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Abstract

A method of cut-o� regularization is proposed to evaluate vacuum correc-

tions in nuclear matter in the framework of the Hartree approximation. Bulk

properties of nuclear matter calculated by this method are a good agreement

with results analyzed by empirical values. The vacuum e�ect is quantitatively

evaluated through a cut-o� parameter and its role for saturation property and

compressional properties is clari�ed.

* e-mail address: kounoh@himiko.cc.saga-u.ac.JP

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25182076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In a relativistic approach for the study of nuclear matter vacuum e�ects

are very important corrections which can not be taken into account in any

non-relativistic formalism. About twenty years ago, using a simple �-! model

(Walecka model), the mean �eld theory (MFT) clari�ed the saturation mech-

anism of nuclear matter relativistically[1] and in succession vacuum e�ects to

the saturation property were evaluated by a method of dimensional regulariza-

tion in the framework of the Hartree approximation (RHA)[2]. It was shown

that vacuum corrections made an e�ective nucleon mass larger and the incom-

pressibility of nuclear matter smaller. A small incompressibility is desirable for

experimental �ndings of today[3,4]. Recently it has been reported that there

is a strong correlation between an increase of e�ective mass and a decrease in

incompressibility[5].

Nearly ten years after a proposal of the Walecka model, corrections due to

vacuum polarization in quantum 
uctuation around the mean �eld (the Hartree

�eld) were evaluated[6]. The results were undesirable. Corrections were larger

by far than the magnitude of mean �eld and furthermore brought forth insta-

ble ghost poles (the Landou ghost) in meson propagators which made nuclear

matter unstable. One of ad hoc but powerful recipes to escape from these dis-

asters was to introduce some form factors at each vertex[7]. There was another

idea that the form factors should be derived from vertex corrections[8]. These

recipes are grounded on existence of internal structure of hadron. We are afraid

that vacuum corrections evaluated by the method of dimensional regularization

may be overestimated because the size of hadron is not considered in such a

regularization as the one used well in the elementary particle physics.

When we use a conventional form factor in a calculation of polarization in-

sertion of vector meson, however, we need a safety device to assure the baryon

current conservation. In this report, then, we show another recipe to esti-

mate vacuum corrections in the framework of Hartree approximation in simple

Walecka model. This is the �rst request to a method of cut-o� regularization

stated in the following discussion.

A nucleon propagator G(k) in the relativistic Hartree approximation has the

following standard form

G(k) = GF (k) +GD(k)
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where the subscripts "F " and "D" of G(k) denote the Feynman part and the

density part, respectively, M and kF denote the physical nucleon mass and Fermi
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momentum, respectively. In the simple Walecka model the nucleon self-energies

are given as follows,

�S = �SD +�SF = i�
� gs
ms

�2 Z d4q

(2�)4
tr
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; (5)
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mv
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� gv
mv

�2
�B ; (6)

where �B denotes the baryon density and ms, mv, gs and gv denote the �-meson

mass, the !-meson mass, the �-nucleon coupling and the !-nucleon coupling,

respectively, and � denotes the degeneracy, � = 2 for nuclear matter and �

= 1 for neutron matter. The Feynman part of self-energy �SF is a divergent

integral in the 4-dimensional momentum space while �SD and �0 have �nite

values. In the Hartree approximation there appears another divergent integral

in the Feynman part of baryon energy density de�ned as follows,

"B = "BD + "BF =
�

�2

Z
kF
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k2
p
k2 +M�2dk� �

Z
d4k

(2�)4
tr
�
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�

4: (7)

We discuss how we introduce a cut-o� parameter into the two divergent

integrals in the formalism of the Hartree approximation. We start discussion

with the nucleon e�ective mass M�. The e�ective mass is given by using the

scalar self-energy with a cut-o� parameter �,

M� = M0 + �SD(M
�; �B) + �SF (M

�;�)

= M +�SD(M
�; �B) + �SF (M

�;�)��SF (M;�); (8)

M0 =M � �SF (M;�); (9)

where M0 denotes the bare mass of nucleon. The last term in eq.(8) is the

self-energy at zero density and is introduced for the e�ective mass M� to be the

physical mass M at zero density. We require the bare nucleon mass M0 to have

cut-o� dependence so that the physical nucleon mass M dose not depend on

any cut-o� parameter �. We note that the bare nucleon mass M0(�) becomes

the physical mass as �! 0.

