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1 Introduction

The idea that a �ne structure of space-time should be in
uenced by quan-

tum gravity phenomena is certainly not original but so far there was a little

success in giving it more quantitative expression. String theory constitutes

itself probably the most promising avenue to a consistent theory of quantum

gravity it is therefore of obvious interest to study the structure of spacetime

from the point of view. Though string theory incorporates a minimal lenght

the physical quantities computed in its framework re
ect the symmetry prop-

erties of continuous space-time. The situation is somewhat analogous to or-

dinary quantum mechanics: though the phase space acquires itself a cell-like

structure its symmetries remain intact, in general. In a sense the space-

time possesses the cell-like structure also in string theory e.g. the quantum
WZNW model for a compact group has as e�ective target, perceived by a
string center of mass, a truncated group manifold or, in other words, a `man-
ifold' with a cell-like structure (see [1]). Indeed, the zero-modes' subspace of

the full Hilbert space contains only the irreducible representations of a spin
lower than the level k. Because this subspace describe the scalar excitations,
it is clear that high frequency (or spin) modes in an e�ective �eld theory are
absent. In this way string theory leads to the UV �nite behaviour of physical
amplitudes as was probably realized by several researchers in past (e.g.[2]).

In our contribution we would like to initiate an investigation of simi-
lar regularization in pure �eld theory context. That is we wish to consider
�elds living on truncated compact manifolds, endow them with dynamics and
establish rules of their quantization. Among advantages of such a develop-
ment, there would be not only the manifest preservation of all symmetries of

a theory but also an expected compatibility with quantum gravity and string
phenomena. In some sense we shall construct a lattice-type of regularization
but the `lattice' will not approximate the underlying spacetime (and hence
the ring of functions on it) but directly the ring. As the starting point of our

treatment we choose a 2d �eld theory on a truncated two-sphere 2.

The truncated sphere was extensively studied in past two decades for
various reasons. Apparently, the structure was introduced by Berezin in

1975 [3] who quantized the (symplectic) volume two-form on the ordinary

2also referred to as \fuzzy", \non-commutative" or \quantum" sphere in literature

[5, 4, 3].
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two-sphere. He ended up with a series of possible quantizations parametrized

by the size of quantum cells. In 1982, Hoppe [4] investigated properties of

spherical membranes. As a technical tool he introduced the truncation of

high frequency excitations which e�ectively lead to the quantum sphere. In

1991 the concept was reinvented by Madore [5] (see also [6]). His motivation

originated in the so-called non-commutative geometry, i.e. the generalization

of the ordinary di�erential geometry to non-commutative rings of `functions'.

The truncated algebra of ordinary functions is just the example of such a

non-commutative ring.

For our purposes, we shall use the results of all those previous works, how-

ever, we shall often put emphasis on di�erent aspects of formalism as com-

paring to the previous investigations. Our main concern will consist in devel-

oping basic di�erential and integral structures for non-commutative sphere
which are needed to de�ne a classical (and quantum) �eld dynamics. We
shall require that the symmetries of the undeformed theory are preserved in
the non-commutative deformation such as space-time supersymmetry, global

isospin, local (non)abelian gauge or chiral symmetry3 and, obviously, that the
commutative limit should recover the standard formulation of the dynamics
of the �eld theory.

In many respects a canonical procedure for endowing non-commutative
rings with di�erential and integral calculus is known for several years from
basic studies of A. Connes [7]. From his work it follows that geometrical

properties of a non-commutative manifold are encoded in a fundamental
triplet (A;H;D) where A is the representation of a non-commutative algebra
A of `functions' on the manifold in some Hilbert space. Elements of A are
linear operators acting on H in such a way that the multiplication of elements
of the `abstract' algebra A is represented by the composition of the operators

from A which represent them. D is a self-adjoint operator (called the Dirac
operator) odd with respect to an appropriate grading4 H is interpreted as
a spinor bundle over the non-commutative manifold and the action of the

algebra A on it makes possible to de�ne the action of a (truncated) gauge
group on spinors.

Noncommutative geometry has been already applied in theoretical physics

3An attempt to formulate a �eld theory on the fuzzy sphere was published in [5, 9, 10].

However, the crucial concept of chirality was not studied there.
4We ignore in this paper aspects concerning the norms of the operators from A and

commutators of the form [D;A] because all algebras we consider are �nite-dimensional.

2



by providing the nice geometrical description of the standard model action

including the Higgs �elds [7, 8]. The latter were interpreted as the com-

ponents of a noncommutative gauge connection. Starting in this paper, we

hope to provide another relevant application of non-commutative geometry

with the aim to understand the short distance behaviour of �eld theory. We

believe that non-commutative geometry can provide powerful technical tools

for performing new and nontrivial relevant calculations.

In the present contribution, we construct the fundamental triplet (A;H;D)

and use the construction for developing the supersymmetric regularization of

�eld theories. Though the uniqueness of (A;H;D) for a given fundamental

algebra A is by no means guaranteed we give a highly natural choice stem-

ming from the following construction. First we give a suitable description

of spinors on the ordinary sphere as components of a scalar super�eld on a
supersphere. Then we represent the standard Dirac operator on the sphere in
terms of the superdi�erential generators of OSp(2; 1) algebra which is the su-
persymmetry superalgebra of the supersphere. The standard Dirac operator

on the sphere turns out to be nothing but the fermionic part of the Casimir
of OSp(2; 1) written in the superdi�erential representation (the bosonic part
is the standard Laplace operator on the sphere). Then we shall mimick the
same construction for the non-commutative sphere. We describe spinors on
the non-commutative sphere as the suitable components of a scalar super�eld
on a non-commutative supersphere. In other words, we perform the super-

geometric Berezin-like quantization of the supersphere5 but in the language
of Madore. The resulting quantized ring of scalar super�elds will reveal a
cell-like structure of the non-commutative supersphere. The algebra A will
be the enveloping algebra of OSp(2; 1) in its irreducible representation with a
spin j=2. As j !1 one recovers the standard ring of superscalar functions

on the supersphere. The quantized ring constitutes itself the representa-
tion space of the adjoint action of OSp(2; 2) in the irreducible representation
with the OSp(2; 1) superspin j=2. We postulate that the fermionic part of

the OSp(2; 1) Casimir in this adjoint representation is the Dirac operator on
the non-commutative sphere. We shall �nd that it is selfadjoint and odd.

We shall compute its complete spectrum of eigenvalues and eigenfunctions
and �nd a striking similarity with the commutative case. Namely, the non-

5Recently several papers have appeared dealing with supergeometric quantization of

the Poincar�e disc [11, 12, 13].
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commutative Dirac operator turns out simply to be a truncated commutative

one!6 We then construct both Weyl (chiral) and Majorana fermions.

The building of the supersymmetric theories requires even more structure.

