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1 Introduction

The fractal structure of space-time is of primary interest in any theory of quantum gravity.
Although the starting point usually is manifolds of a speci�c dimension d, the quantum
theory instructs us to perform the average over all equivalence classes of metrics and in this
way the \e�ective" dimension of space-time can be di�erent from d. Presently we do not
have a well-de�ned theory of quantum gravity in four dimensions. Two-dimensional gravity
is an interesting laboratory, where we have available both analytical and numerical tools
with which we can study the fractal structure, and in the following we will con�ne ourselves
to two-dimensional quantum gravity, although some of the de�nitions and relations are
given for arbitrary d.

We assume that the partition function for Euclidean quantum gravity can be written
as:

Z(�) =

ZZ
D[gab]D� e�S[g;�;G]��

Rp
g; (1)

where the integration is over equivalence classes of metrics [gab], and the action is the
gravitational action, usually taken to be the Einstein-Hilbert action which depends on the
gravitational constant G. � symbolizes the matter �elds, and the dependence of the matter
coupling is suppressed. It is sometimes convenient to consider the partition function for a
�xed volume V . Since the volume is conjugate to the cosmological constant, we can de�ne
the �nite volume partition function without reference to �:

Z(V ) =

ZZ
D[gab]D� �(

Z p
g � V ) e�S[g;�;G]: (2)

The partition functions in (1) and (2) are related as

Z(�) =

Z 1

0

dV e��V Z(V ): (3)

Recently it was shown [1, 2, 3] that the volume-volume correlator of Euclidean quantum
gravity is a perfect probe of the fractal structure of space-time. It is de�ned as

G�(R) =

ZZ
D[gab]D� e�S[g;�;G]��

Rp
g
ZZ

dd�
q
g(�) dd�0

q
g(�0) �(dg(�; �

0)�R); (4)

where dg(�; �
0) denotes the geodesic distance between the points labeled by � and �0,

calculated with the metric gab. One can view G�(R) as the partition function for universes
with two marked points separated by a geodesic distance R. If scaling arguments can be
applied to the system, one expects a generic behavior

G�(R) � ���s F̂ (��R); (5)

where s is the string susceptibility of the system, i.e.,

Z(�) � const:�2�s + less singular terms: (6)

The behavior (5) follows from the de�nitions since

@2Z(�)

@2�
=

Z 1

0

dRG�(R) � const:��s + less singular terms: (7)

However, there is a slight subtlety associated with (5) and (7). If �1 < s < 0, as is the
case for unitary theories with 0 � c < 1, the coe�cient in front of (7) is negative (cf. [1]).
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Since the function F̂ in (5) is positive for unitary theories and falls of fast for large R (see
(18) below) this is only possible if the function F̂ (x) is singular for small x, such that the
term ��s is a subdominant term, while the dominant term is analytic in �.

The exponent s determines the proliferation into so-called baby universes [7, 8] and the
scaling exponent � can be identi�ed with the inverse Hausdor� dimension of the system:

� = 1=dH : (8)

We denote dH the grand canonical (intrinsic) Hausdor� dimension, since it is de�ned in the
ensemble of manifolds with uctuating volume Vg =

R
dd�
p
g, but constant cosmological

constant �. Eq. (8) is reasonable since the average volume of the ensemble of manifolds
with partition function G�(R) is:

hVgiR = �@ lnG�(R)

@�
� R1=� ; (9)

for R � ��� . This relation follows from scaling behavior (5).
In the case of pure two-dimensional Euclidean quantum gravity one can calculate

G�(R) analytically [1]:

G�(R) = �3=4 cosh�1=4R

sinh3 �1=4R
: (10)

If we expand G�(R) for small R we get:

G�(R) =
1

R3
� 1

15
�R+

4

189
�3=2R3 +O(�2R5); (11)

i.e. the �rst term is indeed singular for small R and analytic in �.
We can de�ne the two-point function GV (R) on the ensemble of metric manifolds con-

tributing to the partition function (2) in the same way as we de�ned GL(R) corresponding
to the ensemble (1). It can be viewed as the partition function for universes with a �xed
volume V and two marked points separated by a geodesic distance R. GV (R) is related to
G�(R) by a Laplace transformation, in the same way as Z(�) is related to Z(V ) by (3):

G�(R) =

Z 1

0

dV e��V GV (R); (12)

and GV (R) is by de�nition related to the average volume S(R)dR in a spherical shell of
thickness dR a geodesic distance R from a given point:

hS(R)iV =
1

V

GV (R)

Z(V )
= Rdh�1 F (

R

V �
); (13)

where F (x) is a function with F (0) > 0, which falls o� for large x. Eq. (13) is another
de�nition of the (intrinsic) Hausdor� dimension associated with the canonical ensemble of
metric manifolds used in two-dimensional Euclidean quantum gravity. We denote dh the
canonical Hausdor� dimension. A priori there is no reason that dh = dH , but in fact it
follows from the de�nitions that if F (0) > 0 then dh = dH . Clearly F (0) > 0 is a necessity
for (13) to be valid as a de�nition of the Hausdor� dimension in the canonical ensemble.
But from (5) it follows by inverse Laplace transformation and the assumption (13) with
F (0) > 0 that

GV (R) � V s�1��dhRdh�1 for R! 0: (14)
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This is only compatible with (13) if �dh = 1. In the following we will not distinguish
the two Hausdor� dimensions, but completeness it should be mentioned that one can �nd
non-unitary models where dh > dH . An example is the so called multicritical branched
polymer model [9], where dh = 2, while dH = m=(m� 1), and m � 3 is an integer. From
the relation between G�(R) and GV (R) we deduce that

G�(R) � Rs=��1 ~F (��R); (15)

where ~F is related to F by

~F (x) �
Z 1

0

dye�yx
dh
y�2F (

1

y�
): (16)

We have that ~F (0) > 0 since the integral in (16) is well de�ned for x = 0, as F (y) is
expected to fall o� faster than a power of y (see (19) below) for y ! 1, and  < 1. In
fact we can say somewhat more about G�(R) since the integral after R should be as in
eq. (7). This implies that we should be able to split G�(R) as follows:

G�(R) = Rs=��1P (�Rdh) + �1�sRdh�1 �F (�Rdh); (17)

where P (x) is a polynomial of degree less than [1 � s] with P (0) > 0, while �F (x) is a
non-analytical function, also with �F (0) > 0. P will not contribute to the singular term
��s in (7) and the entire contribution comes from the integral over the last term in (17).
Under an inverse Laplace transformation the �rst term in eq. (17) will not contribute to
GV (R), V > 0, and in this way the small R dependence �1�sRdh�1 of the second term
in (17) is the analogy of the term V �2Rdh�1 in GV (R). It is seen that this scenario is
indeed satis�ed in for the exact solution (10)-(11) of pure gravity. Further aspects of the
expansion of GV (R) is discussed in the appendix.

From general arguments we �nally expect that G�(R) falls o� exponentially [4]

G�(R) � e�const:�
�R R� ��� (18)

and this translates by inverse Laplace transformation to

GV (R) � e�const:(R=V
�)1=(1��) R� V � : (19)

While (18) and (19) are exact in the case of pure gravity, they are unfortunately only
bounds in the case where we have matter coupled to gravity.

