Dual Polyhedra, Mirror Symmetry

and

Landau-Ginzburg Orbifolds

Hitoshi Sato
Graduate School of Science and Technology, Kobe University
Rokkodai, Nada, Kobe 657, Japan
email address : UTOSA@JPNYITP.BITNET

Abstract

New geometrical features of the Landau-Ginzburg orbifolds are presented, for models with a typical type of superpotential. We show the one-to-one correspondence between some of the (a, c) states with $U(1)$ charges $(-1,1)$ and the integral points on the dual polyhedra, which are useful tools for the construction of mirror manifolds. Relying on toric geometry, these states are shown to correspond to the $(1,1)$ forms coming from blowing-up processes. In terms of the above identification, it can be checked that the monomial-divisor mirror map for Landau-Ginzburg orbifolds, proposed by the author, is equivalent to that mirror map for Calabi-Yau manifolds obtained by the mathematicians.

Mirror symmetry was first discovered in the context of string compactification [1, 2, 3]. Due to the relative sign of the two $U(1)$ charges, one $(2,2)$ superconformal field theory allows two geometrical interpretations, i.e. topologically distinct Calabi-Yau manifolds \mathcal{M} and \mathcal{W}. Assuming that mirror symmetry is true, some Yukawa couplings can be determined exactly $[4,5,6]$. However, recent analysis of mirror symmetry is purely geometrical.

Batyrev [7] proposed a powerful method for constructing the mirror manifolds of a certain class of Calabi-Yau manifolds. He showed that a pair of $\left(\Delta, \Delta^{*}\right)$ gives a CalabiYau manifold, where Δ is a (Newton) polyhedron corresponding to monomials and Δ^{*} is a dual (or polar) polyhedron describing the resolution of singularities, i.e. a point on a one- or two-dimensional face of Δ^{*} corresponds to a $(1,1)$ form coming from resolution. Batyrev observed that the exchange of the roles of $\left(\Delta, \Delta^{*}\right)$ produces a mirror manifold.

Landau-Ginzburg models of $N=2$ superconformal field theories are closely related to Calabi-Yau manifolds because of their (anti-)chiral ring structures. If we consider the theory with $c=9$, the (p, q) forms on a Calabi-Yau manifold can be identified with $(3-p, q)$ states of the (c, c) ring or $(-p, q)$ states of the (a, c) ring, where $c(a)$ stands for (anti-)chiral and the states are labeled by the $U(1)$ charges. These (c, c) and (a, c) rings can be described in terms of the Landau-Ginzburg models.

In this paper, we will find a very simple relation between a $(-1,1)$ state and a point on a face of Δ^{*}, when a typical type of Landau-Ginzburg models are considered. Hence we can identify a $(-1,1)$ state and a $(1,1)$ form coming from blowing-up processes in a simple and exact way. Furthermore, we will show that the monomial-divisor mirror map for Landau-Ginzburg orbifolds proposed in ref.[8] is equivalent to that mirror map of Calabi-Yau manifolds [9,5]. These are useful extensions of the results in the previous paper [8]. Our method gives us the possibility to study the new geometric content of a class of $N=2$ superconformal field theories.

In this paper, we will restrict our attention to the superpotential of a form $W\left(X_{i}\right)=$ $X_{1}^{a_{1}}+X_{2}^{a_{2}}+X_{3}^{a_{3}}+X_{4}^{a_{4}}+X_{5}^{a_{5}}$, which corresponds to the Fermat type hypersurface in $W C P^{4}$. The Landau-Ginzburg orbifolds are obtained by quotienting with an Abelian symmetry group G of $W\left(X_{i}\right)$, whose element g acts as an $N \times N$ diagonal matrix, $g: X_{i} \rightarrow e^{2 \pi i \tilde{\theta}_{i}^{g}} X_{i}$, where $0 \leq \tilde{\theta}_{i}^{g}<1$. Of course the $U(1)$ twist $j: X_{i} \rightarrow e^{2 \pi i q_{i}} X_{i}$ generates the symmetry group of $W\left(X_{i}\right)$, where $q_{i}=\frac{w_{i}}{d}, W\left(\lambda^{w_{i}} X_{i}\right)=\lambda^{d} W\left(X_{i}\right)$ and $\lambda \in \mathbb{C}^{*}$. In this paper, we further require that $w_{5}=1$ since the toric description of the corresponding Calabi-Yau mirror manifolds are well-known $[7,5]$.

