = L2R44 + (1=M2)

�
g2(Luu +Lyy) + 2fLy

+ 2LuMMx + 4LMMxu � 2LxMMu + 2MMuu

�
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R11 =
g2Y

f(X2 + Y 2)

�
52 G�

1

2
X

�
(
Yu

Y
)uu + (

Yu

Y
)yy

�

�Xu(
Yu

Y
)u � Yu(

Yu

Y
)y

�

+
1

(X2 + Y 2)

�
3F

Yu

Y
� 2XGu + 2Y Gy � 2Fu � 2X2Y 2

u

+X2(
Yu

Y
)u �XY (

Yu

Y
)y + 2XXuu + 2Y Yuu

�

+
1

(X2 + Y 2)2

�
2E(XYu � Y Xu) � Y 2

u
(X2 + 3Y 2) + 2Y 2X2

u

� 2X(X2 + 2Y 2)Xu(
Yu

Y
) + 2GX(X2 � Y 2)(

Yu

Y
)

� 4GY 2Xu

�
� (

Yu

Y
)u
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