A convenient quantity from a numerical point of view is the normalized distribution

nV (R) =
1

V
hS(R)iV = V ��xdh�1F (x); x =

R

V �
; (20)

such that

1 =

Z 1

0

dRnV (R) =

Z 1

0

dxxdh�1F (x): (21)

Eq. (20) has the form of a �nite size scaling relation in the sense that it is a universal
function of the reduced variable x times a scale factor V �� . In numerical simulations eqs.
(20) and (21) turn out to be quite useful.

The Hausdor� dimension is not the only dimension which can naturally be de�ned on
an ensemble of manifolds. The so-called spectral dimension is de�ned as follows: For a
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given manifold the propagation of a massless scalar particle is described by the inverse
Laplacian, ��1

g , where

�g =
1p
g
@a
p
ggab@b: (22)

The inverse Laplacian has a heat kernel representation,

��1
g (�; �0) =

Z 1

0

dT
D
�0jeT�g j�

E
; (23)

where the heat kernel Kg(�; �
0; T ) =

D
�0jeT�g j�

E
is the kernel of the di�usion equation

@

@T
� = �g�; (24)

and the normalization is
R
dd�

p
g(�) Kg(�; �

0; T ) = 1. In this paper we consider the initial
condition,

Kg(�; �
0; 0) =



�0j�� =

1p
g(�)

�(� � �0): (25)

To the di�usion equation we can in the usual way associate a random walk interpreta-
tion. In this way K(�; �0; T ) is the probability per unit volume that a random walk, which

starts at � will be at �0 at \time" T .
The heat kernel K(�; �0; T ) has the asymptotic short distance expansion (the so-called

Hadamard-De Witt-Minakshisundaram expansion, see for instance [10] for a review)

Kg(�; �
0; T ) =

e�d
2
g(�;�

0)=4T

(4�T )d=2
�(�; �0; T ); (26)

where dg(�; �
0) again denotes the geodesic distance and

�(�; �0; T ) �
1X
r=0

ar(�; �
0)T r; �(�; �; 0) = 1: (27)

The functions ar(�; �
0) satisfy certain invariant di�erential equations, and in the coinci-

dence limit �0 ! � one can express ar(�; �) entirely in terms of local invariants, of which
the �rst ones are:

a0(�; �) = 1;

a1(�; �) =
1

6
R;

a2(�; �) =
1

72
R2 +

1

180
(RabcdRabcd �RabRab) +

1

30
�gR; (28)

where Rabcd, Rab, and R are curvature tensors. By taking the trace of the operator K̂g

corresponding to the kernel Kg(�; �
0; T ), we get

Tr K̂g(T ) �
Z
dd�

q
g(�) Kg(�; �; T ) �

1

T ds=2

1X
r=0

ArT
r; (29)

where

Ar =

Z
dd�

q
g(�) ar(�; �): (30)
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We call the power ds the spectral dimension. For a smooth manifold we have ds = d.
However, it is possible to de�ne di�usion and consequently the spectral dimension ds on
more general structures than manifolds. We will discuss such cases later. If V is the
volume of the manifold it is seen that

1

V
Tr K̂g(T ) = average return probability of a random walk at \time" T : (31)

Since it is known that the kernel K(�; �0; T ) can be expressed entirely in terms of
reparametrization invariant quantities, as indicated in the asymptotic expansion (26), it
makes sense to talk about the average in quantum gravity. For the asymptotic expansion
(29) we get D

Tr K̂g(T )
E
� 1

T ds=2

1X
r=0

hAri T r; (32)

where the quantum gravity average is taken over the operators which enter in (28)-(30).
Strictly speaking we cannot be entirely sure that the quantum average can be taken term
by term and we de�ne the quantum spectral dimension �ds by

D
Tr K̂g(T )

E
� 1

T �ds=2
for T ! 0: (33)

and in case we consider the average over manifolds with �xed volumes the quantum return
probability will be given by

1

V

D
Tr K̂g(T )

E
V
: (34)

More generally we expect the behavior of (26) to be replaced by one which involves
the geodesic distance as de�ned for the volume-volume correlator:

�KV (R;T ) �
Rdh�1

T
�ds=2

H(R2dh= �ds=T ); R� V 1=dh (35)

where V is a �xed volume of the manifold, H(0) > 0 and3

�KV (R;T ) � 1

V Z(V )

Z Z
D[gab]D� �(

Z p
g � V )e�S[g;�;G]

�
Z Z

dd�
q
g(�)dd�0

q
g(�0) Kg(�; �

0; T ) �(dg(�; �
0)�R): (36)

With this de�nition it follows that
Z 1

0

dR �KV (R;T ) = 1; lim
R!0

�KV (R;T )

hS(R)iV
=

1

V

D
Tr K̂g(T )

E
V
; (37)

and that the average geodesic distance travel by di�usion over time T is given by:

hR(T )iV =

Z 1

0

dR R �KV (R;T ) � T
�ds=2dh : (38)

It is easy to understand that dh can be di�erent from d in quantum gravity. We de�ned
dh by

lim
R!0

hS(R)iV � Rdh�1; (39)

3An alternative de�nition would be one where we divide with GV (R) in (36), rather than with V Z(V ).

as in (36). By (13) it corresponds to the removal of the factor Rdh�1 from �KV (R; T ).
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where the average is performed over all metric manifolds of �xed topology and volume
V . If we could take the limit R ! 0 for each (smooth) manifold, before taking the
quantum average, we would get dh = d. However, there is no reason such an interchange
of limits should be possible, and as mentioned above, it is not possible for pure gravity
in d = 2, where dh = 4. For the spectral dimension the situation is less clear. It seems
quite reasonable that the asymptotic expansion (32) is valid, in which case the spectral
dimension is �ds = d. However, even in this case we will �nd some situations where the
spectral dimension �ds is di�erent from d.

The purpose of this article is to report on extensive numerical simulations where we
determine the Hausdor� dimension as well as the quantum spectral dimension of quantum
gravity coupled to various matter �elds4.

The rest of this article is organized as follows. In sec. 2 we outline the numerical setup
and in sec. 3 we test the scaling prediction (20) for pure gravity, while sec. 4 contains
the generalization to the theory of gravity coupled to matter �elds. Sec. 5 deals with the
analysis of the so-called spectral dimension. In sec. 6 we analyse the use of �nite size scaling
relations in quantum gravity and make predictions about the behavior of reparametrization
invariant two-point functions. Finally, sec. 7 contains a critical discussion of the results
obtained so far.

2 The numerical method

The numerical setup of the simulations presented in this paper is as follows: For all stud-
ied systems we use the discretization commonly known under the name of the \dynamical
triangulation". We consider ensembles of surfaces built of equilateral triangles with spher-
ical topology and a �xed number of triangles. These surfaces can be viewed as dual to
planar �3 diagrams. In the language of the �3 theory we include diagrams containing
tadpole and self{energy subdiagrams. In the language of the direct lattice it means that
we allow \triangulations" where two vertices are joined by an arbitrary number of links
and where a link can join a vertex to itself. The coordination number of a point can be any
positive integer. All these diagrams are present in the simplest matrix model formulation,
without the necessity to renormalize the couplings. In earlier works it has been noted that
inclusion of these subdiagrams actually speeds up the convergence when critical indices
are measured (cf. [11]). A similar formulation was used in [5]. In case matter �elds were
used in the simulations their interactions were such that they could be viewed as placed
in the centers of triangles (or on vertices of the dual �3 graphs).