Using the results of Intriligator and Vafa [10], we can construct the (c, c) and (a, c)
rings. Also we could have the left and right $U(1)$ charges of the ground state $|h\rangle_{(\mathrm{a}, \mathrm{c})}$ in the h-twisted sector of the (a, c) ring. In terms of spectral flow, $|h\rangle_{(a, c)}$ is mapped to the (c,c) state $\left|h^{\prime}\right\rangle_{(\mathrm{c}, \mathrm{c})}$ with $h^{\prime}=h j^{-1}$. Then the charges of the (a,c) ground state of h-twisted sector $|h\rangle_{(\mathrm{a}, \mathrm{c})}$ are obtained to be

$$
\begin{equation*}
\left.\left.\left.\binom{J_{0}}{\bar{J}_{0}} \quad|h\rangle_{(\mathbf{a}, \mathbf{c})}=\binom{-\sum_{\tilde{\theta}_{i}{ }^{h^{\prime}}>0}\left(1-q_{i}-\tilde{\theta}_{i}{ }^{h^{\prime}}\right)+\sum_{\tilde{\theta}_{i}}{ }^{h^{\prime}}=0}{\sum_{\tilde{\theta}_{i}{ }^{h^{\prime}}>0}\left(1-q_{i}-\tilde{\theta}_{i}{ }^{h^{\prime}}\right)} \right\rvert\, h q_{i}-1\right)\right\rangle_{(\mathbf{a}, \mathbf{c})} . \tag{1}
\end{equation*}
$$

Using this result, we see that the $(-1,1)$ states written in the form $\left|j^{l}\right\rangle_{(\mathrm{a}, \mathrm{c})}$ can always arise from the twisted sector with $I^{\prime}=0$, where I^{\prime} is the number of the invariant fields X_{i} under the h^{\prime} action. Using the results of ref.[11], it was shown [8] that as long as we consider the Landau-Ginzburg models with no or one trivial field, the $(-1,1)$ states which can be represented by $\left|j^{l}\right\rangle_{(\mathrm{a}, \mathrm{c})}$ may exist only in the twisted sector with $I^{\prime}=0$.

Let us turn our attention to geometry. Calabi-Yau manifolds are represented by hypersurfaces in $W C P$. In general, due to the $W C P$ identification $z_{i} \sim \lambda^{w_{i}} z_{i}, \lambda \in \mathbb{C}^{*}$, we have some fixed sets on a hypersurface. When we consider Calabi-Yau 3-folds, possible fixed sets are fixed points and fixed curves. To obtain a smooth Calabi-Yau manifold we have to blow up these singularities.

Those Calabi-Yau resolutions can be described in terms of toric geometry [7,5]. Toric geometry describes the structure of a certain class of geometrical spaces in terms of simple combinatorial data. To investigate the mirror symmetry, Batyrev's construction is useful. We will briefly summarize this method. Details are presented in $[7,5]$.

A (Newton) polyhedron $\Delta(w)$ is associated to monomials, where w means the set of weights w_{i}. A dual polyhedron $\Delta^{*}(w)$ allows us to describe the resolution of singularities. Integral points on faces of dimension one or two of $\Delta^{*}(w)$ correspond to exceptional divisors. More precisely, points lying on a one-dimensional edge correspond to exceptional divisors over singular curves, whereas the points lying in the interior of two-dimensional faces correspond to the exceptional divisors over singular points. So, integral points on faces of $\Delta^{*}(w)$ correspond to the $(1,1)$ forms coming from blowing-up processes.

