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The de�nitions of the main notions related to the quantum inverse
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equations are derived as consistency conditions for the factorizable scat-

tering on the whole line and on the half-line using the Zamolodchikov-

Faddeev algebra. Due to the vertex-IRF model correspondence the face

model analogue of the ZF-algebra and the IRF reection equation are

written down as well as the Z2-graded and colored algebra forms of the

YBE and RE.
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1 Introduction.

Integrable and/or solvable models have been always quite important for the-

oretical physics. One of their attractive features is the direct possibility to

go beyond perturbation theory giving a solid background for theoretical hy-

pothesis and constructions. Another valuable characteristic is related to the

combination of di�erent mathematical methods required to solve some speci�c

model thus giving rise to mutual interrelations among formally separated �elds

of mathematics. The start of the recent activity in the quantum integrable

models (see reviews [1, 2, 3, 4, 5, 6, 7, 8] and Refs. therein) was de�nitely re-

lated with the development of the soliton theory, although the inuence of the

preceding pioneering contributions is out of discussion (see [10, 11, 12, 13] and

Refs. therein). This is a large �eld of research and even recent monographs

[11, 12, 13, 14, 15, 16, 17, 18] do not overlap much in between.

There is variety of quantum integrable models and quite a few interrela-

tions among them. In these lectures we restrict ourselves to those models

the integrability of which is related more or less directly to the Yang-Baxter

equation and to reection equations. More of that, we will discuss mostly

the algebraic properties of these equations, their solutions and corresponding

integrable models putting aside very elaborated analytical techniques and/or

problems (of great physical signi�cance) such as the thermodynamic limits of

�nite size systems, massless and/or conformal �eld theory limits, continuous

limits of the lattice models, correlation functions and form factors, critical ex-

ponents etc. The main notions related to the Yang-Baxter equation (YBE) will

be introduced: factorizable scattering on the line, the Zamolodchikov-Faddeev

algebra, the fusion procedure or the bound state scattering, the Yang-Baxter

or transition matrix algebra, integrals of motion. The factorizable scattering

on a half-line gives rise to the reection equation (RE) and a boundary oper-

ator. Most of the applications of the YBE can be extended to the RE case

with appropriate modi�cations. Due to the vertex-face model correspondence

of statistical mechanics we introduce an interaction round face analogue of the

Zamolodchikov-Faddeev algebra and the corresponding reection equation for

the boundary weights. The super or Z2-graded analogue of these constructions

with the generalizations to the color algebras will also be given as well as some

particular integrable systems with �nite degrees of freedom. The interrelations

among few forms of the Bethe Ansatz: coordinate, algebraic, analytical and

functional will be mentioned as well.

More particular applications of the Bethe Ansatz technique to speci�c inte-

grable models with direct physical meaning ( a high energy limit of the QCD,

the Azbel - Hofstadter problem ) and of the reection equation formalism to

the Chern-Simons theory and quantized moduli spaces of at connections can

be found in other lectures of this School.
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2 Yang-Baxter equation and Zamolodchikov-

Faddeev algebra

Let us start the presentation which will be full of de�nitions and technicalities

from a speci�c integrable model to have in mind an example. This is the

one-dimensional Bose gas consisting of n sort particles with the Dirac delta-

function two particle potential. The �eld operators  a(x);  
y
b(y) satisfy the

canonical commutation relations, a; b = 1; 2; � � � ; n

[ a(x);  
y
b(y)] = �ab�(x� y) ; [ a(x);  l(y)] = 0: (1)

The �eld Hamiltonian is

H =
Z
dx(@x 

y
a(x)@x a(x) + c ya(x) 

y
b(x) b(x) a(x)) (2)

The translational invariance (on the whole line or with the periodic boundary

conditions, circle) and the internal U(n) invariance are obvious. The corre-

sponding symmetry generators are

P = �i
Z
dx ya(x)@x a(x); Uab =

Z
dx yc(x)(uab)cd d(x): (3)

where uab are n
2 generators of the unitary Lie algebra u(n). One of these

operators is the particle number operator

N =
Z
dx ya(x) a(x) : (4)

The Fock space of states is the direct sum of the number operator N

eigenspaces

HF =
1X

M=0

HM (5)

The common eigenfunctions 	M of operators N;P , and H (2)

	M =

Z
dMx	(1; � � � ;M j�1; � � � ; �M )