To make progress we write the energy density as follows,

" =
1

2
�2�V �

2

B +
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2�2
1

�S

�
M�

�M
�2

+ "B ; (10)

where �S and �V are de�ned,

�S =
� gs

�ms

�2
; �V =

� gv

�mv

�2
: (11)

As the second request we require Hugenholtz-von Hove theorem[9],

("+ P )=�B = EN (kF ) � EF ; (12)
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where P denotes pressure and EN (kF ) denotes a nucleon energy at Fermi mo-

mentum. The condition to satisfy this identity is given by

@"

@M�

= 0()M� =M � �2�S
@"B

@M�

() �S = ��2�S
@"B

@M�

: (13)

The relation Eq.(13) between �S and "B is exactly satis�ed both in the

density dependent part and in the Feynman part, respectively, in RHA[2]. In

the method of cut-o� regularization, however, the same relation is not satis�ed

in Feynman part although it is satis�ed in the density part. Then we require

that �SF is combined with "BF by Eq. (13) and obtain the expression for "BF
as follows,
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where
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and the lower limit M in the integral is chosen so that "BF vanishes at zero

density. The scalar self-energy and the baryon energy density in the density

dependent part are given by
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respectively, where E�

F
=
p
k2
F
+M�2 .

We make use of the saturation condition to determine the cut-o� parameter

at the normal density because the cut-o� parameter is independent of density.

From Hugenholtz-von Hove theorem the saturation condition is expressed by

P = �B
�
E�

F
+ �2�V �B � e

�
= 0; (18)

e = M � 15:75 [MeV ]; (19)

at the normal density. Then we have a following relation between M� and �V
at the normal density.

E�

F
+ �2�V �B = M � 15:75: (20)
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On the other hand, the coupling strength �S is given by

�S =
M�

�M

��s
; (21)

where ��s is de�ned as �s = �S � ��s. Putting these �S and �V into energy

density equation, Eq. (10), we have a kind of relation between the e�ective

mass M� and the cut-o� parameter � which satis�es the saturation condition

at the normal density.

In Fig. 1, we show the saturation curves for several sets of M� and �. The

other bulk properties of nuclear matter can be calculated for each set and are

summarized in Table.

Fig. 1 and Table

First of all we discuss the magnitude of cut-o� parameter � which looks very

small at �rst glance. We try to calculate �SF again by introducing the following

conventional monopole type of form factor into vertex,

FNN�(p; q) =
�2

N
�M2

p2 +�2

N

�
�2

N
�M2

(p + q)2 + �2

N

�
�2

�

q2 +�2
�

; (22)

Fig. 2

We note that we use this form factor for �SF (M;�) at zero density while we

modify it for �SF (M
�;�) at �nite density by replacing M with M� in Eq.(22).

We make a comparison between the new result and �SF (M
�;�), and obtain

the following relation between two kind of cut-o� parameter,

�2

N = M2 + �2;
�
��

N

2
= M�2 +�2

�
; (23)

where another cut-o� parameter �� dose not participate in Hartree calculation

because q2 = 0. When we take about a half of nucleon mass as the cut-o�

parameter �, for example, we have familiar values for the cut-o� �N of the

monopole type of form factor.

Next, we are very interested in the saturation curves in Fig. 1. The sat-

uration curves are softer as an increase of �. Starting from the most sti�

curve (MFT) obtained without vacuum e�ect (� = 0), there exist the curves

with smaller values of incompressibility less than 200 MeV. We can understand

the saturation mechanism as a stable balance of three force, i.e., the attractive

�-meson, the repulsive !-meson and another repulsive vacuum e�ect. Contribu-

tions of meson to energy density depend strongly on the baryon density whereas

contributions of vacuum e�ect depend weakly on the baryon density. So, since

the energy density is �xed at the normal density, if the vacuum contribution to

the energy density is larger, the !-meson contribution is smaller. Thus, the in-

crease of � dulls the density dependence of energy density in the neighbourhood

of the normal density. This is the reason that the incompressibility K becomes

small if � increase, as shown in Table.
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Also we make a remark on the relation between M� and �. The e�ective

mass depends on the attractive �-nucleon coupling gs and the repulsive vacuum

parameter �. The former makes M� small and the latter dose M� larger. The

e�ective mass continues to increase if 0 < �=M < 0:4, reaches to the maximum

at �=M � 0:4 and decreases if 0:5 < �=M < 0:56. Then, the vacuum e�ect for

the e�ective mass is largest at �=M � 0:4. It is reasonable that the repulsive

!-nucleon coupling strength gv shows a minimum value at �=M � 0:4 ( the

maximum e�ect of vacuum ). It can be observed through the e�ective mass

that the parameter � and gv are complement each other as the two repulsive

e�ects.

The e�ective mass M� decreases as the incompressibility K decreases less

than 400 MeV. The small M� is rather desirable since the empirical spin-orbit

splitting in light nuclei supports M� = 0:6M [10]. The skewness K0 ( the third

order derivative of saturation curve at the normal density in Ref. [5]) can also

be calculated. Using this K0, the Coulomb coe�cient Kc is given by

Kc = �
3q2e
5r0

�9K0

K
+ 8

�
; r0 =

� 3

4��0

�1=3
; (24)

based on the scaling model[11], where ge denotes the proton electric charge. Kc

is the coe�cient of leptdermous expansion[11],

K(A;Z) = K +KsfA
�1=3+KvsI

2 +KcZ
2A�4=3+ � � � ; I = 1� 2

Z

A
; (25)

where Ksf and Kvs are the surface-term coe�cient and the volume-symmetry-

term coe�cient, respectively. These coe�cients are determined from the giant

monopole resonance(GMR) data of many nuclei. In �g. 3, we show the K �Kc

relation together with results analyzed by empirical values in Table 3 of [3] and

in Table IV of [4]. We have a �ne agreement with results analyzed empirically

if 200 MeV < K < 350 MeV.