Since we consider the Fermat type quasihomogeneous polynomial, the corresponding Calabi-Yau hypersurface consists of monomials $z_{i}^{d / w_{i}}(i=1, \cdots, 5)$. The associated 4dimensional integral convex polyhedron $\Delta(w)$ is the convex hull of the integral vectors m of the exponents of all quasi-homogeneous monomials of degree d shifted by $(-1, \ldots,-1)$,
i.e. $\prod_{i=1}^{5} z_{i}^{m_{i}+1}$:

$$
\begin{equation*}
\Delta(w):=\left\{\left(m_{1}, \ldots, m_{5}\right) \in \mathbb{R}^{5} \mid \sum_{i=1}^{5} w_{i} m_{i}=0, m_{i} \geq-1\right\} . \tag{2}
\end{equation*}
$$

This implies that only the origin is the point in the interior of Δ. Its dual polyhedron is defined by

$$
\begin{equation*}
\Delta^{*}=\left\{\left(x_{1}, \ldots, x_{4}\right) \mid \sum_{i=1}^{4} x_{i} y_{i} \geq-1 \text { for all }\left(y_{1}, \ldots, y_{4}\right) \in \Delta\right\} \tag{3}
\end{equation*}
$$

In our case it is known that $\left(\Delta, \Delta^{*}\right)$ is a reflexive pair. An l-dimensional face $\Theta \subset \Delta$ can be represented by specifying its vertices $\mathrm{v}_{i_{1}}, \cdots, \mathrm{v}_{i_{k}}$. Then the dual face Θ^{*} is a ($4-l-1$)-dimensional face of Δ^{*} and defined by

$$
\begin{equation*}
\Theta^{*}=\left\{x \in \Delta^{*} \mid\left(x, \mathrm{v}_{i_{1}}\right)=\cdots=\left(x, \mathrm{v}_{i_{k}}\right)=-1\right\}, \tag{4}
\end{equation*}
$$

where $(*, *)$ is the ordinary inner product.
For our type of models, we then always obtain as vertices of $\Delta(w)$

$$
\begin{align*}
& \nu_{1}=\left(d / w_{1}-1,-1,-1,-1\right), \nu_{2}=\left(-1, d / w_{2}-1,-1,-1\right), \nu_{3}=\left(-1,-1, d / w_{3}-1,-1\right) \\
& \nu_{4}=\left(-1,-1,-1, d / w_{4}-1\right), \nu_{5}=(-1,-1,-1,-1) \tag{5}
\end{align*}
$$

and for the vertices of the dual polyhedron $\Delta^{*}(w)$ one finds

$$
\begin{align*}
& \nu_{1}^{*}=(1,0,0,0), \quad \nu_{2}^{*}=(0,1,0,0), \quad \nu_{3}^{*}=(0,0,1,0), \quad \nu_{4}^{*}=(0,0,0,1), \\
& \nu_{5}^{*}=\left(-w_{1},-w_{2},-w_{3},-w_{4}\right) \tag{6}
\end{align*}
$$

For the Fermat type hypersurfaces of degree d, the explicit form of the monomialdivisor mirror map has been already studied. Through this map, integral points μ in $\Delta^{*}(w)$ are mapped to monomials of the homogeneous coordinates of $W C P^{4}$ by

$$
\begin{equation*}
\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right) \mapsto \frac{\prod_{i=1}^{4} z_{i}^{\mu_{i} d / w_{i}}}{\left(\prod_{i=1}^{5} z_{i}\right)^{\left(\sum_{i=1}^{4} \mu_{i}\right)-1}} . \tag{7}
\end{equation*}
$$

In the following we will associate an integral point inside $\Delta^{*}(w)$, i.e. an exceptional divisor, with a $(-1,1)$ state which can be written in the form $\left|j^{-l}\right\rangle_{(\mathrm{a}, \mathrm{c})}$.