We shall demonstrate that enlarging the superalgebra OSp(2; 1) to OSp(2; 2)

the additional odd generators can be identi�ed with the supersymmetric

covariant derivatives and the additional even generator with the grading of

the Dirac operator. All encountered representations of OSp(2; 1) will turn

out to be also the representations of OSp(2; 2).

In the following section (which does not contain original results) we repeat

the known construction of the standard non-commutative sphere in a lan-

guage suitable for SUSY generalization. In section 3 we give the full account

of the spectrum of the standard Dirac operator on the commutative sphere.

Though not the results themselves, but the (algebraic) method of their deriva-
tion is probably new and very suitable for the later non-commutative anal-
ysis. From the fourth section we present original results. We start with the
description of the (untruncated) Dirac operator in terms of the fermionic

part of the OSp(2; 1) Casimir acting on the ring of super�elds on the super-
sphere and we quantize that ring. Then we identify the Dirac operator on
the non-commutative sphere, give full account of its spectrum and describe
the grading of the non-commutative spinor bundle, completing thus the con-
struction of the fundamental triplet (A;H;D). In section 5 we apply the
developed constructions in (supersymmetric) �eld theories. We shall con-

struct (super)symmetric action functionals of the deformed theories contain-
ing only �nite number of degrees of freedom. We �nish with conclusions and
outlook concerning the construction of a noncommutative de Rham complex,
a non-commutative gauge connection, chiral symmetry, dynamics of gauge
�elds and construction of twisted bundles over the non-commutative sphere

needed for the description of `truncated' monopoles.

6This suggests, in turn, that in the regulated �eld theory one should avoid the problem

of fermion doubling [14].
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2 The non-commutative sphere

2.1 The commutative warm-up

A very convenient manifestly SU(2) invariant description of the (L2-normed)

algebra of functions A1 on the ordinary sphere can be obtained by factorizing

the algebra B of analytic functions of three real variables by its ideal I,
consisting of all functions of a form h(xi)(

P
xi

2
� �2). The scalar product on

A1 is given by7

(f; g)1 �
1

2��

Z
R3

d3xi�(xi
2
� �2)f�(xi)g(xi); f; g 2 A1 (1)

Here f(xi); g(xi) 2 B are some representatives of f and g. The algebra A1
is obviously generated by functions8 xi; i = 1; 2; 3 which commute with each
other under the usual pointwise multiplication. Their norms are given by

jjxijj21 =
�2

3
: (2)

Consider the vector �elds in R3 generating SU(2) rotations of B. They are
given by explicit formulae

Rj = �i�jklx
k @

@xl
(3)

and obey the SU(2) Lie algebra commutation relations

[Ri; Rj ] = i�ijkRk (4)

The action of Ri on B leaves the ideal I invariant hence it induces an action
of SU(2) on A1. The generators x

i 2 A1 form a spin 1 irreducible represen-
tation of SU(2) algebra under the action (hence they are linear combinations
of the spherical functions with l = 1). They ful�l an obvious relation

xi
2
= �2: (5)

Higher powers of xi can be rearranged into irreducible multiplets correspond-

ing to higher spins. For instance, the multiplet of spin l is conveniently con-
structed subsequently applying the lowering operator R� � R1 � iR2 on the

7The normalization ensures that the norm of the unit element of A1 is 1.
8Speaking more precisely, xi denote the corresponding equivalence classes in B.
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highest weight vector x+
l
. It is well-known (cf. any textbook on quantum

mechanics) that the full decomposition of A1 into the irreducible represen-

tations of SU(2) is given by the in�nite direct sum

A1 = 0 + 1 + 2 + : : : ; (6)

where the integers denote the spins of the representations.

2.2 The truncation of A1

We de�ne the family of non-commutative spheres Aj by furnishing the trun-

cated sum of the irreducible representations

Aj = 0 + 1 + : : :+ j; (7)

with an associative product and a scalar product which in the limit j !1
give the standard products in A1. To do this consider the space L(j=2; j=2)
of linear operators from the representation space of the irreducible represen-
tation with the spin j=2 into itself. Clearly, SU(2) algebra acts on L(j=2; j=2)
by the adjoint action. This `adjoint' representation is reducible and the stan-
dard Clebsch-Gordan series for SU(2) [15] gives its decomposition

L(j=2; j=2) = 0 + 1 + : : :+ j � Aj: (8)

The scalar product on Aj is de�ned by9

(f; g)j �
1

j + 1
Tr(f�g); f; g 2 Aj; (9)

and the associative product is de�ned as the standard composition of opera-
tors from the space L(j=2; j=2). Now we make more precise the notion of the

commutative limits of the scalar product and the associative product. There

is a natural chain of the linear embeddings of the vector spaces

A1 ,!A2 ,! : : : ,!Aj ,! : : : ,!A1 (10)

Any (normalized) element from Aj of the form

cj;lpR
p
�X

+
j

l
(11)

9The normalization ensures that the norm of the identity matrix is 1.
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is mapped in an (normalized) element from Ak given by

ck;lpR
p
�X

+
k

l
: (12)

Here X�
j are representatives of the SU(2) generators in the irreducible rep-

resentation with spin j=2 (X�
1 � x�). They are normalized so that

[Xm
j ;X

n
j ] = i

�q
j

2
( j
2
+ 1)

�mnpX
p; (13)

and cj(k);lp are the (real) normalization coe�cients given by the requirement

that the embedding conserves the norm. Note that X+
j

l
are the highest

weight vectors in Aj. Because the adjoint action of the SU(2) algebra is

hermitian for arbitrary Aj (as it can be easily seen from the de�nitions of
the scalar products (1),(9)) the embeddings are in fact isometric. Indeed, the

scalar product of the eigenvectors of the hermitian operator vanishes if the
corresponding eigenvalues are di�erent. Obviously di�erent l's give di�er-
ent eigenvalues of the (hermitian) adjoint Casimir. The commutative limit
of the associative product is more involved, however10. Clearly, the embed-
dings cannot be (and should not be) the homomorphisms of the associative

products! For instance the product of two elements from Aj with the maxi-
mal spin j has again a maximal spin j because it is from Aj but could have
a spin 2j component if the product is taken in a su�ciently larger algebra
Ak.

Consider more closely the behaviour of the product as the function of

k. According (10), arbitrary two elements f; g of Aj can be canonically
considered as the elements ofAk for whatever k > l (including k =1). Their
product in everyAk can also be embedded in A1. Denote the corresponding
element of A1 as (fg)k. We shall argue that

lim
k!1

(fg)k = fg (14)

where fg is the standard commutative pointwise multiplication in A1 .

Before plunging into proof of this statement we try to formulate its mean-

ing more `physically'. It is not true that the algebra Aj tends to be commu-
tative for large j (as the matrix algebra it, in fact, cannot.) What is the case

10The nice establishment of the correct commutative limit of the product was given in

[6] using the coherent states for SU (2).
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that for large j the elements with much lower spins than j almost commute.