A new element in simulation is the use of so called generalized minbu surgery5 in the
update scheme of the surface geometry. These are global rearrangments of the triangula-
tion which are used in addition to the the standard \ips". They are closely related to the
\minbu surgery moves" described in [12] for the two{dimensional system without tadpole
and self{energy subdiagrams or in [2] for the four{dimensional systems. For the sake of
the present simulation we de�ne a \minbu" to be a smaller part of the triangulation sepa-
rated from the remaining part by two links, joining the same two vertices (in the dual �3

language this corresponds to a special form of the self{energy subdiagram, special in the
sense that we exclude the case when two vertices have the same label). The two links form

4Closely related work has recently appeared in [5]. Where overlapping, the conclusions are indentical.

However, as we will show, the situation in pure gravity is actually much better than it appears from the

\raw" data presented in [5].
5
Minbu is an abbreviation for \miminal neck baby universe" [7, 8].
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a \neck" of the minbu. The new algorithm consists of two steps: in the �rst the surface
is cut along the neck and the boundaries are closed. In e�ect the spherical surface splits
into two surfaces both with spherical topology. In the second step we select at random a
link on each surface joining two points with di�erent labels. The surfaces are cut along
these links and glued together along the boundaries, the chosen links becoming a neck of
the new minbu. It is rather simple to work out the detailed balance condition for this
type of move. In practice we put a lower limit on the size of the minbu to avoid moving
numerous small minbus.

Both the standard ips and the new global moves are organized in \sweeps". In case
of the ips they correspond to the number of attempted ips being equal the number of
links. For the minbu surgery moves a sweep corresponds to the number of attempted
moves of this type being equal to the number of minbus on the surface before the sweep
(this number usually changes during the sweep). A global sweep was in all cases followed
by 9 standard sweeps (the global moves alone do not satisfy the ergodicity requirement).
The new move helps to reduce the correlation times and it's e�ect is quite dramatic (cf.
[12] and [2] for discussion of this point). It also gives for free a possibility to measure
str (cf. [7, 8]). The results presented in this paper corespond to system sizes 1000, 2000,
4000, 8000, 16000 and 32000 triangles. For these systems the lower limits on the minbu
size were chosen in the range from 10 to 20 triangles. Since the update of the system is
\cheap" in computer time, the typical measurements were performed every 200 sweeps,
safely above the longest autocorrelation times observed and the number of measurements
in a typical experiment ranged between 1000 and 5000. In the analysis of the di�usion
equation only triangulation with 4000 and 16000 triangles were used because of the large
measurement times. In this case the measurements form the real time barrier, taking up
to 95% of the computer time for the larger systems and we were forced to reduce the
number of measurements. A typical experiment in this case was an analysis based on 100
con�gurations, separated by 1000 sweeps.

3 Pure gravity

When we use the formalism of dynamical triangulations as a regularization of the theory
of quantum gravity the discretized volume is identi�ed with the number of triangles N :

V = N a2; (40)

where a2 is the area of each triangle. In addition we identify the volume elements d2�
p
g

with the area of the triangles and the geodesic distance r between two triangles as the
shortest path along neighboring triangles. With this de�nition the discretized geodesic
distance is always an integer. This de�nition is only one among many possible. We are
later going to test the results for other de�nitions of the geodesic distance. In the scaling
limit they should all be equivalent. If this is not the case, it is di�cult to have any
con�dence in the \continuum" results extracted from the discretized theory.

Pure two-dimensional gravity is a good test case for numerical simulations since we
know the exact formula for G�(R) and consequently for xdh�1F (x). In the appendix we
outline how to �nd xdh�1F (x), which turned out to be sligtly non-trivial.

We denote the discretized version of nV (R) by nN (r). It satis�es

NX
r=0

nN (r) = 1: (41)
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It is easy to obtain nN (r) directly from the measurements and we can check if the data
are compatible with the form (20), i.e. if it is possible to �nd a number dh such that

N1=dhnN(r) = xdh�1F (x); x = r=N1=dh ; (42)

for various sizes N of the system. In principle there is an additional constant of propor-
tionality � between x and r, if x refers to the continuum variable in (20). This constant
depends on the regularization (e.g. which class of triangulations one uses in the discretiza-
tion, the de�nition of geodesic distance etc). In the appendix we give this constant for the
class of triangulations used in our computer simulations and our de�nition of geodesic dis-
tance. In (42) and the rest of the article this constant has been absorbed in a rede�nition
of x in order not to make the notation unnecessary cumbersome.

While it is possible to �nd a reasonable value of dh this way, a much better result is
obtained by performing a shift in the values of r and N before applying the scaling relation
(42). This is reasonable from the point of view that the shortest distances and volumes
are lattice artifacts where we can not expect agreement with the continuum formulas. In
this way we are led to a \phenomenological" scaling variable x

x =
r + a

N1=dh + b
: (43)

We can \derive" (43) from the data in the following way: �x dh = 4 and �x N and
determine for a given value of r the value of x such that the lhs of (42) (the measured
function) agrees with the rhs (the calculated continuum function). In �g. 1 we have shown
r as function of x for di�erent volumes N . We observe a perfect linear relation except for
the smallest values of r and the constant a is approximately independent of N . The slope
changes with N and we can �t it well to (N1=4 + b). This is shown in �g. 2, where the
result of a common �t like (43) to the data involving N = 1000, 2000, 4000, 8000, 16000
and 32000 triangles are shown with the factor N1=4+b divided out. All data are contained
in this graph and we see that the phenomenological scaling (43) is well satis�ed.

One important lesson from �g. 1 is that a relation like (43) is not valid for the smallest
values of r and one should simply discard these small values.

In �g. 3 we have shown the data and the theoretical curve for dh = 4 and an optimal
choice of a and b. The agreement is almost perfect and the conclusion is that we already

see continuum physics for systems as small as 1000 triangles in the case of pure gravity

if we include simple �nite size corrections like (43) A di�erent graphical representation of
the data, well suited for the small x region, is obtained by plotting d log nN (r(x))=d log x
versus x. It has the virtue that it tests clearly the consistency of dH = dh, since the value
dH which provides us with overlapping graphs should agree with the asymptotic value of
the curve for small x, which determines dh. We have illustrated this in �g. 4, where the
theoretical curve is also displayed.

As mentioned above there are many di�erent ways to de�ne the concept of geodesic
distance on the ensemble of piecewise linear manifolds. One alternative de�nition is as the
shortest \link" distance between two vertices. To each vertex v we assign an area element

dAv =
1

3
nva

2; (44)

where nv is the order of the vertex. dAv is assumed to replace the continuum d2�
p
g when

we form the average. For a given triangulation the \link-distance" and the \triangle-
distance" used above (the link distance on the dual �3-graph) can di�er vastly. However,
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as ensemble average we expect that they agree up to some constant of proportionality.
This was proven analytically for pure two-dimensional gravity in [1]. Numerically it is
also seen very clearly.

