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Abstract

We study the nonlinear O(N) sigma model on S2 with the gravitational coupling

term, by evaluating the e�ective potential in the large-N limit. It is shown that

there is a critical curvature Rc of S
2 for any positive gravitational coupling constant

�, and the dynamical mass generation takes place only when R < Rc. The critical

curvature is analytically found as a function of � (> 0), which leads us to de�ne a

function looking like a natural generalization of Euler-Mascheroni constant.
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1 Introduction

For a model described by boson �elds ni (n = 1; 2; � � � ; N) on a curved spacetime, a

gravitational interaction term �iRnini may be added to the Lagrangian [1], where �i

is a gravitational coupling constant and R is the scalar curvature of the spacetime (

In this paper, we consider only Euclidean spacetime. ). Since this interaction term

is a bilinear term of the �elds, the change of mass through quantum loop corrections

may be of interest.

Recently one of us [2] studied the three dimensional nonlinear O(N) sigma model

on S2
�R1 in the leading order of 1=N expansion, where S2 is the two sphere with

the canonical metric. For the O(N) symmetry we assume that �i is the same � for all

i. On the three dimensional at spacetime, there exists a critical coupling constant

of the model and the dynamical mass generation takes place only when the coupling

constant is larger than the critical one (strong coupling regime) [3]. In the strong

coupling regime, we showed that there is a critical curvature (radius) of S2 for some

value of �. Though the O(N) model can be treated by the 1=N expansion in both

two and three dimensions, the properties of the models are substantially di�erent.

One of them is that the dynamical mass generation takes place in two dimension no

matter how small the coupling constant is, as it should be.

In this paper, we will study the two-dimensional O(N) model [4] on S2 with the

gravitational coupling term in the large-N limit, by evaluating the e�ective potential

[5]. We will show that there is a critical curvature Rc(�) for every � (> 0). As �

approaches 0, the Rc goes to in�nity and decreases monotonically as � increases.

By introducing a function which looks like a functional generalization of Euler-

Mascheroni constant, the Rc can be neatly expressed by the function.
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2 E�ective potential and critical curvature

We assume that the metric of S2 is the canonical one so that the curvature R is

2=�2, where � is the radius of S2. Then the Lagrangian of our model is written as:

L =
Z
d�d' �2 sin � + (�2 sin2 �)�1@'n

i@'n
i

+�Rn2 + �(n2 �Ng�2) ]; (1)

where g0 is the bare coupling constant. For the evaluation of the e�ective potential

we can write the Lagrangian density as

L = niDni �N�=g20: (2)

In (2) D is de�ned as ��2(L2 + 2�) + �, where L is the quantum mechanical an-

gular momentum operator. By performing the Gaussian functional integral [6], the

e�ective potential per unit volume is given as

V

N
= �

�

g20
+

1

4��2
(Tr lnD + C); (3)

where C is a constant which may be determined by requiring V j�=0= 0. As is

well-known, in the leading order of 1=N expansion the e�ective potential in (3) is

written in terms of spacetime independent �:

V

N
= �

�

g0
+

1

4��2

IX
l=0

(2l + 1) ln(1 +
�

l(l+1)

�2
+ 2�

�2

); (4)

where we introduce an integer cut-o� I for the quantum number of the operator L.

In order to compare e�ective potential in (4) with that on R2, as in the previous

paper [2], one can use the following formula:

NX
l=0

f(l) =
1

2
f(0) +

Z N+1

0
f(x)dx+

NX
l=0

Z 1

0
f 0(x+ l)(x�

1

2
)dx�

1

2
f(N + 1);

which gives

V

N
= �

�

g20
+

1

2��

Z I

0
(x+

1

2
) ln(1 +

��2

(x+ 1
2
)2 + 2� � 1

4

)dx +
1

8��2
ln(1 +

��2

2�
)

+
1

2��2

IX
l=0

Z 1

0
dx(x�

1

2
)

2
64
ln(1 + ��2

(x+l+ 1

2
)2+2�� 1

4

)

+
2(x+l+ 1

2
)2

(x+l+ 1

2
)2+2�� 1

4
+��2

�
2(x+l+ 1

2
)2

(x+l+ 1

2
)2+2�� 1

4

3
75 : (5)
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Since the integrals in (5) are well de�ned without infra-red problem for � > 0, we

will restrict our attention to these cases. By de�ning a cut-o� � = (I + 1
2
)=� whose

dimension is that of a momentum, we can write the potential as

V

N
= �

�

g20
+

1

2�

Z �

1=2�
y ln(1 +

�

y2 +
2�� 1

4

�2

)dy +
1

8��2
ln(1 +

��2

2�
)

+
1

2��2

1X
l=1

Z 1

2

�
1

2

dt t

2
4 ln(1 + ��2

(t+l)2+2�� 1

4

)

+ 2(t+l)2

(t+l)2+2�� 1

4
+��2

�
2(t+l)2

(t+l)2+2�� 1

4

3
5

+O(1=�)