In the �eld theory language: long distance limit corresponds to the stan-

dard commutative theory but for short distances the structure is truly non-

commutative. This non-commutativeness, however, preserves the symmetry

of the space-time. The algebra Aj is �nite-dimensional with the dimension

being (j + 1)2. That means that the sphere is e�ectively divided in (j + 1)2

cells of an average area 4��2

(j+1)2
. A theory based on the non-commutative ring

Aj has, therefore, a minimal lenght 2�
j+1

incorporated.

Now it is easy to prove (14). Actually because of relation (13), which

ensures the commutativity of the limit, it is enough to show that the nor-

malization coe�cients cj;lp de�ned in (11,12) have the property

lim
k!1

ck;lp = c1;lp: (15)

Due to the rotational invariance of the inner products in all Ak(k = 1; : : : ;1)

it is enough to demonstrate it just for the highest weight element X+
k

l
. Then

c�2k;l0 = (X+
k

l
;X+

k

l
)k = �2l

(2l)!!

(2l + 1)!!

(k + l + 1)!

(k + 1)(k)l(k + 2)l(k � l)!
(16)

The last equality follows from a formula derived in [16] (p. 618, Eq. (36)).
The relation (15) then obviously holds since the last fraction tends to 1

and it can be simply computed from (1) that

c�21;l0 = �2l
(2l)!!

(2l + 1)!!
: (17)

Note that the generators X i
k are themselves normalized as

(X i
k;X

i
k)k =

�2

3
(18)

and the standard relation de�ning the surface S2 holds in the non-commutative

case
X i

k

2
= �2: (19)

We observe from (2) and (18) that for every j X i
j 2 Aj are embedded in A1

as just the standard commutative generators xi and in Ak; k > j as X i
k 2 Ak

. The notation is therefore justi�ed and in what follows we shall often write

just X i in the non-commutative case and xi in the commutative one.
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3 The Dirac operator on S2 and its spectrum

The construction of the spinor bundle11 over S2 is standard part of any

textbook of quantum �eld theory (e.g. see [17]) though, perhaps, it is not

stressed explicitly. Also the spectrum of the Dirac operator acting on this

bundle is known in that context, the eigenfunctions are nothing but the so-

called spinorial harmonics [17]. We present the manifestly rotation invariant

description of the spectrum in the spirit of the previous section.

Consider the trivial spinor bundle SB over R3. Its sections are ordinary

quantum mechanical two-component spinorial wave-functions of the form

�
	+

	�

�
; 	+;	� 2 B: (20)

The action of the SU(2) algebra is described by the generators

Ji � Ri +
1

2
�i; (21)

where �i are the standard Pauli matrices. Hence, SB is the representation
space of some (reducible) representation of SU(2) . Now R3 can be viewed

as the �bration of S2 by the half-lines in R3 starting in its centre. The po-
sition of a point on the �ber we measure by the radial coordinate r. The
subbundle SA1 of the sections of SB independent on the �ber coordinate
r can be interpreted as the spinor bundle over the base manifold S2 of the
�bration. Clearly, SA1 is the SU(2) subrepresentation of SB. The decom-

position of SA1 into irreducible representation follows from the standard
Clebsch-Gordan series [15] for the tensor product of the representations A1
and 1=2

SA1 = 2(1=2 + 3=2 + 5=2 + : : :): (22)

Here the factor 2 in front of the bracket means that each representation in

the bracket occurs in the direct sum twice. This doubling may be interpreted

as the sum of the left and right chiral spinor bundles. We shall argue that
the standard Dirac operator corresponding to the round metric on S2 can be

11We have in mind the trivial bundle, twists by U (1) bundles needed for the inclusion

of monopoles will be considered in a forthcoming paper.
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written solely in terms of the SU(2) generators as follows12

D =
1

�
(�iRi + 1): (23)

Here � is the radius of the sphere. This operator is self-adjoint with respect

to the scalar product on SA1 given by

(	;�) �
1

2��

Z
d3xi�(xi

2
� �2)(	�+�+ +	����); 	;� 2 SA1 : (24)

The easy way of deriving (23) consists in comparing a three dimensional


at Dirac operator D3 on SB written in the spherical coordinates with the two

dimensional round Dirac operator D2 on the sphere in the same coordinates.

Due to the rotational invariance the choice of a coordinate chart is irrelevant
and we may proceed by choosing (and �xing) the poles of the sphere. The
Dirac operator D in arbitrary coordinates in a general (curved) Riemannian

manifold is given by

D2 = �i
ae�a(@� +
1

4
!�ab[


a; 
b]); (25)

where 
a are generators of the 
at Cli�ord algebra

f
a; 
bg = 2�ab; 
a2 = 1; 
ay = 
a; (26)

e�a is the vielbein and !�ab the spin connection de�ned by

@�e
a
� � ����e

a
� + ! a

� be
b
� = 0: (27)

For S2 in the spherical coordinates

e�1 =
1

�
; e

�
2 =

1

� sin �
; !�12 = �!�21 = � cos �: (28)

All remaining components of the vielbein and the connection vanish. For R3

in the spherical coordinates

e�1 =
1

r
; e

�
2 =

1

r sin �
; er3 = 1 (29)

12The same formula was already given in [18, 19]. We give the di�erent evidence of its

validity, however.
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and

!�21 = �!�12 = cos �; !�23 = �!�32 = sin �; !�13 = �!�31 = 1:

(30)

Thus

D2 = �i
1
1

�
(@� +

1

2
ctg�) � i
2

1

� sin �
@�: (31)

and

D3 = �i
1
1

r
(@� +

1

2
ctg�)� i
2

1

r sin �
@� +�i


3(@r +
1

r
): (32)

We observe a simple relation between D3 restricted on SA1 and D2 namely

�i
3D3jrestr: + 1=� = D2: (33)

(note that �i
3
a; a = 1; 2 ful�l the de�ning relations of the Cli�ord algebra

(26)).
D3 can be expressed also in the 
at coordinates in R3

D3 = �i�i@i; (34)

where �i are the Pauli matrices which also generate the Cli�ord algebra (26).
A simple algebra gives

D3 = (
�kxk

r
)2D3 = �i(

�kxk

r
)(
xi

r
@i �

1

r
�iRi): (35)

Because xi

r
@i = @r and the vector �elds Ri have no radial component it follows

from (32) and (35) that


3 = (
�kxk

r
): (36)

Inserting 
3 from (36) and D3 from (35) into Eq.(33) we get the SU(2)
covariant form (23) of the round Dirac operator on S2.

The spectrum of D2 readily follows from the group representation con-

siderations. Consider a (normalized) spinor

�+

�
=

�
1

0

�
: (37)

It is obviously the eigenvector of D2 with an eigenvalue 1. Moreover it
is the highest weight state of one of the spin 1=2 representations in the

11



decomposition (22) as it can be directly checked using the generators Ji from

(21). Indeed

J+�
+ = 0; JiJi �

+ = 3=4: (38)

The construction of the other (normalized) highest weight states in the ir-

reducible representations with the higher spins is obvious. They are given

by

	l;h:w: = ��l�1

vuut(2l + 1)!!