In the next section we will study the Hausdor� dimension when matter is coupled to
gravity. In these cases we do not know the Hausdor� dimension. Following the philosophy
outlined above one should now determine the constants a, b and dh such that the distri-
butions nN (r) can be mapped into each other as a function of x. The best dh determined
this way from (43) would then be the candidate for a Hausdor� dimension. If we do this,
we get

dh = 3:9� 0:2: (45)

We view this result as the typical accuracy one can expect. For choices of dh in this
interval we get good overlaps of the distributions with acceptable �2. In order to get a
more precise determination of dh one would have to improve the statistics of the large-r
tail of the distribution n(r), which in principle is possible, but in practice is very computer
intensive since the probability of creating these elongated universes is exponentially small.

One can use simpler charactistics of the distribution nN (r), like the fact that the peak
of the distributions should scale as N�1=dh , to determine dh. It gives results compara-
ble to (45). However, we regard the procedure outlined above as more convicing, since
the requirement that one can map the various distributions onto each other for di�erent
volumes is a much stronger test of scaling.

4 Matter �elds

We can now perform the analysis outlined above in the case of matter coupled to gravity.
We have performed extensive computer simulations for Ising spins coupled to gravity,
three-state Potts model coupled to gravity and one to �ve Gaussian �elds coupled to
gravity. In the critical point the Ising model describes a c = 1=2 conformal �eld theory,
the three-states Potts model a c = 4=5 conformal �eld theory6, while the Gaussian �elds
automatically are critical with a central charge equal to the number of Gaussian �elds.

For all these theories we can measure nN (r) and try to determine a possible dh. For
the theories considered so far, it seems that we have scaling according to (42) and (43).
We have illustrated this for c = 1=2, 1, 2 and c=5 in �g.5. Each of the graphs contain
the scaled data for system sizes 1000, 2000, 4000, 8000, 16000 and 32000 triangles. The
results for other c's (c = 4=5, 3 and 4) are similar. We have shown both the distributions
n(r(x)), as well as the derivative distributions d log n(r(x))=d log x which, as mentioned
above, have the advantage of displaying the small x region more clearly.

In these cases the Hausdor� dimensions have been chosen to be 4 for c � 1, 3 for c = 2
and 2 for c = 5, respectively, and we see as good scaling as in the case of pure gravity. As
already remarked the internal consistency of the �tting to a single Hausdor� dimension

(i.e dH = dh) requires that the logarithmic derivatives should converge to the chosen dh
for small x. As is seen on the the plots on the left hand side of �g. 5 the graphs for c = 1=2
and c = 1 indicate a slightly lower dh (around 3.8). The same value was found to give the
best scaling in for pure gravity, where it is known that dh = 4:0. Also for the other values
of c � 1 we �nd the best all over scaling for dh � 3:8. Finally it should be mentioned that
for c � 1 the best values of the constants a and b in the phenomenological formula (43)

6The value of the critical point of the three-states Potts model coupled to gravity has recently been

calculated [13].
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are very close to the pure gravity values. Clearly wee have some interval of dh where the
�ts appear to be acceptable and in this way we extract a tentative Hausdor� dimension
for the various theories. The result of the best dh as well as errorbars of a somewhat
subjective nature is shown in �g. 6. From the �gure and the fact that d = 4 gives very
good �ts for c � 1 and dh = 2 very good �ts for c = 4 and 5, it is tempting to make the
following

Conjecture: dh = 4 for c � 1. dh = 2 for large c.

This conjecture is in agreement with old numerical results from c = �2 systems where a
measurement of the Hausdor� dimension gave results very close to dh = 4. It is also in
accordance with the recent numerical simulations reported in [5] for c < 1.

It may be surprising (but see sec. 7) that dh = 4 for all c � 1, since there are indications
of di�erent scaling in pure gravity and gravity coupled to (m;m + 1) conformal matter.
Using a Hamiltonian formulation of string �eld theory for non-critical strings it has been
argued that the scaling should be governed by the dimensionless variable �1=2mT , where
T is the so-called proper \time" [6]. This should be compared to the known result for pure
gravity as presented in eq. (18). If we could identify T with the geodesic distance one could
conclude that dh = 2m for the (m;m+1) model coupled to gravity. However, form > 2 we
have no such identi�cation. It is in principle possible to have an identi�cation T = R2=m,
in which case the conjectures from the Hamiltonian formalism would be in accordance with
the observed dh = 4. It is natural in the Hamiltonian formalism to expect7 an exponential
decay like (18) of the volume-volume correlator G�(R) with respect to T . Such a decay

and dh = 4 would lead to G�(R) � e�(�
1=4R)2=m , i.e. a decay of G�(R) which is slower than

exponentially, but not power like. Although unconventional, such behavior cannot be ruled
out a priori, since it does not violate the bound (18). By inverse Laplace transformation
we get (see also the second part of the appendix for further discussion)

GV (R) � e�c(R=V
1
4 )4=(2m�1)

: (46)

This behavior is di�erent from the one of pure gravity (see (19)) and can in principle be
tested from the observed distribution nN (r) of the discretized theory since the prediction
is:

log nN (r) � x4=(2m�1) for x� 1; (47)

where x is the scaling variable in (42)-(43). Unfortunately this di�erence in behavior is
for large x and the statistics of the tail of the distribution nN(r) is not su�ciently good
to distinguish between the power 4=3 for pure gravity and the power 4=5 corresponding to
m = 3 for the Ising model. The reason is that we have to allow for unknown subleading,
i.e. power like correction factors to (46) and that we have to consider quite large x before
we can ignore such factors. It would be most interesting if one could prove or disprove
(47). The statistics is much better for small x and as discussed in the appendix we expect
the following behavior in the case of pure gravity:

nN (r) � N�1=dhx3
�
1 + c1x

4 + c2x
8 + � � �

�
: (48)

While dh = 4 leads to the use of the scaling variable x as well as to the leading term in (48),
there is no reason the next terms should agree in pure gravity and after coupling to matter

7But we should stress that it has not yet been proven.
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even if dh = 4. In the appendix we present arguments which indicate that the leading
correction term x4 in (48) is replaced by an x�s=� term in the case of an minimal unitary
model coupled to gravity. This power is two or less in the case of the minimal models.
We test the subleading corrections to nN (r(x)) by plotting the logarithmic derivative as
a function of x�:

d log n(r(x))

d log x
= dh � 1 + �c1x

� + o(x�); (49)

if n(r(x)) � xdh�1(1 + c1x
�+ o(x�)). The best power of � is the one where the data have

a de�nite slope for x small. In �g. 7 is shows the correction term for central charge c = 0,
c = 1=2, c = 1 and c = 5. As long as c � 1 the results agree quite well with pure gravity,
and the power � is de�nitely between 3 and 5, i.e. a very small deviation, if any, from the
result of pure gravity. In order to explain this selection of powers of the subleading term
it is tempting to

Conjecture: GV (R)! e2�isGV (R) for V ! e2�iV and 0 � c < 1.