MY
i=1

 yai(xi)j0i (6)

are constructed as appropriate linear combinations of the one particle eigen-

states (the plane waves). The numbers j = 1; 2; � � �M in the argument of 	

(6) refer to both coordinate xj and isotopic aj indices. The coe�cients in the

linear combination depend on the one particle parameters (momenta) �j and

on the isotopic indices aj

	(fjgjf�jg) =
X

�2SM

A�(fajg; f�ng)exp(i
MX

m=1

��mxm) (7)

where � are all elements of the permutation group SM .
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Such a form of the Hamiltonian eigenfunctions is known as the coordi-

nate Bethe Ansatz. The conditions of the wave function continuity and its

appropriate derivative jumps on the hyperplanes xj = xj+1 (the sewing condi-

tions) de�ne the coe�cients A�(fajgjf�kg). The coe�cients A� and A�0 with

�0 = �j� where �j is the transposition of the indices j; j + 1, are related by

the two particle S-matrix [20]:

A�0 = S(�j � �j+1)A� ; (8)

where for the model chosen (2)

S(�) = (�+ icP)=(�� ic) ; (9)

and P is the permutation operator in Cn 
 Cn. The periodicity condition for

the system on �nite interval (0; L) results in the Bethe equations for the set

of M momenta �j

exp(i�jL) = �
Y
k

Sjk(�j � �k) ; (10)

where in the ordered product k = j + 1; :::;M � 1;M; 1; :::; j � 1. Hence the

meaning of the RHS is the scattering matrix of the j-th particle on the other

(M � 1) particles. This would be just a phase factor for the scalar particles

(S(�) = (�+ic)=(��ic)), but for the n component case one has to diagonalize

the complicated scattering matrix to arrive to a system of scalar equations. All

quantities in the RHS are particular values at � = �j of the transfer matrix

(k = 1; 2; :::;M)

t(�; f�mg) = traT (�; f�mg) � tra
Y
k

Sak(� � �k) (11)

of the inhomogeneous GL(n)-spin magnet of M sites with the transition or

monodromy matrix T (�; f�mg). The trace in the expression for the transfer

matrix t(�; f�mg) is taken over the auxiliary space Va = Cn, while t(�; f�mg)
is an operator (matrix) in the space

QM
k=1(C

n)k. The important property of

the commutativity of the transfer matrix for di�erent values of the spectral

parameter

[t(�; f�mg); t(�; f�mg)] = 0

follows easily from the fundamental commutation relation for the transition

matrix T (�; f�mg) (see (15)).
Hence the RHS of (10) t(�j ; f�mg) can be diagonalize simultaneously. As

result the hierarchy of the Bethe Ansatze appears (or the nested Bethe

Ansatz) and the complete parametrization of 	(fjgjf�jg) has n sets of "quasi-

momenta" including �j (see below).

The consistency condition of this system is the Yang-Baxter equation

(YBE) for the S-matrix S(�):
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Sjk(�j � �k)Sjl(�j � �l)Skl(�k � �l) =

= Skl(�k � �l)Sjl(�j � �l)Sjk(�j � �k): (12)

One uses very often in the general setting the notation R ( the R-matrix )

for the YBE solution.

The complete scattering matrix S(f�kg) of the M particle is given by the

ratio of the coe�cients of the incoming wave (�1 < ::: < �M ) and the outgoing

wave

exp(i
X
j

�jxj); exp(i
X
j

�M�j+1xj) :

This ratio is factorized into the ordered product of M(M � 1)=2 two particle

S-matrices (9) ( the factorizable scattering on the line ).

It was proposed for an algebraic description of the factorizable scattering

in the general case to introduce a set of (annihilation) operators Za(�) [19]

satisfying the commutation relations ( the Zamolodchikov algebra )

Za(�)Zb(�) = Sab;cd(�� �)Zd(�)Zc(�); (13)

where S(� � �) is an n2 � n2 matrix. Using the associativity property of this

algebra and changing the order of the product Za1(�1)Za2(�2)Za3(�3) in two

possible ways one arrives to the consistency condition (12). Extending the

Zamolidchikov algebra (13) by adding n more (creation) conjugated operators

Zy
a(�) one gets the Zamolodchikov-Faddeev algebra (ZF-algebra)

Za(�)Z
y
b (�) = �ab�(�� �) + Zy

c (�)Ŝac;bd(� � �)Zd(�): (14)

It is useful to write down the ZF-algebra in a compact matrix form by

introducing the n component column A(�) = (Z1(�); :::; Zn(�))
t and the n

component row Ay(�) = (Zy
1(�); :::; Z

y
n(�)). Then the de�ning relations of the

ZF-algebra are

A(�)
A(�) � A1(�)A2(�) = S12(� � �)A2(�)A1(�);

Ay
1(�)A

y
2(�) = Ay

2(�)A
y
1(�)S

y
21(� � �);

A1(�)
A
y
1(�) = I1�(�� �) +A

y
2(�)Ŝ12(� � �)A2(�);

where subscripts refer to the corresponding isotopic spaces Cn 
 Cn � V1V2
and S21 = PS12P; Ŝ12 = PS12. Due to the unitarity property of the S-

matrix: S12(� � �)S21(� � �) = I12 and the YBE one can construct the Fock

space representationHF of the ZF-algebra using the generalizing symmetrizing

operators which include Ŝ instead of the permutation operators [37].
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To solve the non-linear Schr�odinger equation (NS) ( the Heisenberg equa-

tion of motion for  a(x; t) with the Hamiltonian (2) ) in the framework of

the quantum inverse scattering method (QISM) [1 - 7] one has to �nd the

corresponding auxiliary linear problem

d

dx
T (�; x) = L(�; x)T (�; x) :