(2l)!!
x+

l
�+: (39)

Here l is the spin of the irreducible representation. A direct computation

shows

D2	l;h:w: = (l+ 1)	l;h:w:: (40)

Due to the rotational invariance of D2 the other eigenvectors within the
irreducible representation are obtained by the action of the lowering generator
J�, i.e.

	l;m = ��l�1

vuut(2l + 1�m)!

(2l + 1)!m!

(2l + 1)!!

(2l)!!
Jm
�
x+

l
�+: (41)

The eigenvalue corresponding to the eigenvector 	l;m; m = 0; : : : ; 2l is
obviously l+1. So far we have constructed only one branch of the spectrum.

However, due to an obvious relation

D2

3 + 
3D2 = 0 (42)

also spinors 
3	l;m are the eigenvectors of D2 with the eigenvalues �(l+ 1).
In this way we found the complete spectrum because all eigenvectors 	l;m

and 
3	l;m form the basis of the spinor bundle SA1 .

4 Non-commutative supersphere

Having in mind the goal of constructing a non-commutative spinor bundle, we

have to look for a language to describe the commutative case which would be

best suited for performing the non-commutative deformation. We shall argue
that the very structure to be exploited is OSp(2; 2) superalgebra which is

somewhat hidden in the presentation given in the previous section. We shall

12



proceed conceptually as follows: The non-commutative sphere, described in

section 2, emerged naturally from the quantization of the algebra of the

scalar �elds on the ordinary sphere. Hence, it is natural to expect that

the quantization of the supersphere would give a deformed ring of the scalar

super�elds on the supersphere. Those super�elds contain as their components

the ordinary fermion �elds on the sphere, therefore the deformation of the

algebra of the super�eld should give ( and it does give) the non-commutative

spinor bundle on the non-commutative sphere, i.e. the structure we are

looking for.

4.1 (Super)commutative supersphere

Consider a three-dimensional superspace SR3 with coordinates xi; ��; the

super-coordinates are the SU(2) Majorana spinors. Consider an algebra
SB of analytic functions on the superspace with the Grassmann coe�cients
in front of the odd monomials in �. SB can be factorized by its ideal SI,
consisting of all functions of a form h(xi; ��)(

P
xi

2
+ C���

��� � �2). Here

C = i�2: (43)

We refer to the quotient SA1 as to the algebra of super�elds on the su-
persphere. An OSp(2; 2) invariant inner product of two elements �1;�2 of
SA1 is given by13

(�1;�2)1 �
�

2�

Z
R3

d3xid�+d���(xi
2
+ C���

��� � �2)�z1(x
i; ��)�2(x

i; ��);

(44)
Here �1(x

i; ��);�2(x
i; ��) 2 SB are some representatives of �1 and �2 and

the (graded) involution [20, 21] is de�ned by

�+
z
= ��; ��

z
= ��+; (AB)z = (�1)degA degBBzAz: (45)

The algebra SA1 is obviously generated by (the equivalence classes) xi (i =

1; 2; 3) and �� (� = +;�) which (anti)commute with each other under the
usual pointwise multiplication, i.e.

xixj � xjxi = xi�� � ��xi = ���� + ���� = 0: (46)

13The normalization ensures that the norm of the unit element of SA1 is 1. The inner

product is supersymmetric but it is not positive de�nite. However, such a property of the

product is not needed for our purposes.
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Their norms are given by

jjxijj2
1
= jj��jj2

1
= �2: (47)

Consider the vector �elds in SR3 generating OSp(2; 2) superrotations of

SB. They are given by explicit formulae

v+ = �
1

2
(x3@�� � (x1 + ix2)@�+) +

1

2
(� �+@x3 � ��(@x1 + i@x2)); (48)

v� = �
1

2
(x3@�+ + (x1 � ix2)@��) +

1

2
(��@x3 � �+(@x1 � i@x2)); (49)

d+ = �
1

2
r(1 +

2

r2
�+��)@� +

��

2r
R+ �

�+

2r
(xi@i �R3); (50)

d� =
1

2
r(1 +

2

r2
�+��)@+ +

�+

2r
R� �

��

2r
(xi@i +R3) (51)

�1 = (
�+x3

r
+
��x+

r
)@+ + (

�+x�

r
�
��x3

r
)@� � 2(��v+ � �+v�): (52)

r+ = x3(@x1 + i@x2)� (x1 + ix2)@x3 + �+@��; (53)

r� = �x3(@x1 � i@x2) + (x1 � ix2)@x3 + ��@�+ ; (54)

r3 = �ix1@x2 + ix2@x1 +
1

2
(�+@�+ � ��@��) (55)

and they obey theOSp(2; 2) Lie superalgebra graded commutation relations
[13, 21]

[r3; r�] = �r�; [r+; r�] = 2r3; (56)

[r3; v�] = �
1

2
v�; [r�; v�] = 0; [r�; v�] = v�; (57)

fv�; v�g = �
1

2
r�; fv�; v�g = �

1

2
r3: (58)

[�1; v�] = d�; [�1; d�] = v�; [�1; ri] = 0; (59)

[r3; d�] = �
1

2
d�; [r�; d�] = 0; [r�; d�] = d�; (60)

fd�; v�g = 0; fd�; v�g = �
1

4
�1; (61)
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fd�; d�g = �
1

2
r�; fd�; d�g =

1

2
r3: (62)

Note, that all introduced generators do annihilate the quadratic form xi
2
+

C���
��� hence they induce the action of OSp(2; 2) on SA1

14 .

In order to demonstrate the OSp(2; 2) invariance of the inner product

(44) we have to settle the properties of the OSp(2; 2) generators with respect

to the graded involution. It holds

(�1; ri�2)1 = (ri�1;�2)1 (63)

(�1; v��2)1 = �(v��1;�2)1: (64)

(�1; d��2)1 = �(d��1;�2)1: (65)

(�1;�1�2)1 = (�1�1;�2)1: (66)

Consider now the variation of a super�eld �

�� = i("+v+ + "�v�)�; (67)

where "� is a constant Grassmann Majorana spinor, i.e.

"
z

+ = "�; "
z

� = �"+ (68)

and, much in the same manner, a variation

�� = i("�d+ + "+d�)�: (69)

Using the relations (63-66) it is straightforward to observe the invariance of
the inner product with respect to the de�ned variations.