= �
�

g20
�

�

4�
(ln

2� + ��2

�2�2
� 1) +

1� 4�

8��2
ln(1 +

��2

2�
)

+
1

2��2

1X
l=1

Z 1

2

�
1

2

dt t

2
4 ln(1 + ��2

(t+l)2+2�� 1

4

)

+ 2(t+l)2

(t+l)2+2�� 1

4
+��2

�
2(t+l)2

(t+l)2+2�� 1

4

3
5

+O(1=�): (6)

The e�ective potential in (6) once again con�rms the well-known fact that topolog-

ical change of spacetime does not give rise to new counterterms, and thus we can

use the renormalization relation of the model on R2 [5]

�
1

g20
= �

1

g2
+

1

4�
ln
M2

�2
; (7)

where M is the renormalization mass. It is convenient to de�ne �0

�0 = M2e�4�=g
2

(8)

which denotes the square of the dynamically generated mass on R2. Making use of

the relations (7) and (8), one can �nd the renormalized e�ective potential

V

N
= �

�

4�
(ln

2� + ��2

�0�2
� 1) +

1 � 4�

8��2
ln(1 +

��2

2�
)

+
1

2��2

1X
l=1

Z 1

2

�
1

2

dt t

2
4 ln(1 + ��2

(t+l)2+2�� 1

4

)

+ 2(t+l)2

(t+l)2+2�� 1

4
+��2

�
2(t+l)2

(t+l)2+2�� 1

4

3
5 : (9)

To have a better understanding of the shape of V in (9), we evaluate the �rst

derivative of V with respect to �:

1

N

@V

@�
�

V 0(�)

N
= �

1

4�
ln

2� + ��2

�0�2
+

1

8�

1

2� + ��2

+
1

2�

1X
l=1

Z 1

2

�
1

2

dt t
�(t+ l)2 + 2� � 1

4
+ ��2

[(t+ l)2 + 2� � 1
4
+ ��2]2

: (10)
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As shown in the appendix in detail, one can �nd a simpler form of the �rst derivative

in (10):

1

N

@V

@�
=

1

4�
[ln(�0�

2) +
1

2� + ��2
+ 2(2� + ��2 �

1

4
)]; (11)

where the function  is de�ned by

(�) = lim
N!1

[
NX
n=1

n+ 1
2

(n+ 1
2
)2 + �

�
1

2
ln(N2 + �)]: (12)

The  function looks like a generalization of Euler-Mascheroni constant

E = lim
N!1

[
NX
n=1

n�1 � lnN ] = 0:5772 � � � :

In fact, making use of the formulae e.g. in [7], one can show that (0) = E�2�2 ln 2.

Furthermore, it is easy to show that (�) (� > �
1
4
) is a monotonically decreasing

function of �, and it approaches to �1 as � goes to 1.

Now one can �nd that, for a �xed �, V 0(�) monotonically decreases to �1 as

� increases. That is, a global stationary point of the e�ective potential V which

denotes the dynamical mass generation appears only when V 0(0) > 0. Therefore,

the critical radius of S2 is given by

�0�
2
c = exp(�

1

2�
� 2(2� �

1

4
)): (13)

Or, the critical curvature is given by

Rc = 2�0 exp(
1

2�
+ 2(2� �

1

4
)): (14)

The critical curvature which is1 in the limit � ! 0 decreases monotonically to 0 as

� increases to 1, and the dynamical mass generation takes place only when R < Rc

(or � > �c).

3 Discussion

By evaluating the e�ective potential (9) in the leading order of 1=N expansion, we

have shown that, the O(N) nonlinear � model with the gravitational coupling term
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described by the Lagrangian (1), has a critical curvature ( given in (13,14) ) which

decreases as � increases.

For the conformal symmetry, � must be �c =
1
4
[(d�2)=(d�1)] in a d-dimensional

spacetime. That is, the conformal coupling constant �c is 0 in two dimension and 1
8

in three dimension. One of the common features of the O(N) nonlinear � model on

S2 and S2
�R1 [2] is that the dynamical mass generation takes place for any �nite

R in the limit � ! �c while there exists a critical curvature for � > �c.
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Appendix

Making use of the identity

Z
t[�(t+ l)2 + �]

[(t+ l)2 + �]2
dt = �

l(t+ l) + �

(t+ l)2 + �
�

1

2
ln[(t+ l)2 + �]

for (t+ l)2 + � > 0; (15)

one can �nd the following equality which could be used to �nd (11) and (12) from

(10);

1X
l=1

Z 1

2

�
1

2

t[�(t+ l)2 + x� 1
4
]

[(t+ l)2 + x� 1
4
]2

dt

=
1

4x
+

1

2
ln x+ lim

N!1
f

N�1X
n=1

n+ 1
2

(n+ 1
2
)2 + x� 1

4

�
1

2
ln[(N +

1

2
)2 + x�

1

4
]g:(16)
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