For the model in question L depends on the spectral parameter � and the

original dynamical local variables (1)

L(�; x) = �J +
X
a

(c a(x)ea;n+1 +  ya(x)en+1;a)

where J is (n + 1) � (n + 1) diagonal matrix:J = diag (In;�1) and eij are

the (n + 1) � (n + 1) basis matrices. Hence the auxiliary linear space here

is Cn+1. This is the L-operator of the QISM or the classical soliton theory

[13]. Solution to the operator valued matrix �rst order equation with normal

ordering with respect to the local �elds (1) and the vacuum j0i

T (�; x) =: exp(

Z x

L(�; y)dy) :

de�nes the transition or monodromy matrix T (�; x). Its entries are the

new variables of the model (the quantum scattering data (QSD)).

For the NS case it is natural to represent T (�; x) in the block form

T =

 
A B

C D

!

where A is an n� n matrix, B and C are n component vectors, D is a scalar.

The quadratic commutation relations of the new variables are de�ned by the

fundamental relation [1, 2, 3]

R(� � �)T1(�)T2(�) = T2(�)T1(�)R(� � �) (15)

where the standard QISM notations [1-7] are used T1 = T 
 I; T2 = I 
 T to

embed matrices in Cn into Cn
Cn. From the structure of the L-operator one

can conclude that the n elements of the row C(�) act on the vacuum as some

creation operators. This is the starting point to construct the eigenfunctions

of the transfer matrix t(�) = trT (�) = trA+D algebraically:

	M =
MY
j=1

Caj(�j)0i

in the framework of the algebraic Bethe Ansatz [1, 2, 3].

The mentioned above commutativity of the transfer matrices t(�) = trT (�)

follows from (15) taking the trace of T1T2 = R�1
12 T2T1R12 over both spaces

Cn
Cn. The trace form of the integrals of motion generating function t(�) for

continuous as NS (2) or chain models as (11) gives rise to the periodic boundary
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conditions. For the M site spin Hamiltonian H = (
PM�1

n=1 hn;n+1) + hM;1 the

M -th site spin interacts with the �rst one. The treatment of the non-periodic

boundary conditions in the algebraic framework of the QISM requires the RE

[29, 32, 34, 31] (for the coordinate Bethe Ansatz see [12, 28]).

Using block decomposition for the R-matrix one can rewrite the compact

form of the fundamental relations (15) in terms of the blocks A;B;C, and D.

Restricting to the case of �nite number of particle and after appropriate limit

to the whole line one gets the ZF-algebra realization in terms of the QSD [50]

Z(�) = (A)�1(�)B(�); Zy(�) = C(�)D�1(�) :

The R-matrix of (15) satis�es the YBE

R12(�� �)R13(�� �)R23(�� �) = R23(� � �)R13(� � �)R12(� � �) :

For the NS the R-matrix has the same structure as (9) (but it is (n + 1)2 �
(n+ 1)2 matrix).

In the general situation the R-matrix depends on the spectral parameter u

and some other parameters R(u; �; :::). Although there is no complete math-

ematical theory of the Yang-Baxter equation, variety of solutions are known

as well as di�erent �elds of their applications. In particular, many solutions

are related to the simple Lie (super) algebras. They are classi�ed by the Lie

algebra, its irreducible representations �j and the spectral parameter depen-

dence: rational, trigonometric and elliptic ones [3, 9, 11, 48]. The sl(2) spin

1=2 R-matrix related to the XXX-magnet is used in few lectures of these Pro-

ceedings. The recent development relates the spectral parameter dependent

R-matrices with the a�ne Lie (super-)algebras [16]. There are also solutions to

the YBE with the spectral parameter on the algebraic curves of higher genus (

the Potts models ). The R-matrices acting in in�nite dimensional spaces can

be found in papers [58].

Some particular properties of the YBE solution R(u; �; :::), which are im-

portant for di�erent applications ( but not always valid for a given solution )

are: regularity

R(0) = �(�)P ;

P -symmetry

PR12(u)P � R21(u) = R12(u) ;

T -symmetry

RT
12(u) = R12(u) ;

unitarity

R12(u)R21(�u) = �(u)I ;
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crossing symmetry

Rt1
12(u)R

t1
12(�u� �) = �(u)I ;

quasiclassical property

R(u; �) = I + �r(u) +O(�2) ;

where r(u) is the classical r-matrix [3, 13] and �(u); �(u); �(u) are some

functions related to the R-matrix normalization. Many R-matrices have only

PT -symmetry: RT
12(u) = R21(u). The regularity is used to extract from t(u)

of the lattice models the integrals of motion which are local in terms of initial

spin variables when the R-matrix itself is the L-operator. The quasiclassi-

cal property gives rise to the direct connection of the quantum model to the

corresponding classical one [3, 13].