As it is well known [21] the typical irreducible representations ofOSp(2; 2)
consist of quadruplets of the SU(2) irreducible representations j � j � 1

2
�

j � 1
2
� j � 1. The number j is an integer or a half-integer and it is referred

to as the OSp(2; 2) superspin. The generators xi; �� 2 SA1 together with

1

�2
(�+x3 + ��x+); j =

1

2
; j3 =

1

2
; (70)

14The appearance of r in Eqs.(50-52) may seem awful because we have considered the

ring of superanalytic functions on SR3. However, this is only a formal drawback, which

can be cured by a completion of the space of superanalytic functions with respect to an

appropriate inner product. In fact, we need not even do that for our purposes because the

terms involving r become anyway harmless after the factorization by the ideal SI.
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1

�2
(�+x� � ��x3); j =

1

2
; j3 = �

1

2
; (71)

1 +
1

�2
�+��; j = 0; j3 = 0: (72)

indeed form the (typical) superspin 1 irreducible representation of OSp(2; 2)

algebra under the action of the vector �elds (48-55). The numbers j; j3 in

(70-72) correspond to the total SU(2) spin and its third component. The

supermultiplet with the superspin 1 can be conveniently constructed applying

subsequently the lowering operators v� and d� on the highest weight vector

x+. Supermultiplets with higher superspins can be obtained in the same way

starting with the highest weight vectors x+
l
. Thus the full decomposition of

SA1 into the irreducible representations of OSp(2; 2) can be written as the

in�nite direct sum
SA1 = 0 + 1 + 2 + : : : ; (73)

where the integers denote the OSp(2; 2) superspins of the representations15.
From the point of view of the SU(2) representations, the algebra of the

super�elds consists of two copies of A1 and the spinor bundle 1
2

A1 (see

Eq. (22)) Note that the generators of SA1 ful�l the obvious relation

xi
2
+ C���

��� = �2: (74)

The big algebra SB has a natural grading as the vector space, given by
the parity of the total power of the Grassmann coordinates ��. Because we

factorized over the quadratic surface in the superspace, this grading induces
the grading in SA1. It is easy to see that the odd elements of SA1 with
respect to this grading can be identi�ed with the fermion �elds on the sphere.
Indeed, they can be written as

	 = 	�(x
i)
��

�
; (75)

where the (Grassmann) components 	� belong to A1
16. But this is the

standard spinor bundle on the sphere�
	+(x

i)
	�(x

i)

�
; (76)

15The `baryon' number of those representations, in the sense of Ref.[21], is zero.
16The factorization by the relation

P
xi

2

� �2 = 0 and the relation
P

xi
2

+C���
��� �

�2 = 0 is e�ectively the same in this case because the term quadratic in � is killed upon

the multiplication by another � in Eq. (75).
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described in section 3. The scalar product on the bundle is inherited from

the inner product (44)

(	;�) �
�

2�

Z
d3xi�(xi

2
� �2)d�+d��	z�; (77)

and (up to a sign) it coincides with the scalar product (24). The Pauli matri-

ces, as the operators acting on the two-component spinors, can be expressed

in the super�eld formalism as follows

�3 = �+@�+ � ��@��; �� = 2��@�� : (78)

In what follows we shall refer to the odd (even) elements with respect to the

described grading as to the fermionic (bosonic) super�elds in order to make
a di�erence with the even and odd super�elds in the standard (Grassmann)
sense.

The OSP (2; 1) superalgebra generated by ri; v� has a quadratic Casimir

K2 = (r23 +
1

2
fr+; r�g) + (v+v� � v�v+) � B2 + F2: (79)

Using Eqs. (78), it is easy now to check that the fermionic part F2 of the
Casimir is directly related to the Dirac operator (23)

�D = �iRi + 1 = 2F2 �
1

2
= 2(v+v� � v�v+)�

1

2
: (80)

The grading 
3 of the Dirac operator is just the OSp(2; 2) generator �1. Its
eigenfuctions are obviously the Weyl spinors. A Majorana spinors are given
by the restriction

 
z

+ =  �;  
z

� = � + (81)

which can be easily derived from the reality condition on the super�eld �.

4.2 The truncation of SA1

We de�ne the family of non-commutative superspheres SAj by furnishing

the truncated sum of the irreducible representations of OSp(2; 2)

SAj = 0 + 1 + : : :+ j; j 2 Z (82)
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with an associative product and an inner product which in the limit j !1
give the standard products in SA1. In order to do this consider the space

L(j=2; j=2) of linear operators from the representation space of the OSp(2; 1)

irreducible representation with the OSp(2; 1) superspin j=2 into itself. (Note

that the OSp(2; 1) irreducible representation with the OSp(2; 1) superspin

j has the SU(2) content j � j � 1
2
[21]). The action of the superalgebra

OSp(2; 2) itself on L(j=2; j=2)17 is described by operators Ri; V�;D�; 
 2
L(j=2; j=2) given by [23]

Ri =

0
@R

j

2

i 0

0 R
j

2
�
1

2

i

1
A ; 
 =

�
�j Id 0

0 �(j + 1)Id

�
: (83)

V� =

0
@ 0 V

j
2
;
j
2
�
1

2
�

V
j

2
�
1

2
;
j

2
� 0

1
A ; D� =

0
@ 0 V

j
2
;
j
2
�
1

2
�

�V
j

2
�
1

2
;
j

2
� 0

1
A ; (84)

where
hl; l3 + 1jRl

+jl; l3i =
q
(l � l3)(l + l3 + 1); (85)

hl; l3 � 1jRl
�jl; l3i =

q
(l+ l3)(l� l3 + 1); (86)

hl; l3jR
l
3jl; l3i = l3; (87)

hl3 +
1

2
jV

j
2
;
j
2
�
1

2

+ jl3i = �
1

2

s
j

2
+ l3 +

1

2
; (88)

hl3 �
1

2
jV

j
2
;
j
2
�
1

2

� jl3i = �
1

2

s
j

2
� l3 +

1

2
; (89)

hl3 +
1

2
jV

j

2
�
1

2
;
j

2

+ jl3i = �
1

2

s
j

2
� l3; (90)

hl3 �
1

2
jV

j

2
�
1

2
;
j

2

� jl3i =
1

2

s
j

2
+ l3: (91)

Every � 2 L(j=2; j=2) can be written as a matrix

� =

�
�R  R

 L �L

�
; (92)

17The so-called non-typical irreducible representation of OSp(2; 2) [21, 22] is in the

same time also the OSp(2; 1) irreducible representation with the OSp(2; 1) superspin j=2.
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where �R and �L are square (j+1)�(j+1) and j�j matrices respectively and

 R and  L are respectively rectangular (j+1)�j and j�(j+1) matrices. The

meaning of the indices R and L will become clear in the next subsection. A

fermionic element is given by a supermatrix with vanishing diagonal blocks

and a bosonic element by one with vanishing o�-diagonal blocks. Clearly,

OSp(2; 2) superalgebra acts on L(j=2; j=2) by the superadjoint action

Ri� � [Ri;�]; �� � [
;�]: (93)

V��even � [V�;�even]; V��odd � fV�;�oddg: (94)

D��even � [D�;�even]; D��odd � fD�;�oddg: (95)