To explain our method, we define the phase symmetries ρ_{i} which act on X_{i} as

$$
\begin{equation*}
\rho_{i} X_{i}=e^{2 \pi i q_{i}} X_{i}, \tag{8}
\end{equation*}
$$

with trivial action for other fields. The operator ρ_{i} can be represented by a diagonal matrix whose diagonal matrix elements are 1 except for $\left(\rho_{i}\right)_{i, i}=e^{2 \pi i q_{i}}$. It is obvious that

$$
\begin{equation*}
j=\rho_{1} \cdots \rho_{5} \tag{9}
\end{equation*}
$$

In ref.[8] the mirror map for the (a, c) ground states in the j^{-l}-twisted sector $\left|j^{-l}\right\rangle_{(\mathrm{a}, \mathrm{c})}$ are considered. In the j^{-l}-twisted sector, if a field X_{i} is invariant then

$$
\begin{equation*}
\rho_{i}^{-l}=\rho_{i}^{-l_{i}}=\text { identity }, \tag{10}
\end{equation*}
$$

where $-l_{i} \equiv-l \bmod a_{i}$ and one gets

$$
\begin{equation*}
j^{-l}=\prod_{-q_{i} \notin \mathbf{Z}} \rho_{i}^{-l_{i}} . \tag{11}
\end{equation*}
$$

So, we may represent $\left|j^{-l}\right\rangle_{(\mathrm{a}, \mathrm{c})}=\left|\Pi_{-l_{q_{i}} \notin \mathrm{Z}} \rho_{i}^{-l_{i}}\right\rangle_{(\mathrm{a}, \mathrm{c})}$. Furthermore, we can calculate the $U(1)$ charges of this state using eq.(1) and the result is

$$
\begin{equation*}
\left(-\sum_{-l q_{i} \notin \mathbf{Z}} l_{i} q_{i}, \sum_{-l q_{i} \notin \mathbf{Z}} l_{i} q_{i}\right) . \tag{12}
\end{equation*}
$$

The eq.(11) is the key equation for our purpose. This implies

$$
\begin{equation*}
-l q_{i}=u_{i}-l_{i} q_{i} \quad \text { for } i=1 \sim 5 \tag{13}
\end{equation*}
$$

where $-l_{i}$ are defined to be $-a_{i}+1 \leq-l_{i} \leq 0$. Thus u_{i} are uniquely determined. Clearly, u_{i} are integers and $u_{i}=0$ if X_{i} is invariant under j^{-l} action (see eq.(11)). u_{5} always vanish since $w_{5}=1$.

Let $u \equiv\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ be an integral vector. In the following we will show that u is on a face of $\Delta^{*}(w)$. So we should assert that u is just an integral point inside $\Delta^{*}(w)$, which can be identified with the exceptional divisors. Through this identification, we obtain the one-to-one correspondence between the $(-1,1)$ state $\left|j^{-l}\right\rangle_{(\mathrm{a}, \mathrm{c})}$ and the exceptional divisor. Moreover, once this identification is made, we can see that the monomial-divisor mirror map for Calabi-Yau manifolds, i.e. eq.(7), is equivalent to that mirror map for Landau-Ginzburg orbifolds conjectured in ref.[8].

First, we show that u is a point on a dual face Θ^{*} of $\Delta^{*}(w)$. A dual face Θ^{*} is specified by some of the vertices $\left\{\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}, \nu_{5}\right\} \subset \Theta$ through the eq.(4). So, we have to show that there are some vectors ν_{j} satisfying

$$
\begin{equation*}
\left(u, \nu_{j}\right)=-1 \quad \text { for some } j . \tag{14}
\end{equation*}
$$