It is easy to see that the product of the R-matrices R13(u)R23(v) and

R103(w) are intertwined (like (15)) by the matrix R110(u � w)R210(v � w). If

the original R-matrix R12(x) is degenerated into a projector at x = � then

one can project the above product to the corresponding subspace for the �xed

di�erence of the spectral parameters u � v = �. For the Yang solution (9)

at � = �ic one has the ( anti )symmetrizer P+; P� . This is the fusion

procedure [3] to get new R-matrices from the known ones. It has a direct

physical interpretation as construction of the bound state S-matrix [19, 21].

Using the fusion procedure the L-operators in the higher dimensional irre-

ducible representations can be obtained giving rise to the ZF operators for the

bound states and to the integrable lattice models of higher spins such as the

spin s XXZ-model. The connection of the R-matrices and integrable models

with the simple Lie (super-)algebras is reected in the structure of the Bethe

equations: they include r sets of "quasimomenta" , where r is the Lie algebra

rank, and the Cartan matrix [37, 47].

Omitting the spectral parameter dependence in the YBE one gets still very

interesting equation solutions of which ( the constant R-matrices ) can be

considered as structure constants of the quantum groups and the quantum

algebras. Then the quadratic relations (15) ( without the spectral parameter

) are the de�ning relations on the n2 generators Tab of the corresponding

quantum group. The constant R-matrices R̂ij have also direct relation to

the braid group (BG), for one of the de�ning relations of the BG generators

�i �i+1 �i = �i+1 �i �i+1 coincides with the YBE for R̂ij = PijRij:

R̂i�1i R̂ii+1 R̂i�1i = R̂ii+1 R̂i�1i R̂ii+1 :

3 Reection equations and their covariance

Let us consider factorizable scattering of particles with internal degrees of

freedom on a half-line [22]. Then even one-particle process in nontrivial (a
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reection from the wall) and it is described by an n � n matrix K(u) the

reection matrix or the boundary S-matrix.

For an algebraic description it is useful to add to the ZF-algebra a formal

boundary operator B with relation [24]

Za(u)B = Kab(u)Zb(�u)B :

Then the two particle factorizability gives rise additionally to the YBE for the

two body S-matrix (12) to the reection equation (RE)

S12(u� v)K1(u)S21(u+ v)K2(v) =

K2(v)S12(u+ v)K1(u)S21(u� v) :

(16)

There are natural properties of the reection matrix K(u) as in the preceding

Sec. of R(u; �; :::) : K(0) = I (regularity); K(u)K(�u) = I (unitarity);

T -symmetry KT (u) = K(u); the crossing symmetry is more elaborated and

it involves the S-matrix itself [24]. The constructions of the quantum group

invariant spin systems [30] uses the RE [31, 32, 42, 54]. Recent �eld theoretical

applications of the RE can be found in [23-27, 36].

It is interesting to point out that as a consequence of the RE (16) the

quadratic combination

'(u) =
X
a;b

Za(�u)KabZb(u)

is a "local" �eld : ['(u); '(w)] = 0 [24, 52]. This property was used to

construct the metric tensor �eld for the quantum Liouville theory [52] with

a slightly di�erent RE and to propose a form of the boundary operator B =

exp(
R1
0 '(u)du) in the dual Hamiltonian picture of the boundary conformal

�eld theory [24].

Although for many R-matrices solutions to the reection equations were

found (cf [22, 25, 32, 33] ) there is no direct relation of them to the Lie

algebra theory. In particular, many of them do not depend on the quasiclassical

parameter � (in the fundamental representation for the R-matrix).

Let us give two examples of the RE solutions. Due to the GL(n) symmetry

of the Yang solution (9): [R;M
M ];M 2 GL(n) the corresponding K-matrix

can be transformed K ! K 0 = MKM�1 with arbitrary M and the solution

to the RE is

K(u) = �I + uC; C2 = I:

In the elliptic case (the eight-vertex R-matrix [11]) the solution K(u) is

[22, 25, 33]

K(u) =

 
x(u) y(u)

z(u) w(u)

!
;
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x(u)= sn(� + u)

y(n) = � sn2u(�(1 � ksn2u) + 1 + ksn2u)(1 � k2sn2�sn2u)�1 ;

w(u) = sn(� � u) ;

z(n) = � sn2u(� � 1 � (� + 1)ksn2u)(1� k2sn2�sn2u)�1 ;

where snu � sn(u; k) is the Jacobi elliptic function of modulus 0 < k < 1,

�; �; � are parameters.