This `superadjoint' representation is reducible and, in the spirit of Ref.[21,

22], it is easy to work out its decomposition into OSp(2; 2) irreducible
representations

L(j=2; j=2) = 0 + 1 + : : :+ j: (96)

The associative product in L(j=2; j=2) is de�ned as the composition of op-
erators and the OSp(2; 2) invariant inner product on L(j=2; j=2) is de�ned
by18

(�1;�2)j � STr(�z1;�2); �1;�2 2 L(j=2; j=2): (97)

Here STr is the supertrace and z is the graded involution. Although these
concepts are quite standard in the literature it is instructive to work out their

content in our concrete example. The supertrace is de�ned as usual

STr� � Tr�R � Tr�L (98)

and the graded involution as [20]

�z �
�
�yR � yL
� yR �

y

L

�
: (99)

ymeans the standard hermitian conjugation of a matrix and the upper (lower)

sign refers to the case when the entries consists of odd (even) elements of a
Grassmann algebra. Note that

R
z

i = Ri; V
z

+ = V�; V
z

� = �V+: (100)

18The normalization ensures that the norm of the identity matrix is 1.
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Now we identify SAj with even elements of L(j=2; j=2) which means that the

entries of the (o�)-diagonal matrices are (anti)-commuting variables. This

correspond to the similar requirement in the untruncated case because in the

truncated case the spinors form the o�-diagonal part of the super�eld.

We can demonstrate the OSp(2; 2) invariance of the inner product (97)

again by settling the properties of the OSp(2; 2) generators with respect to

the graded involution (99). They read

(�1;Ri�2)j = (Ri�1;�2)j : (101)

(�1;V��2)j = �(V��1;�2)j: (102)

(�1;D��2)j = �(D��1;�2)j : (103)

(�1;��2)j = (��1;�2)j: (104)

Consider now the variation of a super�eld �

�� = i(�+V+ + ��V�)�; (105)

where �� is given by

�� =
�
"� 0

0 �"�

�
(106)

and "� are the usual Grassmann variables with the involution properties

"z+ = "�; "z� = �"+: (107)

Much in the same manner, consider also a variation

�� = i(��D+ + �+D�)�: (108)

Using the relations (101-104) it is straightforward to observe the invariance
of the inner product with respect to the de�ned variations. Note that �� do
anticommute with D� and V� as they should.

We can choose a basis in SAj formed by eigenvectors of the Hermitian
operators

Q2 � R2
i + C��V�V�; (109)

R2
i and R3. The spectrum of (the OSp(2; 1) Casimir) Q2 consists of numbers

q(q + 1=2) where the OSp(2; 1) superspin q runs over all integers and half-
integers from 0 to j [23]; the remaining two operators have the standard
spectra known in the SU(2) context.
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Now we make more precise the notion of the commutative limits of the

inner product and the associative product. There is a natural chain of the

linear embeddings of the vector spaces

SA1 ,! SA2 ,! : : : ,! SAj ,! : : : ,! SA1 (110)

Any (normalized) element from SAj of a form

sj;lpqV�
pD�

qX+
j

l
(111)

is mapped into an element from SAk of the form

sk;lpqV�
pD�

qX+
k

l
: (112)

HereX i
j (and �

�

j � �V�X
�

j ) are the representatives of the OSp(2; 1) genera-
tors in the OSp(2; 1) irreducible representation with the OSp(2; 1) superspin
j=2 (X i

1
� xi and ��

1
� ��). They are normalized so that

[Xm;Xn] = i
�q

j

2
( j
2
+ 1

2
)
�mnpX

p; (113)

[X i;��] =
�

2
q

j

2
( j
2
+ 1

2
)
�i

��
��; (114)

f��;��g =
�

2
q

j

2
( j
2
+ 1

2
)
(C�i)��X i; (115)

Hence
(X i

j ;X
i
j)j = (��

j ;�
�
j )j = �2: (116)

sj;lpq are (real) normalization coe�cients given by the requirement that the
embedding is norm-conserving. Because the operators Q2;R2

i and R3 are
hermitian for arbitrary SAj (as it can be easily seen from the de�nitions of

the inner products (44),(97)) the embeddings are in fact isometric. Indeed,
the inner product of the eigenvectors of hermitian operators vanishes if the

corresponding eigenvalues are di�erent. The commutative limit of the asso-
ciative product is more involved, however. We proceed in an analogous way

as in the purely bosonic case SU(2).
Consider more closely the behaviour of the product as the function of k.

According the relation (110), arbitrary two elements �1;�2 of SAj can be
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canonically considered as the elements of SAk for whatever k > l (including

k =1). Their product in every SAk can also be embedded in SA1. Denote
the corresponding element of SA1 as (�1�2)k. We shall argue that

lim
k!1

(�1�2)k = �1�2 (117)

where �1�2 is the standard supercommutative pointwise multiplication in

SA1 .

For proving the relation (117), it is convenient to realize that SAj can be

generated by taking products of generators X i
j and ��

j of OSp(2; 1) in the

irreducible representation with the OSp(2; 1) superspin j=2. This statement

follows from the Burnside lemma [24], but its validity can be seen directly.

Indeed, from theOSp(2; 2) commutation relations it follows easily that every

element of the form (111) can be expressed in terms of X i
j and ��

j . Hence the
relations (113-115) ensure the (graded) commutativity in the limit j ! 1
and it is therefore su�cient just to show that the normalization coe�cients
sj;lpq de�ned in (112) have the property

lim
k!1

sk;lpq = s1;lpq: (118)

Because of the OSp(2; 2) invariance of the inner products in all SAk (k =
1; : : : ;1), it is in fact enough to demonstrate it just for the highest weight

elements X+
k

l
. Then it is a straighforward computation to check that

lim
k!1

s�2k;l00 � lim
k!1

(X+
k

l
;X+

k

l
)k = (2l + 1)c�21;l0; (119)

where c�21;l0 have been given in Eq.(17). But s�21;l00 can be directly computed
from (44) giving

s�2
1;l00 = (2l + 1)c�2

1;l0: (120)

We have thus proven the commutative limit relation (117).
Note that the normalization of X i

j and ��
j is such that the value of the

Casimir in j

2
OSp(2; 1) irreducible representation is equal to �2, i.e.

X i
j

2
+ C���

�
j�

�
j = �2: (121)

Thus the relation de�ning the supersphere is preserved also in the truncated
case. We observe from Eqs. (47) and (116) that for every j X i

j ;�
�
j 2 SAj are

embedded in SA1 as just the standard (super)commutative generators xi; ��

and in SAk; k > j as X i
k;�

�
k 2 SAk . The notation is therefore justi�ed and

in what follows we shall often write just X i and ��.
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4.3 Dirac operator on the truncated sphere

In an analogy with the (super)commutative case, we de�ne the non-commutative

spinor bundle on the sphere S2 as the odd part of the truncated super�eld

� 2 SAj and the Dirac operator we de�ne as

�D � 2(V+V� �V�V+) �
1

2
: (122)

This operator is manifestly self-adjoint, SU(2) invariant and it is also odd

with respect to the grading � given by Eqs. (93) and (83) or simply, if the

diagonal part of a super�eld vanishes, by

��fer =

�
Id 0

0 �Id

�
�fer: (123)

This explains the notation in Eq. (92): in the �rst (second) line there are
right (left) objects with respect to the chiral grading �. Hence, a fermionic
super�eld of the upper(lower)-triangular form will be referred to as the right
(left) chiral spinor on the truncated sphere.