To prove this, we consider the invariant field X_{j} under j^{-l} action. This implies $-l q_{j}=u_{j}$. It can be shown that the corresponding vector ν_{j} satisfies eq.(14). Denote by $\left(\nu_{j}\right)_{i}$ the i-th component of the vector ν_{j}. Multiplying u_{i} by $\left(\nu_{j}\right)_{i}$ and using eq.(13), one finds

$$
\begin{equation*}
\left(u, \nu_{j}\right)=-\sum_{i=1}^{5} l_{i} q_{i} \tag{15}
\end{equation*}
$$

where we have used $\sum_{i=1}^{5} q_{i}=1, u_{5}=0$ and $-l q_{j}=u_{j}$.
It should be noticed that the right hand side of eq.(15) is nothing but the left $U(1)$ charge of the state $\left|j^{-l}\right\rangle_{(\mathrm{a}, \mathrm{c})}$. Since we consider the $(-1,1)$ state, it has been proved that eq.(14) holds for the vector ν_{j} with $-l q_{j}=u_{j}$. Note that Θ^{*} is specified by the vectors $\nu_{j} \subset \Theta$ through eq.(4), whose corresponding fields X_{j} with the same index are invariant under j^{-l} action.

Now we turn our attention to the monomial-divisor mirror map. As mentioned above, the monomial-divisor mirror map for Calabi-Yau manifolds is summarized in eq.(7). In ref.[8], it was conjectured that the monomial-divisor mirror map for Landau-Ginzburg orbifolds is obtained to be

$$
\begin{equation*}
\left|\prod_{-l q_{i} \notin \mathbf{Z}} \rho_{i}^{-l_{i}}\right\rangle_{(\mathrm{a}, \mathbf{c})} \stackrel{\text { mirror pair }}{\longleftrightarrow} \prod_{-l q_{i} \notin \mathbf{Z}}{\overline{X_{i}}}^{l_{i}}|0\rangle \tag{16}
\end{equation*}
$$

where $\overline{X_{i}}$ are the fields of the so-called transposed potential \bar{W} [12]. Evidently, $X_{i}=\overline{X_{i}}$ for our Fermat type potentials.

By identifying the vector μ in eq.(7) with our vector u, we easily obtain

$$
\begin{align*}
u=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) & \mapsto \frac{\prod_{i=1}^{4} z_{i}^{u_{i} d / w_{i}}}{\left(\prod_{i=1}^{5} z_{i}\right)^{\left(\sum_{i=1}^{4} u_{i}\right)-1}} \tag{17}\\
& =\prod_{-l q_{i} \notin \mathbf{z}} z_{i}^{l_{i}} .
\end{align*}
$$

Since the vector u corresponds to the $(-1,1)$ state $\left|j^{-l}\right\rangle_{(\mathrm{a}, \mathrm{c})}$ and z_{i} to $\overline{X_{i}}$, one finds that the two monomial-divisor mirror map, i.e. eq.(7) and (16), are equivalent.

Note that through the eqs.(13) and (17), the origin $\nu_{0}^{*}=(0,0,0,0)$ in $\Delta^{*}(w)$ corresponds to the $(-1,1)$ state $\left|j^{-1}\right\rangle_{(\mathrm{a}, \mathrm{c})}$ and its mirror partner corresponds to the monomial $z_{1} z_{2} z_{3} z_{4} z_{5}$. They always exist for our type of models.

Let us demonstrate our method by taking some examples. Since we have shown $u \in \Theta^{*}$, we change our notation of u into $\nu_{6}^{*}\left(\nu_{7}^{*}, \cdots\right.$ if several u exist $)$.