The RE (16) has an important covariance property: if T (u) and K(u)

satisfy the relations (15), (16) then K 0(u) = T (u)K(u)T (�u)�1 is also the RE
solution provided that the entries ofK(u) and T (u) commute [Kab(u); Tcd(u)] =

0. The proof follows easily by the substitution of K 0(u) into the RE and using

few times di�erent forms of the fundamental relation (15) e.g.

T�1
2 (�v)R12(u+ v)T1(u) = T1(u)R12(u+ v)T�1

2 (�v):

This property gives rise to the Sklyanin monodromy matrix [29, 34]

T (u) = T (u)K(u)T (�u)�1: (17)

If the matrix T (u) is constructed as an ordered product of N independent

L-operators then T (u) can be interpreted as the monodromy matrix of N site

lattice model with a boundary condition described by the matrix K(u) or a

boundary interaction described by the operator valued entries of the matrix

K(u). To extract the corresponding Hamiltonian and other integrals of motion

the transfer matrix is constructed using a special trace

� (u) = trK+(u)T (u)K(u)T (�u)�1 = trK+(u)T (u) : (18)

An extra K-matrix K+(u) is any solution of a "conjugated" RE [29, 32, 34,

51] de�ned in such way to guarantee the commutativity [� (u); � (w)] = 0. In

the regular case

Ran(0) � Pan ; K(0) � I ; hn;n+1 = (@=@uR̂n;n+1)(0) ;

the Hamiltonian is [29]

H =
M�1X
n=1

hn;n+1 +K 0
1(0) + (tr0K+(0)hM;0)=trK+(0) : (19)

The structure of the fusion procedure for the reection equation

is similar to the R-matrix case, but the projected combination ( R12(�) �
projector )

K1(u)R21(2u � �)K2(u� �)
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includes the additional R-matrix in between the K-matrices [32, 51].

More general RE with four di�erent R-matrices ( with or without the

spectral parameter )

R
(1)
12 K1 R

(2)
12 K2 = K2 R

(3)
12 K1 R

(4)
12 :

which are related among themselves by some consistency conditions similar to

(12) and (15), can be found in di�erent papers these days (see [55, 51] and Refs

therein ). In particular, this kind of RE was used for the quantum group in-

variant spin models with topological interaction [42, 43]. Some generalizations

of the RE are related to the Coxeter groups [44].

The constant RE is also of interest as it was in the YBE case. The corre-

sponding RE-algebras with the K-matrix entries considered as the generators,

are related to the quantum group homogeneous spaces while the c-number

solutions K can be considered as representations of a special generator of the

BG(1) in the solid handlebody [51] with the de�ning relation

R̂12 K1 R̂12 K1 = K1 R̂12 K1 R̂12 :

In solvable models of statistical mechanics the R-matrix de�nes the Boltz-

mann weights R��;�(u; �; :::) of the vertex models, where �; �;  and � are spin

variables on the four edges round a vertex. The models on the dual lattice are

known as the interaction round face models (IRF). The corresponding Boltz-

mann weights w(a; b; c; dju) satisfy the star-triangular equation (relation)

(STR) or Baxter relation [11]

X
g

w(a; b; g; f ju)w(f; g; d; eju+ v)w(g; b; c; djv) =

=
X
g

w(f; a; g; ejv)w(a; b; c; gju+ v)w(g; c; d; eju)

The four sites surrounding a face are ordered anticklockwise from the south-

west corner and u is a complex (spectral) parameter.

Let us introduce a face analogue of the ZF-algebra: Its generators are

parametrized by two indices Zab(u) and satisfy the relations (see e.g. [57])

Zab(u)Zbc(v) =
X
d

w(a; b; c; dju� v)Zad(v)Zdc(u)

with the only one summation over d in the RHS. As in the previous case the

scattering of a one particle Zda(u) on N others Zbici(vi) will give a transition

matrix

T (u; v1; � � � ; vN) =
NY
j=1

w(bj; bj+1; cj+1 ; cjju� vj):

by analogy with the YBE and ZF algebra constructions one can formulate

the following problems: 1) what are the conjugated (annihilation) operators
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and their commutation relations with Zab(u)? 2) how to translate the fusion

procedure to the STR case? 3) what is an IRF analogue to the RE ?

Let us start from the last question and introduce a formal operator B of

the boundary which satis�es relations with Zab(u):

Zab(u)B = Q(a; s; b;u)Zas(�u)B ;

where Q(a; s; b;n) is a face analogue of the reection matrix K. To derive

an STR analogue of the reection equation the two ways of transforming the

product of three operators may be considered

Zab(u)Zbc(v)B �! Zak(�u)Zkd(�v)B

The resulting relation for the "scattering" matrix w(� � � ) and the reection

matrix Q(� � � ) is 2

w(a; b; c; gju� v)Q(g; c; f ju)w(a; g; f; kjv+ u)Q(k; d; f jv) =

= Q(b;m; cjv)w(a; b;m; sju+ v)Q(s; d;mju)w(a; s; d; kju� v) ;

with summation over g; f in the LHS and over m; s in the RHS .