The spectrum of D readily follows from the group representation con-
siderations. Consider a normalized spinor �+=�. It follows directly from
OSp(2; 1) graded commutation relations (56-58) that this is the eigenvector
of D with an eigenvalue 1. Moreover it is the highest weight state of one of
the SU(2) spin 1/2 representations in the decomposition (82). This can be
directly checked using the generators (93-95):

R+�
+ = 0; R2

i = 3=4: (124)

The construction of the other (normalized) highest weight states in the
irreducible representations with the higher spins is obvious. They are given
by

	l;h:w: = bjl �
�l�1

vuut(2l + 1)!!

(2l)!!
X+l

�+: (125)

Here l is the spin of the SU(2) irreducible representation and bjl is a normal-

ization coe�cient. A direct computation shows

D	l;h:w: = (l+ 1)	l;h:w:; l � j � 1: (126)
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Due to the rotational invariance of D the other eigenvectors within the irre-

ducible representation are obtained by the action of the lowering generator

R�, i.e.

	l;m = bjl �
�l�1

vuut(2l + 1 �m)!

(2l + 1)!m!

(2l + 1)!!

(2l)!!
Rm
�X

+l
�+: (127)

The eigenvalue corresponding to the eigenvector 	l;m; m = 0; : : : ; 2l is

obviously l+1. So far we have constructed only one branch of the spectrum.

However, due to an obvious relation

D� + �D = 0 (128)

also spinors �	l;m are the eigenvectors of D with the eigenvalues �(l + 1).
In this way we found the complete spectrum because all eigenvectors 	l;m

and �	l;m form the basis of the space of the fermionic super�elds from SAj.

Thus, we have obtained precisely the truncation of the commutative Dirac
operator D.

5 Supersymmetric �eld theories

5.1 The bosonic preliminaries

Consider the following action for a real scalar �eld living on the sphere S2

S(�) =
1

2
(�;R2

i�)1 �
1

4��

Z
d3xi�(xi

2
� �2)�(x)R2

i�(x): (129)

It is easy to show that this is just the action of a free massless �eld on S2 i.e.

S(�) = �
1

8�

Z
d
�4
 �; (130)

where 4
 is the Laplace-Beltrami operator on the sphere or, simply, the

angular part of the 
at Laplacian in R3. Adding a mass and an interaction
term is easy, e.g. the P (�)-models [25, 10] are described by the action

S1 =
1

2
(�;R2

i�)1 + (1; P (�))1; (131)
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where P (�) is a polynomial in the �eld variable. The non-commutative

analogue of the action (129) is now obvious

Sj =
1

2
(�;R2

i�)j + (1; P (�))j =
1

2j + 2
Trj(�R

2
i�) +

1

j + 1
TrjP (�): (132)

The truncated action is manifestly SU(2)invariant with respect to the in-

�nitesimal transformation of the scalar �eld

�� = "iRi� � "i[Ri; �]: (133)

Another interesting class of Lagrangians consists of the nonlinear �-

models describing the string propagation in curved backgrounds. The (trun-

cated) action reads

Sj =
1

2
(Ri�

A; gAB(�)Ri�
B)j (134)

with the obvious commutative limit. It is not di�cult, in fact, to de�ne a

quantization of the truncated system via the path integral because the space
of �eld con�gurations in �nite-dimensional. We gave the details in a separate
publication [10] with the aim to develop the e�cient nonperturbative regu-
larization of �eld theories which could (hopefully in many aspects) compete
with the traditional lattice approach.

5.2 The supersymmetric actions

The supersymmetric case is somewhat more involved than the bosonic one
not only because of the enlargement of the number of degrees of freedom.
Starting from the undeformed case one could suspect that the standard free

OSp(2; 1)-supersymmetric action for a real super�eld on the sphere should
be written in our three dimensional formalism as

Ssusp =
1

2
(�; (R2

i + C��V�V�)�)1: (135)

Though theOSp(2; 1) Casimir sitting within the brackets does give the SUSY
invariance it does not yield the correct two dimensional "world-sheet" action

containing just the free massless bosonic �eld and free massless Majorana

fermion. To get out of the trouble we may use the philosophy used about a
decade ago where supersymmetric models on the homogeneous spaces have
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been intensively studied [26]. In particular, Fronsdal has considered the

spinors on anti-de Sitter spacetime and has constructed the OSP (4; 1) in-

variant supersymmetric actions by introducing another set of odd generators

[26]. They were analogues of the standard supersymmetric covariant deriva-

tives needed to build up the super-Poincar�e invariant Lagrangians.

The same approach applies in our case. The new odd generators are noth-

ing but the additional OSp(2; 2) generators D�. The standard Lagrangian

of the free OSp(2; 1) supersymmetric theory can be written solely in terms

of the `covariant derivatives' D� and the grading �.

Let us begin with the detailed quantitative account �rst in the non-

deformed case. It is easy to check that the operator

C��d�d� +
1

4
�2
1

(136)

is invariant with respect to OSp(2; 1) supersymmetry generated by ri and
v�. Hence we may consider the action

S = (�; C��d�d��)1 +
1

4
(�;�2

1�)1 �

�
�

2�

Z
R3

d3xid�+d���(xi
2
+C���

�����2)�(xi; ��)(C��d�d�+
1

4
�2)�(xi; ��);

(136a)
where � is a real super�eld, i.e. �z = �.

Consider now the variation of the real super�eld �

�� = i"�v��; (137)

which preserves the reality condition. Now Eqs.(63-66) hold also when �1 is
an even and �2 an odd super�eld in the standard Grassmann sense. Using
this and the fact that "�v� commutes with the operator (136), the supersym-
metry of the action S obviously follows.

It is straightforward to work out the action (136a) in the two-dimensional
component language. It reads

S =
1

4�

Z
d
(�

1

2
�4
 �+

1

2
�4F 2 �

1

2
 y�3D
 ); (138)

where D
 is the Dirac operator on S2 and the super�eld ansatz is

�(xi; ��) = �(xi) +  ��
� + (F +

xi

r2
@i�)�

+��: (139)
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Of course,  � are anticommuting objects and the reality condition �z = �

makes the �elds � and F real and the spinor  � becomes Majorana19, i.e.

 
z

+ =  �;  
z

� = � +: (140)

We recognize in the expression (138) the standard free supersymmetric action

in two dimensions.