It would be interesting to understand the reason for this \symmetry principle".
Up to this point we have not presented any evidence that coupling of matter to gravity

creates a back-reaction on the geometry associated to the metric properties as long as
c � 1. This is in marked contrast to the situation for c � 2. Here the Hausdor� dimension
did change (cf. �g. 6) and �g. 7 shows that the subleading small x corrections are di�erent
as well. The exponent � � 2 for c = 4 and 5. However, even for c � 1 the distributions,
scaled and shifted according to (42) and (43), are not identical, as shown in �g. 8. Note
that the distributions agree very well for small x, in accordance with the hypothesis that
dh = 4 and that even the subleading exponents � in (49) are identical. Unfortunately
we have not found a convincing parametrization of the di�erence between the various
curves for c � 1 which is actually observed for x > 3. Only for large x can we use a
parametrization like (47) due to the problems with unknown subleading corrections, as
mentioned above.

As mentioned in sec. 2 the string susceptibility is an aspect of the fractal structure of
quantum gravity we get for free in our computer simulations if we use the \minbu surgery"
update algorithm. In contrast to the Hausdor� dimension the string susceptibility s
shows a clear dependence on the conformal matter coupled to gravity even for c < 1.
In �g. 9 we have shown a measurement of s for the various matter theories. It should
be compared to �g. 6. It is seen that s ! 1=2 relatively fast above c = 1. All this
corroborates on the idea that the scaling limit for c large is that of branched polymers.
They have Hausdor� dimension 2 and  = 1=2. Several remarks are in order. While
the measured s for c < 1 agree well with the theoretical results, s comes out too small
for c = 1. This is a well known e�ect (cf. [14]) and is due to logarithmic corrections
which are large. If they are included one gets s � 0. These corrections have not been
included in �g. 42 where we have preferred to treat all data set identical, i.e. in this case
without logarithmic correction, which are not present for c < 1 and probably not for c > 1
either. The results for c > 1 are somewhat larger than the previously reported results
[14]. However, the present measurements are performed with an ensemble of manifolds
where the triangulations (represented as by their dual �3 graphs) include tadpoles and
self energy diagrams. This may explain the di�erence. It is somewhat remarkable that
the values of s > 0 seem consistent which a theorem [15] which states that if s > 0 and
all manifolds (after integrating over matter �elds) are counted with positive weight, then
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s = 1=m, where m � 2.

5 The spectral dimension

We now turn to the measurement of the spectral dimension in two-dimensional quantum
gravity.

We can measure the spectral dimension as de�ned by (33). At the discretized level
it is natural to consider random paths between neighboring triangles. In this case the
discretized di�usion equation can be written:

�(i; t+ 1) =
1

3

X
(ij)

�(j; t); (50)

where (ij) is one precisely for the three triangles j with are adjacent to triangle i, and
zero elsewhere. The continuum normalization of � which corresponds to the heat kernel
is �(�; t) = K(�; 0; t), and it translates to the discretized notation as follows:

�0(�; 0) =
1p
g(�)

�(� � �0) ! �0(i; 0) = �i;i0 : (51)

The measurement of the quantum spectral dimension as de�ned by (33) is performed by
generating a number of independent triangulations by the standard Monte Carlo tech-
nique, and for each triangulation solve the di�usion equation (51) and measure the return
probability �(i0; t). The triangle i0 should be picked with even probability since it repre-
sents unit area. From a practical point of view it is convenient to perform an average over
some i0 for each independent triangulation generated by the computer simulations.

As in the case of the Hausdor� dimension it is important to test if the results are
independent of the detailed \microscopic" de�nition of the geodesic distance, since it is
by no means universal. Again a simple test of the universality is obtained by studying
the di�usion using the links instead of the triangles as possible paths, and the shortest
link path between two vertices as a de�nition of the geodesic distance. As in (44) the
area element associated with a vertex v is proportional to the order nv of the vertex. The
analogy of (51) will be

�0(�; 0) =
1p
g(�)

�(� � �0) ! �0(v; 0) =
1

nv
�v;v0 ; (52)

and the di�usion equation (50) will be replaced by:

�(v; t+ 1) =
1

nv

X
(vv0)

�(v0; t); (53)

where the summation is over the nv neighboring vertices v0 to v. The results obtained
this way essentially agree with the results obtained from (50) and (51) but are in fact
considerable better behaved for small t as discussed below. In the following we will show
only the results coming from (52) and (53).

When comparing the measured return probability with the expected t�
�ds=2 two points

are important. The constant function is a normalizable solution of the di�usion equation
on a compact manifold, and the behavior t�

�ds=2 can only be valid for su�ciently small
times on compact manifolds. For large times �(i0; t) will just be constant. Substracting
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the constant does not really help us, since the spectrum of the Laplacian is discrete on
compact manifolds, and this just means that the next lowest eigenfunction will dominate
for large t. We expect the behavior to be the correct one only up to times which are
of order or the inverse of the lowest eigenvalue di�erent from zero. The second problem
is that the behavior t�

�ds=2 is not correct for small t either, due to the discretization.
Clearly it makes no sense to talk about t < 1, but the situation is slightly worse, as is
illustrated by considering a discretized random walk in one dimension. In this case the
return probability is identical zero for odd discretized times t! Here we observe for small t
a marked asymmetry between odd and even t, and it is considerable more pronounced and
last for longer time if we use the return probability �(i0; t) coming from (50)-(51) rather
than if we use �(v0; t) from (52)-(53).

In principle these problems should disappear in the continuum limit, since the eigen-
value density increases with increasing discretized volume8N . However, in order to use
as e�ciently as possible the small t behavior we have imitated a continuous time in the
following way: We can write the solution to (53) as follows

�(v; t) = (1 + �̂dscr)tvv0�0(v
0; 0); (54)

where the V �V matrix �̂dscr
vv (V being the number of vertices in the triangulation) is the

discrete Laplacian corresponding to the di�usion equation (53)

�̂dscr
vv0 �(v

0) =
1

nv

X
(vv0)

(�(v0)� �(v)) (55)

where the summation again is over the vertices v0 which are neighboring v. The solution
to the continuous di�usion equation (24) is given by

�(�; t) =

Z
dd�0

h
eT �̂g

i
(�; �0)�0(�

0; 0): (56)

We copy this formula by replacing the solution (54) by

~�(v; t) = (1 +
t

n
�̂dscr)nvv0�0(v

0; 0); (57)

where n > t. For n ! 1 the operator in (57) obviously goes et�̂
dscr

which is what we
want. From a practical point of view it has the advantage that simply evolving the original
di�usion equation (53) n steps we know the vectors [(1 + �̂dscr)n�0](v), and this is all we
need in order to calculate ~�(v; t) for t < n. This imitation of continuous time behavior
(but with a discrete Laplacian �̂dscr) yields a much smoother small t behavior, and the
data in �g. 10 and �g. 11 are obtained this way.