To relate vertex models with the IRF models the Baxter intertwining vec-

tors come to play [11]

X
�;�

R��;���ll0(�)zm0l0(�) =
X
m

w(m;m0; l; l0)zml(�)�mm0(�) :

These vectors remind a combination of the operators of the ZF-algebras of

the YBE and STR types. These vectors can be used to relate the reection

matrices of the vertex and IRF models:

��ab(�)K��(u)�bs(�) = Q(a; s; b;u) ;

where the spectral parameter dependence of the vectors is omitted.

4 Integrable models with anticommuting vari-

ables (fermions)

One of the �rst integrable models of the quantum �eld theory-massless Thirring

model had attracted a lot of attention of theoretical physicists during decades

H =
Z
dx( � @ + g( �  )2) :

2M.D. Gould informed me that the IRF analogue of the RE was considered by P.A.

Pearce.
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It contains Fermi �elds  �(x; t) ;  
+
� (x; t) satisfying anticommutation relations

f �(x; t);  
+
� (y; t)g = ����(x� y) :

The addition of the mass term m �  to the Hamiltonian gives rise to the very

rich dynamical properties of the massive Thirring model. In particular, it is

dual to the famous sine-Gordon model with the change of the strong coupling

regime to the weak coupling one.

The famous �-potential Bose gas model [20] ( another name is quantum

nonlinear Schr�odinger equation ) (2) was also generalized to the multicompo-

nent fermionic case in the framework of the coordinate Bethe Ansatz [45] (see

below).

Taking into account the "superization" procedure of the theoretical physics

in the seventies, let us follow this pattern and extend most of the preceding

equations and constructions to the case of the anticommuting variables. Math-

ematically it is related with Z2-graded vector space, Z2-graded algebras or as

in the theoretical physics text: super-spaces, super-algebras, super-analysis...

The Z2-graded Zamolodchikov algebra is generated by the (m+n) operators

Zi(u) satisfying

Zi(u)Zj(v) = (�)p(i)p(j)Rij;kl (u; v)Zl(v)Zk(u) : (20)

where i; j = 1; 2; � � � ;m + n; p(i) is a parity function: p(i) = 0 (i = 1; � � � ;m)

and p(i) = 1 (i = m + 1; � � � ;m + n), hence one has m boson and n fermion

operators. The coe�cients in (20) are c-numbers and the R-matrix is even:

p(Rij;kl) = p(i) + p(j) + p(k) + p(l) = 0 : (21)

Due to the Z2 valuedness of the function p(i), and the R-matrix structure

(21) one can change sign factor in (20) to (�)p(k)p(l). The super-associativity
requirement for Za(u)Zb(v)Zc(w) results in the graded Yang-Baxter equation

(grYBE)

Rab;a0b0 (u; v)Ra0c;jc0 (u;w)Rb0c0;hl (v;w) (�)
p(b0)(p(j)+p(a0)) = (22)

= Rbc;b0c0 (v;w)Rac0;a0l (u;w)Ra0b0;jk (u; v)(�)
p(b0)(p(a)+p(a0)) ;

where the condition (21) was used to reduce the factors in the LHS and RHS:

(�)p(a)p(l)+p(a
0)p(c)+p(b0)p(c0); (�)p(b)p(c)+p(a)p(c

0)+p(a0)p(b0) :

Recalling these sign factors one can write the grYBE in the same matrix form

as previously but now in the Z2-graded tensor product of three super-spaces

Cmjn

R12 (u; v)R13 (u;w)R23 (v;w) = R23 (v;w)R13 (u;w)R12 (u; v) : (23)

13



Considering the third space as an unspeci�ed quantum space (or substituting

instead of the (m + n) � (m + n) blocks in R13 and R23 formal entries) one

arrives to the graded FRT-relation

R12 (u; v)T1 (u)T2 (v) = T2 (v)T1 (u)R12 (u; v) : (24)

The latter relation has the same sign factors in the component form as (22).

These factors can be interpreted as result of the Z2-graded tensor product of

two even matrices F and G (p(Fac) = p(a) + p(c))

(F 
G)ab;cd = (�)p(b)(p(a)+p(c))FacGbd : (25)

Hence, one gets additional sign factors for T1 and the factor free T2 (to consider

more tensor factors the choice of T1 factor free is more convenient )

(T1)ab;cd = (T 
 I)ab;cd = (�)p(b)(p(a)+p(c))Tac�bd ; (26)

(T2)ab;cd = (I 
 T )ab;cd = �acTbd

An additional sign factor appears also in the matrix of the permutation (ip)

operator

P(v 
 w) = (�)p(v)p(w)w 
 v; v; w 2 Cmjn

(P)ab;cd = (�)p(a)p(b)�ad�bc : (27)

To arrive later to the graded reection equation it is convenient to write (26)

in a matrix form with the usual tensor product

(T1)gr = �(T 
 I)�; (28)

where (�)ab;cd = (�)p(b)p(a)�ac�bd, hence �2 = I (which is not the case of the

color algebras). The Z2-graded algebraic structures were analyzed also in [35]

and many R-matrices were found [48].