Adding a (real) superpotential W (�) we may write down a supersym-

metric action with the interaction term. It reads

S1 = (�; (C��d�d� +
1

4
�2
1)�)1 + (1;W (�))1: (141)

The truncated version of the action S1

Sj = (�; (C��D�D� +
1

4
�2)�)j + (1;W (�))j (142)

is manifestly supersymmetric with respect to the variations

�� = i��V��; (143)

It remains to prove that Sj approaches S1 for j !1. In order to do that
it is convenient to rewrite both truncated and untruncated action as follows

Sj = (D+�;D+�)j + (D��;D��)j +
1

4
(��;��)j + (1;W (�))j ; (144)

where the index j can be both �nite and in�nite and we have used the formulas

(63-66) and (101-104). Now it is enough to show that

lim
k!1

(D��)k = d��; lim
k!1

(��)k = �1� (145)

(The embedding (�)k was de�ned in Eqs.(111,112).) But this is true
almost by de�nition because D�� can be written as a linear superposition
of the vectors of the form (111,112). As in the bosonic case we may write

down the regularized action for the supersymmetric �-models describing the

superstring propagation in curved backgrounds

19Note, that we consider the graded involution de�ned by Eq.(45) (see also [20]).
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Sj = (D+�
A; gAB(�)D+�

B)j+(D��
A; gAB(�)D��

B)j+
1

4
(��A; gAB(�)��

B)j :

(146)

The OSp(2; 1) supersymmetry and the commutative limit is obvious. The

regularized action (146) can be used as the base for the path integral quan-

tization manifestly preserving supersymmetry and still involving the �nite

number of degrees of freedom. Particularly this aspect of our approach seems

to be very promising both in comparison with the lattice physics as well as in

general. Indeed so far we are not aware of any nonperturbative regularization

which would possess all those properties.

6 Conclusions and Outlook

We have regulated in the manifestly supersymmetric way the actions of the
�eld theories on the supersphere, involving scalar and spinor �elds. As a

next step we plan to include in the picture the topologically non-trivial bun-
dles and the gauge �elds [27] and to study the chiral symmetry in the con-
text. From the purely mathematical point of view we have to build up the
non-commutative de Rham complex and understand the notions of one- and
two-forms. It would be also interesting to establish a connection between

previous works on supercoherent states [28, 12, 13] and our present treat-
ment. In a later future we shall attempt to reach two challenging goals in
our programme, namely the truncation of the four-dimensional sphere and
the inclusion of gravity.

7 Acknowledgement

We are grateful to A. Alekseev, L. �Alvarez-Gaum�e, M. Bauer, A. Connes,

V. �Cern�y, T. Damour, J. Fr�ohlich, J. Ft�a�cnik, K. Gaw�edzki, J. Hoppe, B.

Jur�co, E. Kiritsis, C. Kounnas, M. Rie�el, R. Stora and D. Sullivan for useful

discussions. Part of the research of C.K. has been done at I.H.E.S. at Bures-

sur-Yvette and of C.K. and P.P. at the Schr�odinger Institute in Vienna. We
thank both these institutes for hospitality.

28



References

[1] J. Fr�ohlich and K. Gaw�edzki, Conformal Field Theory and Geome-

try of Strings, preprint IHES/P/93/59, Proceedings of the Mathemat-

ical Quantum Theory Conference, UBC-Vancouver, August 1993, hep-

th/9310187,

[2] E. Kiritsis and C. Kounnas, Nucl. Phys. B442 (1995) 472,

[3] F.A. Berezin, Comm. Math. Phys. 40 (1975) 153,

[4] J. Hoppe, MIT PhD Thesis, 1982 and Elem. Part. Res. J. (Kyoto) 80

(1989) 145,

[5] J. Madore, J. Math. Phys. 32 (1991) 332 and Class. Quant. Grav. 9

(1992) 69,

[6] H. Grosse and P. Pre�snajder, Lett. Math. Phys. 28 (1993) 239,

[7] A. Connes, Noncommutative Geometry, Academic Press London, 1994,

[8] A. Connes and J. Lott, Nucl. Phys. Proc. Suppl. B18 (1991) 29,

[9] H. Grosse and J. Madore Phys. Lett. B283 (1992) 218,

[10] H. Grosse, C. Klim�c��k and P. Pre�snajder, Towards Finite Quantum

Field Theory in Non-commutative Geometry, preprint CERN-TH/95-
138, UWThPh-19-1995, hep-th/9505175,

[11] D. Borthwick, S. Klimek, A. Lesniewski and M. Rinaldi, Comm. Math.

Phys. 153 (1993) 49,

[12] A. El Gradechi, On the Supersymplectic Homogeneous Superspace Un-

derlying the OSp(2; 1) Coherent States, Montreal preprint CRM-1850,

1994,

[13] A. El Gradechi and L. Nieto, Supercoherent States, Super-K�ahler Geom-
etry and Geometric Quantization, Montreal preprint CRM-1876, 1994,

hep-th/9403109,

[14] I. Montvay and G. Muenster, Quantum �elds on a lattice, Cambridge

Univ. Press, Cambridge, 1994 and references therein,

29



[15] L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Nauka, Moscow,

1989 (in russian),

[16] A.P. Prudnikov, Yu.A. Brytshkov and O.I. Maritshev, Integrals and Se-

ries, Nauka, Moscow, 1981, (in Russian),

[17] C. Itzykson and J.B. Zuber, Quantum Field Theory, Mir, Moscow, 1984

(in Russian),

[18] C. Jayewardena, Helv. Phys. Acta 61 (1988) 636,

[19] H. Grosse and P. Pre�snajder, Lett. Math. Phys. 33 (1995) 171,

[20] M. Scheunert, W. Nahm and V. Rittenberg, J. Math. Phys. 18 (1977)

146,

[21] M. Scheunert, W. Nahm and V. Rittenberg, J. Math. Phys. 18 (1977)

154,

[22] M. Marcu, J. Math. Phys. 21 (1980) 1284,

[23] A. Pais and V. Rittenberg, J. Math. Phys. 16 (1975) 2062,

[24] M.A. Naimark, Appendix III. in Linear Representations of the Lorentz

Group, Pergamon Press, Oxford, 1964,

[25] J. Glimm and A. Ja�e, Quantum Physics; A Functional Integral Point

of View, Springer-Verlag, Heidelberg, 1981,

[26] C. Fronsdal, 3+2 de Sitter Super�elds in Essays on Supersymmetry, ed.
by C. Fronsdal, D. Reidel Publishing Company, Dordrecht, 1986,

[27] H. Grosse, C. Klim�c��k and P. Pre�snajder, Spinors in Non-Commutative

Geometry, in preparation

[28] M. Chaichian, D. Ellinas and P. Pre�snajder, J. Math. Phys. 32 (1991)

3381.

30