In �g. 10 we have shown the typical return probability as a function of time for c = 0
(pure gravity), c = 1=2, c = 1 and c = 2; 3; 4; 5. We observe that the spectral dimension is

consistent with 2 for c � 1 and that it decreases for c > 1.
Since we solve the di�usion equation on each of the generated manifolds we can in ad-

dition determine the average length of di�usion at time t and compare with the theoretical

8While the eigenvalue density increases at the discretized level, the continuum spectrum should be

(approximately) constant (and of course discrete) since the continuum volume V = Na2, a being the

lattice spacing, is assumed to be constant. It comes about because we have to multiply each discrete

eigenvalue of the discretized Laplacian with 1=a2 in order to approximate the continuum Laplacian.
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formula (38). The results are shown in �g. 11 for c =0, 1, 3 and 5, and they are consistent
with a dependence

hrit � t4: (58)

This lead us to

Conjecture: �ds = 2 for the central charge c � 1. dh = 2 �ds for all �nite values of c.

6 Finite size scaling

Finite size scaling has been a very important tool in the analysis of critical systems in
statistical mechanics. Likewise it has been a convenient tool in the analysis of computer
simulations of quantum gravity [16]. However, in the latter case the theoretical basis is
not well understood. It is the purpose of this section to present the present situation in
two-dimensional quantum gravity, where we have available some analytical tools.

One basic assumption in the theory of critical phenomena is that of a divergent corre-
lation length. Let us consider a d-dimensional spin system where the inverse temperature
is denoted �, the inverse critical temperature �c, and

t � (�c � �)=�c: (59)

We denote the correlation length which diverges for t! 0 by �(t):

�(t) � t�� for t! 0: (60)

The scaling hypothesis states that � is the only relevant intrinsic scale. Assume that the
singular part of the free energy per unit volume f(�) behaves like t2��. If we are slightly
above the critical temperature, a uctuation away from the ordered state by � produces
an increase �f � t2���d. The probability of such uctuation is e��f , and it becomes
small for �f > 1. By this heuristic argument one arrives at �(t) � t�(2��)=d, i.e.:

f(t) = t�d and � = 2� �d: (61)

Assuming (61) is called the hyperscaling hypothesis. � is the exponent of the singular part
of the speci�c heat c(�), since we get the speci�c heat by di�erentiating f(�) two times
after �. Di�erentiating one time we get the singular part of the internal energy "(t), i.e.

"(t) � t1��; c(t) � t��: (62)

The spin-spin uctuations will be long ranged when t ! 0. From general arguments one
expects the following behavior:

h�(r)�(0)i � 1

rd�2+�
g(

r

�(t)
); (63)

where g(0) = 1 and g(x) falls o� exponentially for large x. The second derivative of the
free energy per unit volume with respect to an external magnetic �eld is the magnetic (or
spin) susceptibility

�(t) =

Z
ddx h�(x)�(0)i � �(t)2�� ; (64)
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where �(x) denote the continuum limit of the spin �eld, i.e. we have

�(t) � t�m ; and m = �(2� �); (65)

where m is the magnetic susceptibility. These standard scaling relations can partly be
derived by renormalization group arguments and they are readily converted into �nite size
scaling relations by assuming that the peak in speci�c heat and spin susceptibility occur
at the so-called pseudo critical point where

t�d � V �1; (66)

V denoting the bulk volume of the system. It just tells us that the correlation length is
of the order of the linear extension of the system and that singular part of the free energy
F (t) = V f(t) is of order one at this point. By substituting (66) in the formulas above
we get that the singular parts of the speci�c heat and spin susceptibility at the pseudo
critical point behave as:

�(V ) � V m=�d; c(V ) � V �=�d: (67)

The set of �nite size scaling relations is most readily derived by assuming that certain �elds
and composite operators �i, here the spin �eld and the energy operator, have well-de�ned
scaling dimensions

�
(0)

i = (d� 2 + �i)=2 (68)

close to the �xed point. If this is the case, we get for dimensional reasons:

�Z
V
ddx1 � � �

Z
V
ddxn�1(x1) � � ��n(xn)

�
� V n�(�(0)

1
+����(0)

n )=d: (69)

In the case of the spin system this allows us to express the critical exponents in terms of

the scaling dimensions of the spin �eld �
(0)
� and the energy density �

(0)
" . In the case of

the energy density we get "(V ) � V ��
(0)
" =d, while for the magnetization we get m(V ) �

V ��
(0)
� =d. A factor 1=V has been divided out compared to (69), since the quantities "(V )

and m(V ) are de�ned per unit volume. For the speci�c heat and the spin susceptibility
we get:

c(V ) =
1

V

Z
V
ddx

Z
V
ddy h�"(x)�"(y)i � V 1�2�(0)

" =d; (70)

�(V ) =
1

V

Z
V
ddx

Z
V
ddy h��(x)��(y)i � V 1�2�(0)

� =d: (71)

If we compare with (67) we can write:

� = �d(1� 2�(0)
" =d); m = �d(1� 2�(0)

� =d): (72)

Finally the relation of the �
(0)
" and �

(0)
� to the renormalization group is established by

the well-known fact that the relevant eigenvalues under a scaling with � are given by �1=�

and �yh where
1

�
= d��(0)

" ; yh = d��(0)
� : (73)

The scaling ansatz of DDK [17] generalizes (70)-(71) to 2d quantum gravity by simply
replacing

R
V d2x by

R
d2x

p
g, moving the ket and bra outside the integration in order to
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include the gravitational average over 2d-manifolds with volume V . For a conformal �eld
theory with central charge c the change in �(0) is given by:

� =

p
25� c+ 12�(0) �p1� cp

25 � c�p1� c
: (74)

This is the �nite size scaling according to DDK and in this way it is possible to calcu-
lated the gravity modi�ed exponents �, � and m for the spin system as long as c � 1.
What is missing in order to get a description as detailed as that of ordinary statistical
mechanics is the concept of a divergent correlation length and a corresponding relation
to the renormalization group. The concept of geodesic distance, as introduced in the last
section, provides a natural framework in which it should be possible to have relations like
(63) and (64). A possible de�nition of the two-point function for a given �eld � and �xed
volume V is9

h�(r)�(0)iV =
1

V Z(V )

Z Z
D[gab]D� e�S

Z Z q
g(�)

q
g(�0)�(�)�(�0) �(d(�; �0)� r); (75)

where S denotes the combined action of gravity and matter �elds and the Z(V ) denotes
the partition function for �nite volume V .

From dimensional arguments we have to conjecture that the quantum gravity gener-
alization of (63) and (68) should be

h�(r)�(0)iV �
rdh�1

r2��dh=d
g(

r

�(t)
); (76)

where dh is the Hausdor� dimension and �(t) the correlation length, measured in geodesic

distance unit. For t ! 0 we assume that �(t) diverges for in�nite V , while f(0) is �nite.
This conjecture leads to the correct scaling

Z V 1=dh

0

dr h�(r)�(0)iV � V 1�2��=d (77)

at the critical point. If we assume that �(t) divergences as t�� we get in addition the
analogue of Fishers scaling relation:

� = �dh(1� 2��=d); (78)

where � is the susceptibility exponent for the �-� correlator, de�ned as for the ordinary
spin-spin correlator. It should be compared to (72). d has been replaced by dh when
combined with � and the \bare" scaling exponent by the dressed one, related as in (74)
in the two-dimensional case.