As in the �rst lecture the simplest integrable models correspond to the

rational solutions of the grYBE. The GL(mjn) symmetric R-matrix is ( the

graded Yang solution)

R(u � v) = (u� v) + �P: (29)

The corresponding models (L-operators) are the GL(mjn) isotropic graded
magnets and the super-matrix nonlinear Schr�odinger equation [37, 53]

Lgm(u) = u+ �
X
i;j

eij 
 sji(�)
p(j); (30)

LNS(x; u) = uJ + �
X

(eab ba(x)� eba 
y
ab(x)); (31)
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where sij are the generators of the super-algebra gl(mjn); i; j = 1; 2; � � � ;m+

n; (x);  
y
ab(x) are bose or Fermi �elds according to p(a) + p(b) = 0 or 1 and

1 � b � N ; N+1 � a � m+n, J is the block diagonal matrix (IN�I(m+n�N)).

Among integrable models related to the Z2-graded case one can mention

osp(1j2) - non-linear Schr�odinger equation [37], which is described by the ra-

tional limit of the osp(1j2) R-matrix and the supersymmetric sine-Gordon

model with the trigonometric sl(2j1) R-matrix [3]. Although the structure of

the osp(1j2) R-matrix is similar to the one of the sl(2) spin 1 R-matrix the

solution of the corresponding osp(1j2)-magnet ( or NS ) is obtained [37] by

the analytic Bethe Ansatz. Due to the arguments of analyticity, crossing

symmetry and the bare vacuum the form of the transfer matrix t(u) eigenvalue

is

�(u; fvjg) = (u(u� d))N
MY
k=1

S1(u� vk � 1=2)S�1(u� vk � 1)�

�((u� 1)(u� d))N
MY
k=1

S1(u� vk)� (u(u� d+ 1))N
MY
k=1

S�1(u� vk � d) ;

(32)

where Sl(u) = (u + l=2)=(u � l=2) and d = 3=2 . The regularity condition of

�(u; fvjg) in u ( the Manakov's principle ): Res�(u; fvjg) = 0 at u = vk gives

the Bethe equations for the set of the quasimomenta fvjg

(S1(vk))
N =

MY
j=1

S2(vk � vj)S�1(vk � vj):

Hence the M super-particle eigenstates are parametrized by one set of the

quasimomenta according to the Lie super-algebra rank one.

Another way to de�ne the form of the reection equation di�erent from

the factorizability requirement is related with the covariance properties of the

K-matrix: if K satis�es the RE then the same is true for the transformed

K 0 = TKT�1. It follows from (24), (28)

R12 (u; v)�K1 (u)�R21 (v;�u)K2 (v) = (33)

= K2 (v)R12 (u;�v)�K1 (u)�R21 (�v;�u):

Further generalizations of the YBE and the corresponding RE [37] are

related to the colored algebras [59] and/or more complicated commutation

relations among entries of the T -matrices and the K-matrices. However the

structure of these equations can be easily obtained following the standard ZF

algebra pattern. In particular, if the multiplicative factor !(a; b) of the color

ZF algebra is nondegenerate [59], where a; b 2 A and A is an abelian grading

group, then the graded FRT-relation is

R12 (u; v)�
�1T1 (u)�T2 (v) = T2 (v)�

�1T1 (u)�R12 (u; v) (34)

15



where (�)ab;cd = !(a; b)�ac�bd and we identify for simplicity the matrix indices

with the grading group elements (which is not always the case as e.g. the Z2-

grading). Now � is not necessary unipotent. The corresponding RE follows

from the covariance arguments

R12 (u; v)�
�1K1 (u)�R21 (v;�u)K2 (v) = (35)

= K2 (v)R12 (u;�v)�
�1K1 (u)�R21 (�v;�u):

To extract the commuting functionals of the A-graded monodromy matrix T

or the corresponding Sklyanin's matrix T with the entries as the homogeneous

elements of the grading the A-graded trace [59] has to be used

t(u) = trAT (u) =
X

!(a; a)Taa(u) :

This trace can be considered as a particular example of the quantum trace [51]

with � as the R-matrix. It is also possible to extend these constructions further

by using instead of the multiplicative factor !(a; b) and/or � an appropriate

R-matrix, however the main problem for the moment is to �nd an interesting

example the solution of which requires the mentioned above equations.