First we consider the Landau-Ginzburg model with the superpotential

$$
\begin{equation*}
W_{1}=X_{1}^{4}+X_{2}^{4}+X_{3}^{4}+X_{4}^{8}+X_{5}^{8} \tag{18}
\end{equation*}
$$

with $U(1)$ charges of X_{i} being

$$
\begin{equation*}
\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right) \tag{19}
\end{equation*}
$$

which were studied in ref. $[5,8]$. The orbifold model W_{1} / j has a corresponding \mathbb{Z}_{2} fixed curve which can be written

$$
\begin{equation*}
z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0 \quad \text { in } W C P_{(1,1,2,2,2)}^{4} \tag{20}
\end{equation*}
$$

In this model, we have one twisted ground state $\left|j^{-4}\right\rangle_{(\mathrm{a}, \mathrm{c})}$ which corresponds to the resulting one $(1,1)$ form after blowing-up. Since $j^{-4}=\rho_{4}^{-4} \rho_{5}^{-4}$, we can calculate $\nu_{6}^{*}=$ $(-1,-1,-1,0)$. Also it can be seen that ν_{6}^{*} is on the dual face Θ^{*} specified by the vectors $\nu_{1}, \nu_{2}, \nu_{3}$ (in the following we denote by $\Theta^{*}(1,2,3)$ this face). From eq.(16), ν_{6}^{*} is mapped to the monomial $\overline{X_{4}^{4} X_{5}^{4}}$. These are the same results as the ones obtained in [5].

As a more complicated example, we take the following Landau-Ginzburg superpotential

$$
\begin{equation*}
W_{2}=X_{1}^{3}+X_{2}^{3}+X_{3}^{6}+X_{4}^{9}+X_{5}^{18}, \tag{21}
\end{equation*}
$$

with $U(1)$ charges

$$
\begin{equation*}
\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \frac{1}{18}\right) \tag{22}
\end{equation*}
$$

This model is considered in $[6,8]$. The orbifold model W_{2} / j has one corresponding \mathbb{Z}_{2} fixed curve, one corresponding \mathbb{Z}_{3} fixed curve and corresponding \mathbb{Z}_{6} fixed points on the intersections of these curves. They can be written as

$$
\begin{gather*}
\mathbb{Z}_{2} \text { fixed curve } z_{1}^{3}+z_{2}^{3}+z_{4}^{9}=0 \tag{23}\\
\mathbb{Z}_{3} \text { fixed curve } z_{1}^{3}+z_{2}^{3}+z_{3}^{6}=0 \tag{24}\\
\mathbb{Z}_{6} \text { fixed points } z_{1}^{3}+z_{2}^{3}=0 \quad \text { in } W C P_{(6,6,3,2,1)}^{4} . \tag{25}
\end{gather*}
$$

After blowing-up, one obtains four $(1,1)$ forms whose mirror partners can be associated to monomial deformation. It is easy to find the corresponding $(-1,1)$ states written in the form $\left|j^{-l}\right\rangle_{(\mathrm{a}, \mathrm{c})}$, the vectors ν_{j}^{*}, dual faces Θ^{*} on which ν_{j}^{*} are lying, and mirror partners. The results are displayed in Table 1, where we have omitted the bar over X_{i}.

This result agrees with the one obtained in [6] . Note that we do not need any geometrical informations such as the number of fixed sets or the relations among them.

(a,c) state	ν_{j}^{*} vector	dual face	mirror partner
$\left\|j^{-3}\right\rangle_{(\mathrm{a}, \mathrm{c})}$	$\nu_{6}^{*}=(-1,-1,0,0)$	$\Theta^{*}(1,2)$	$X_{3}{ }^{3}{X_{4}{ }^{3} X_{5}{ }^{3}\|\mathbf{0}\rangle}^{\left.\| \| j^{-6}\right\rangle_{(\mathrm{a}, \mathrm{c})}}$
$\nu_{7}^{*}=(-2,-2,-1,0)$	$\Theta^{*}(1,2,3)$	$X_{4}{ }^{6} X_{5}{ }^{6}\|0\rangle$	
$\left\|j^{-9}\right\rangle_{(\mathrm{a}, \mathrm{c})}$	$\nu_{8}^{*}=(-3,-3,-1,-1)$	$\Theta^{*}(1,2,4)$	$X_{3}{ }^{3} X_{5}{ }^{9}\|\mathbf{0}\rangle$
$\left\|j^{-12}\right\rangle_{(\mathrm{a}, \mathrm{c})}$	$\nu_{9}^{*}=(-4,-4,-2,-1)$	$\Theta^{*}(1,2,3)$	$X_{4}{ }^{3} X_{5}{ }^{12}\|\mathbf{0}\rangle$