The conjecture (76) has the appealing feature that it attributes a physical interpreta-
tion of the scaling dimension at the level of correlation functions, precisely as for a �xed
manifold, but the question is whether it is correct. It has not yet been proven that there

9It is possible to adapt several, slightly di�erent de�nitions of the correlation functions in quantum

gravity. The one chosen here includes an angular average. We could choose to divide by this angular

average, either inside the functional integration in (75), or outside the the functional integration, in which

case one (by (13)) should replace the normalization V Z(V ) by GV (R). In addition one should strictly

speaking also de�ne the connected part of the correlator. For the scaling arguments presented here it is

not necessary.
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exits a divergent correlation length �(t) in quantum gravity in the way de�ned above.
We view this as one of the most interesting unsolved problems in two-dimensional quan-
tum gravity. In principle the answer can be found by numerical simulations, although it
seems di�cult presently to measure the spin-spin correlation functions with su�ciently
accuracy10. The Ising model coupled to quantum gravity seems to be an ideal test model
for the conjecture (76).

7 Discussion

In this paper we have presented arguments in favor of a spectral dimension equal two in
quantum gravity as long as c � 1. In the same regime of central charge the Hausdor�
dimension is measured to be close to four. These measurements are in agreement with
recent independent numerical simulations for 0 < c < 1, as well as somewhat older sim-
ulations for c = �2. In addition we have shown that both the Hausdor� dimension and
the spectral dimension decrease for large c, while their ratio stays approximately equal to
two.

The observation that the Hausdor� dimension, within the numerical accuracy of these
simulations, is the double of the spectral dimension calls for a simple geometrical expla-
nation. Does the fact that we have a non-zero probability for baby universe creation per
unit area automatically imply dh = 2 �ds?

The spectral dimension and the Hausdor� dimension seemingly test two di�erent as-
pects of the dimensionality of an ensemble of manifolds. As argued in the introduction
it is not so easy to understand why the spectral dimension of the ensemble of manifolds
should be di�erent from the dimension of the underlying manifold, while we do not have
the same conceptional di�culties with the Hausdor� dimension, but the fact that both
seem constant for �1 < c � 1 indicates that both should be considered as intrinsic prop-

erties of two-dimensional quantum gravity, independent of the coupling to matter. The
change in spectral dimension (and in Hausdor� dimension) for c > 1 thus indicates a
drastic change in the theory, and it corroborates on the idea that for c > 1 (or at least
for c su�ciently large) the interaction between matter and gravity is so strong that the
two-dimensional surface is torn apart. In the regularized, well-de�ned theory, described
by dynamical triangulations, this seems to take place simply by a change in the ensemble
of triangulated manifolds. The probability of picking a piecewise linear manifold, which is
so degenerate (branched ?) that it does not qualify as a genuine two-dimensional manifold
becomes one. This is seen in the computer simulations. The spectral dimension of all the
individual triangulations decreases below two. However, it should be emphasized that the
new theory for c > 1 seems not to be arbitrary. It keeps for instance the ratio between
dh= �ds � 2. For large c the theory probably degenerates to that of branched polymers, but
there might be a region 1 < c < c0 where we have a non-trivial statistical theory. It is an
interesting theoretical problem to understand this region.

10In [5] the spin-spin correlation function is measured, but no power law observed. The decay is �tted

better to an exponential decay. It is presently di�cult to give an interpretation to this result.
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8 Appendix

8.1 Numerical calculation GV (R).

The Green function GV (R) is the inverse Laplace transform of G�(R), i.e.

GV (R) =

Z c+i1

c�i1

d�

2�i
e�V G�(R) =

1

12
p
�V 7=4

U
� R

V 1=4

�
; (79)

where c is a positive real number and U(x) = xdh�1F (x) is the dimensionless functions
de�ned by (20) and (21). The constant 1=12

p
� is introduced to ensure the correct nor-

malization (21) of U(x):

U(x) = 12
p
�

Z c+i1

c�i1

ds

2�i
es s3=4

cosh(xs1=4)

sinh3(xs1=4)
: (80)

The discretized version nN(r), as de�ned by (41), is related to U(r=N1=4) in the limit of
large N by

nN (r) =
�

N1=4
U(

�r

N1=4
); (81)

where � is a constant parameter which depends on the regularization. In the case of the
dynamical triangulations used here (which corresponds to one-matrix model with cubic

potential) � =
q
6=(12 + 13

p
3).

We now calculate the function U(x) by performing numerically the inverse Laplace
transformation. Four di�erent methods are used:

i) direct numerical integration after s,

ii) analytic integration, after the mode expansion,

iii) saddle point integration, after the mode expansion,

iv) analytic integration after Taylor expansion around x = 0.

Method i) works well expect for x close to 0 (i.e. in practice for x > 1:8), since a
rescaling of s with 1=x leads to the term es=x in the integrand and it oscillates wildly for
x! 0.

Next, we consider the methods ii) and iii). The expansion

cosh s= sinh3 s = 4
1X
n=1

n2 exp(�2ns)

can be given an interpretation as a \mode expansion" [1], and we can write

U(x) = 48
p
�

1X
n=1

n2u(nx=2); (82)

where

u(t) =

Z c+i1

c�i1

ds

2�i
exp(s� 4ts1=4) s3=4: (83)

Our task is now to evaluate (83) and next perform the summation (82).
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It is possible to express u(t) in terms of \known" functions since the inverse Laplace
transform of sa�1 exp(�(bs)1=m) (m = 1; 2; 3; : : :) can be expressed by the imaginary part
of McRobert's E-functions. We have

u(t) =
1p

2�5=2t7
=[E(7

4
;
8

4
;
9

4
;
10

4
: : ei�t4)]

= � 3

4�(1=4)
1F3(

7

4
;
1

4
;
1

2
;
3

4
;�t4) + 5�(1=4)t2

2
p
2�

1F3(
9

4
;
3

4
;
5

4
;
3

2
;�t4)

� 8t3p
�

1F3(
5

2
;
5

4
;
3

2
;
7

4
;�t4); (84)

where the hypergeometric function 1F3 is de�ned by

1F3(a; b1; b2; b3; z) =
1X
k=0

(a)k
(b1)k(b2)k(b3)k

zk

k!
; (85)

and (a)k = �(a+ k)=�(a).
In principle we can use (82),(84) and (85) to calculate U(x) for all x. From a practical

point of view it works well except for the smallest value of x, where we have to include
very many terms in (82) and for very large x where we have to include many terms in the
hypergeometric series (85), i.e. in practice in a the region 0:02 < x < 10.

For large values of x it is su�cient to calculate the integral in (83), de�ning u(t) by
the saddle-point method iii). In this case we get:

u(t) =

r
2

3�
e�3t

4=3

t5=3
1X
k=0

Ck t
�4k=3; (86)

where

C0 = 1; C1 = �115

144
; C2 = � 695

41472
; C3 = � 47755

17915904
;

C4 =
20518225

10319560704
; C5 = � 1316690375

1486016741376
; C6 = � 36815854075

1283918464548864
;

C7 =
162818713432375

184884258895036416
; C8 = �

366346837418687125

212986666247081951232
; : : : : (87)

In general the saddle-point series is only an asymptotic series, but if we cut the series in
(86) at k = 5 we get very good agreement with the use of the McRobert's E-functions
for x 2 [1:6; 10]. For large x it is inconvenient to use the McRobert's E-functions, but
for x > 1:8 we have good agreement agreement between the direct integration and the
saddle-point approximation, which is of course the most convenient to use for x!1.