Fig. 3

The symmetry energy a4 in Table includes the �-meson contribution which

depends on the square of the ratio of coupling strength to mass of �-meson and

makes a4 increase to about 30 MeV, i.e., without this contribution a4 becomes

20.6 MeV at K = 300 MeV, in Table.

The K �Kvs relation is shown in Fig. 4. The quantity Kvs is given by

Kvs = Ksym � L
�
9
K0

K
+ 6

�
; (26)

in the scaling-model, where L andKsym are the �rst and second order derivative

of asymmetry energy, respectively ( see the detailed de�nitions in Ref. [5]). Also

we have another �ne agreement with empirical values[3,4] if 250 MeV < K <

400 MeV.

In summary, we proposed the method of cut-o� regularization to evalu-

ate the vacuum corrections in nuclear matter in the framework of the Hartree
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approximation. We found that this method, RHAC( Relativistic Hartree Ap-

proximation with Cut-o� regularization), can prepare the values from 200 MeV

to 546 MeV for nuclear incompressibility in spite of a few adjustable parame-

ters. So we note that the RHAC method is a very useful phenomenological one

under the present situation that there is much uncertainty in the experimental

determination of compressional properties.

We made quantitative analysis of the vacuum correction by the cut-o� pa-

rameter. The results are summarized as follows.

(1) An increase of � means an increase of vacuum correction. The parameter

� can be connected with the cut-o� parameter of the conventional monopole

type of form factor.

(2) The vacuum correction gives the repulsive e�ect both to the e�ective

nucleon mass and to the baryon energy density. The saturation property is

yielded by the interplay among the attractive �-meson, the repulsive !-meson

and the repulsive vacuum e�ect. The repulsive vacuum e�ect makes the nucleon

incompressibility small because of its weak dependence on the baryon density.

(3) The calculated asymmetry energies in Table agree well with the empirical

values if C2

� = (g�M=m�)
2 = 54.71 is used as the �-meson coupling strength[5].

(4) The calculated curve on the K �Kc plane is a �ne agreement with the

empirical candidates in region 200 MeV < K < 350 MeV and also the curve

on the K � Kvs plane is a good agreement with the empirical candidates in

region 250 MeV < K < 400 MeV. Therefore, to account for Kc;Kvs and a4
simultaneously, the RHAC method is valid if 250 MeV < K < 350 MeV.
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Table and Figure Captions

Table The numerical results for parameter sets of (M�, �). K, K0, Kc, a4,

Kvs, Ksym and L are shown in MeV. The a4, Kvs, Ksym and L depend on value

of C� = g�M=m� where C
2

�
= 54.71[5].

Fig.1 The kF -dependence of binding energy. All curves take a minimum value(

-15.75 MeV ) at the normal Fermi momentum ( 1.35 fm�1 ). The bold solid line,

the bold dash-dotted line, the bold dashed line, the bold dotted line, the dash-

dotted line, the dashed line, the dotted line and the solid line are the results

for K = 546, 500, 450, 400, 350, 300, 250 and 200 MeV in Table , respectively.

The bold solid line is the result of MFT without the vacuum e�ect.

Fig. 2 Diagrammatic representation of the form factor at NN� vertex. The

solid ( wavy ) lines denote nucleon ( �-meson ) propagators. The form factor is

shown as the circle at vertex.

Fig.3 The K �Kc relation. The crosses with error bars are results in ref. [3]

and the solid squares are the data from the table IV in ref. [4].

Fig.4 The K �Kvs relation. The crosses with error bars are results in ref. [3]

and the solid squares are the data from the table IV in ref. [4].
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�=M K K 0 Kc a4 Kvs Ksym L M�=M gs gv
0.0000 546 226.39 -8.971 30.2 -890.4 86.3 100.36 0.5470 10.438 12.899

0.2827 500 160.77 -8.330 29.5 -775.3 72.0 95.27 0.5722 10.447 12.498

0.3884 450 101.96 -7.676 29.0 -671.5 65.6 91.69 0.5924 10.779 12.165

0.4892 400 54.71 -7.058 29.0 -587.6 79.8 92.29 0.5919 11.903 12.173

0.5407 350 0.05 -6.118 29.7 -463.3 127.9 98.50 0.5650 13.467 12.615

0.5559 300 -78.33 -4.320 30.5 -197.4 186.0 105.02 0.5398 14.535 13.011

0.5609 250 -177.10 -1.242 31.1 288.0 246.4 110.74 0.5202 15.262 13.308

0.5624 200 -293.20 3.972 31.6 1142.4 308.9 115.86 0.5044 15.801 13.542

Table
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