Table 1: The monomial-divisor mirror map for Landau-Ginzburg orbifolds of W_{2}

In this model, there are two $(-1,1)$ states represented by $X_{1}\left|j^{-2}\right\rangle_{(\mathrm{a}, \mathrm{c})}$ and $X_{2}\left|j^{-2}\right\rangle_{(\mathrm{a}, \mathrm{c})}$. The mirror partners for the corresponding $(1,1)$ forms cannot be described by monomials. Unfortunately, we have not succeeded in associating these states with toric data yet.

In conclusion, we have discovered a simple and direct connection between the LandauGinzburg and the toric descriptions of our class of Calabi-Yau manifolds. In other words, we find that a Landau-Ginzburg orbifold and a corresponding Calabi-Yau manifold have just the same toric data, as far as models with a typical type of superpotentials are concerned. Our method enables us to calculate toric data easily without referring to the geometrical nature of $\Delta^{*}(w)$. We can uniquely identify a $(-1,1)$ state $\left|j^{-l}\right\rangle_{(\mathrm{a}, \mathrm{c})}$ with a $(1,1)$ form resulting from resolution. This would be a useful technique for analyzing the Yukawa couplings, especially when Calabi-Yau manifolds with several $(1,1)$ forms are considered.

The Fermat type superpotential considered in this paper corresponds to the Gepner model of A-type [13]. However, there are non-Fermat-type potentials with only the singularities which can be treated through toric geometry. For example, there is the hypersurface embedded in $W C P_{(1,2,2,2,3)}^{4}$, which gets two toric divisors after blowing up [14]. For this model, our method for the calculation of the vector u could not be applied as it is. Some extensions are needed. We will report it elsewhere [15].

Acknowledgements : The author would like to thank C.S. Lim for careful reading of this manuscript.

References

[1] B.R. Greene and M.R. Plesser, Nucl. Phys. B338 (1990) 15.
[2] W. Lerche, C. Vafa and N.P. Warner, Nucl. Phys. B324 (1989) 427.
[3] L. Dixon, in Superstrings, Unified Theories and Cosmology 1987, G. Furlan et.al.,eds., World Scientific, Singapore (1988).
[4] P. Candelas, X. de la Ossa, P.S. Green and L. Parkes, Phys. Lett. B258 (1991) 118 and Nucl. Phys. B359 (1991) 21.
[5] H. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Commun. Math. Phys. 167 (1995) 301.
[6] P.S. Aspinwall, B.R. Greene and D. Morrison, Phys. Lett. B303 (1993) 249 , Nucl. Phys. B416 (1993) 414.
[7] V. Batyrev, J. Alg. Geom. 3 (1994) 493.
[8] H. Sato, Mod. Phys. Lett. A9 (1994) 3721.
[9] P.S. Aspinwall, B.R. Greene and D. Morrison, Int. Math. Res. Notices (1993) 319.
[10] K. Intriligator and C. Vafa, Nucl. Phys. B339 (1990) 95; C. Vafa, Mod. Phys. Lett. A4 (1989) 1169.
[11] H. Sato, Mod. Phys. Lett. A9 (1994) 885.
[12] P. Berglund and T. Hübsch, Nucl. Phys. B 393 (1993) 377.
[13] D. Gepner, Phys. Lett. B199 (1987) 380 , Nucl. Phys. B296 (1988) 757.
[14] P. Berglund and S. Katz, to appear in Essays on Mirror Manifolds II (Ed. S.-T. Yau), hep-th/9406008
[15] H. Sato, in preparation.