The McRobert's E-functions becomes impractical for x < 0:02. For small x we can
turn to method iv). If we Taylor expand the integrand in (80) for small x we get the
following asymptotic expansion:

U(x) = �48x3
1X
k=0

(5
2
)k

(5
4
)k(

3
2
)k(

7
4
)k

�(�4k � 5)

k!
(�x

4

16
)k: (88)

Eq. (88) is also obtained by substituting (85) into (82) with (84) and using the zeta-
functional regularization,

P1
n=1 n

z = �(�z). The convergence radius of the expansion is
zero, but if we cut o� the summation at k, and de�ne this function as Uk(x), we expect to
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get a good approximation for small x. By comparing with the results from the McRobert's
E-function we get good agreement for x 2 [0:02; 1:6] if we use U9(x). Of course U9(x) gives
an excellent approximation for 0 � x < 0:02 where we could not use easily the McRobert's
E-functions. In this way we have managed to cover the whole interval 0 < x < 1, and
except for x 2 [0; 0:02], by at least two independent approximations.

8.2 Asymptotic expansions in the general case

As discussed in the introduction the generalization of (79) and (80) is:

GV (R) =

Z c+i1

c�i1

d�

2�i
eV � G�(R) � V s�1��U(

R

V �
); (89)

where � = 1=dh and

U(x) = const:

Z c+i1

c�i1

ds

2�i
ess��sF̂ (xs�): (90)

The leading term in the expansion of F̂ (u) is us=��1, i.e. the integrand starts with a term
in s which does not contribute to the Laplace transformation for �nite volume (it gives a
�-function in the volume). In fact we know that the �rst term which can contribute must
be the term u1=��1, which has to be present in the expansion. If we expand the integrand
in (80) for small x, it contains odd powers of x. However, for half of these powers the
function which multiplies es is just an integer power of s, which does not contribute to the
inverse Laplace transformation for �nite area. This is the reason the expansion (88) jumps
with powers of 4 in x. If we accept from the numerical experiments that the Hausdor�
dimension dh = 4 we have to use � = 1=4 in (90). If we at the same time use s = �1=m,
for the (m;m + 1) conformal �eld theory, the function F̂ (u) has to be quite special. In
fact it is natural to expect an expansion:

F̂ (u) = us=��1
1X
k=0

ck(u
�s=�)k (91)

where the �rst k which gives a contribution to the inverse Laplace transformation for
V > 0 is determined by the requirement that the power of u should be � � 1 (in order to
give Rdh�1), i.e.

s

�
(1� k) =

1

�
; i:e: k = m+ 1: (92)

The above scenario is not very natural, but it is nevertheless realized in the case of pure
gravity (m = 2). For m 6= 2 there are no obvious reasons to expect that the �rst correction
term to U(x) should be x7 as is the case form = 2 since the most naive choice of correction
term from (91) appears to be x3�s=� .

There is another natural extension of pure gravity in the asymptotic form. We may
expect

F̂ (u) = ua
1X
n=1

�(n)e�nu
b

: (93)

In the case of pure gravity, a = 0, b = 1, and �(n) = n2. If dh = 4 for any m, i.e.,
U(x) � x3 + : : : for x � 0, we �nd that

a = 3(1� b); b =
2

m
; and �(n) =

1X
i=1

ain
2i; (94)
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is a natural extension. Then, the leading term of F̂ (u) becomes

F̂ (u) � u3(1�2=m) exp(�u2=m): (95)

After the inverse Laplace transformation we have

U(x) � exp(�const:x4=(2m�1)): (96)
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Figure 1: The \shift" in r = cx� a as described by (43) for various size systems (N =4K,
8K, 16K and 32K) in pure gravity. The slope can be �tted to c = N1=4 + b, i.e. the 32K
system corresponds to the graph with the steepest slope.
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Figure 2: The function (r + a)=(N1=4 + b), a = 5:5, b = �:45, plotted against x (i.e. eq.
(43)) for pure gravity and for N = 1K, 2K, 4K,..., 32K.
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Figure 3: The scaled distributions for pure gravity for systems of sizes 1K, 2K, 4K,....,
32K triangles, as well as the theoretical distribution (the fully drawn line) as a function
of the scaled variable x = (r + 5:5)=(N1=4 � 0:45).
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Figure 4: The derivative dn(r(x))=dx plotted against x for pure garivity. The same sizes
of systems as in �g. 3 and again the fully drawn line is the theoretical curve.
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Figure 5: The scaled distributions n(r(x)) as well as the logarithmic derivative
d log n(r(x))=dx for c= 1/2, 1, 3 and 5. In constructing the mapping (43) we have as-
sumed dh = 4 for c = 1=2 and c = 1, dh = 3 for c = 3 and dh = 2 for c = 5. The constants
a; b determined this way are quite close to the pure gravity values for c = 1=2 and c = 1.
In all cases the data include the following discretized volume sizes: N = 1K, 2K, 4K,
...,32K
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Figure 6: The Hausdor� dimension as determined by the �nite size scaling relation for c =
0, 1/2, 4/5, 1, 2, 3, 4, and 5. Contrary to �g. 5 dh has been treated as a free parameter in
these �ts and the dots denote the best values of dh.
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Figure 7: d log n(r(x))=dx as in (49) versus x� for c = 0, 1/2, 1 and 5. For c � 1, � � 4
seems to give a well de�ned slope for x ! 0. For c > 1 it seems that � � 2 if a slope at
x! 0 shall exist. All curves include volumes N= 1K, 2K, 4K,...,32K.
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Figure 8: The scaled distribution for the various conformal theories with c � 1 coupled
to gravity. The size of the systems is N = 16000. The values of c is 0 (the highest peak)
1/2, 4/5 and 1 (the lowest peak). The parameters dh; a and b used in (43) been chosen
identical to the ones used in pure gravity (dh = 4, a = 5:5 and b = �0:45), but even if
these parameters are chosen from the best �t to the �nite size scaling formulas the graphs
shown will almost be unchanged. Note how well the results agree for small x (x � 3).
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Figure 9: The measured string susceptibility versus central charge. No logarithmic cor-
rections are used in the �ts, even for c = 1. This is the reason the result for c = 1 is not
the correct one (i.e. s(c = 1) = 0).
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Figure 10: �2d log Tr K̂(t)=d log t (� �ds) versus t for c = 0 (top curve), c = 1=2, c = 1,
c = 3 and c=5 (bottom curve) theories coupled to 2d quantum gravity. The size of the
systems is N=16K.
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Figure 11: hr(t)i4 versus t for various theories of matter coupled to gravity (c =0 (bottom
curve), c = 1, c = 3 and c = 5 (top curve)). The system size is N = 4K. Straight lines (as
observed) indicate 2dh= �ds = 4 according to (38)
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