5 Integrable models with �nite degrees of free-

dom.

The intensive development of the YBE and the quantum group theory was

strongly inuenced by the conformal �eld theory. The latter one as most

of the �eld theoretical integrable models has the two dimensional space-time.

However, the rich structure of the YB-algebra and RE-algebra or the quadratic

R-matrix algebras with the spectral parameter dependence permits to include

into this formalism variety of known integrable models with �nite degrees of

freedom (e.g. [38-40, 41, 46]) and to �nd new ones, which are physically

interesting systems in the space of the three (and more) dimensions.

Let us consider as an example the Kowalewski-Chaplygin-Goryachev top

(KCG top). The Hamiltonian of this model is [46].

H =
1

2
(J2

1 + J2
2 + 2J2

3 ) + c1x1 + c2x2 + c3(x
2
1 � x22) + c4x1x2 + c5=x

2
3; (36)

where ci ; i = 1; � � � ; 5 are arbitrary constants and Ji, xi are the angular mo-

menta and coordinates. This system is integrable provided the constraint:

l =
3X

j=1

xjJj = 0: (37)
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One gets the famous Kowalewski's top for c3 = c4 = c5 = 0. The corre-

sponding auxiliary linear problem (the L-operator) is related to the simplest

R-matrix: the Yang solution (9) for sl(2) with c = �. The L-operator has

quadratic dependence on the spectral parameter u

L(u) =

 
y0u

2 + y2u+ y1 y+4 u+ y+6
y�4 u+ y�6 y3

!
=

 
a b

c d

!
(u) (38)

where y�4 = y4�y5 and the same for y�6 ; y0; :::; y7 are eight dynamical variables

of the model.

The corresponding YB-algebra, generated by four entries a(u); :::; d(u) of

the L-operator, has its centre generated by the q-determinant of the L-operator

(38) [5, 3]:

detqL(u) = a(u+ i�=2)d(u � i�=2)� b(u+ i�=2)c(u� i�=2)

= Q1u
2 +Q2u�Q3 + �2=4Q1 ;

(39)

where Q0 = y0, Q1 = y0y3 � y24 � y25, Q2 = y2y3 � 2y4y6 � 2y5y7, Q3 =

y26 + y27 �
1

2
fy1; y2g+

1

2
�2y0y3, fyi; yjg = yiyj + yjyi.

The YB-algebra for the entries of T (u) � L(u) results in quadratic com-

mutation relations for the dynamical variables yk. The nontrivial problem is

to realize the latter ones in terms of physically signi�cant variables. One of

the realization is given [7] by the momenta pi and coordinates qi, i = 1; 2, of

the two site Toda lattice, so that the L-operator (38) is the product of two

elementary ones (i = 1; 2)

Li(u) =

 
u� pi �eqi

e�qi 0

!
: (40)

The realization we are looking for de�ned by the generators Jk, xk, k =

1; 2; 3 of the Lie algebra e(3), provided that l =
P3

k=1 xkJk = 0 [46]

y0 = 1 y4 = ibx1
y1 = �(J2

1 + J2
2 +

1

4
+ 2�=x23) y5 = ibx2

y2 = �2J3 y6 = �1

2
ibfx3; J1g

y3 = b2x23 y7 = �1

2
ibfx3; J2g ;

(41)

where � and b are constants related to the YB-algebra central elements. The

integrals of motion are generated by the trace of (38)

t(u) = trL(u) = a(u) + d(u) = u2 � 2J3u� 2H �
1

4
; (42)

where H = 1
2
(J2

1 + J2
2 � b2x23) + �=x23 is the Hamiltonian of the Newmann's

systems. The solution of this system by the separation of variables (from

Jk, xk to the new ones) in the framework of the QISM is achieved using the

functional Bethe Ansatz [7, 41]: the introduction of the new variables as the
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operator roots ûi, i = 1; 2, of the entry c(u) (38) and the conjugated variables

m̂i as the values of a(u) and d(u) at these roots. Then, the eigenvalue equation

for the transfer matrix t(u) (two degrees of freedom for the Newmann's case)

is reduced to the one-dimensional problems. To embed the KCG top into such

approach one has to use the RE and the Sklyanin monodromy matrix.

The c-number solutions to the RE with the sl(2) R-matrix have the form

Ka(u) = �a�0 + u(��a �+ + �+
a ��); (43)

where a = �; (��� ; �
+
� ; �

�
+; �

+
+) = (1;��1; �2;�1). Using the L-operator (38)

one can construct according to the general recipe [29] the monodromy matrix

T (u) = L(u)K�(u� ix=2)�2L
T (�u)�2 (44)

and the correspondent generating function � (u) of the integrals of motion

� (u) = trK+(u+ ix=2)T (u) : (45)

The latter one gives rise to the KCG top Hamiltonian (36).

Another wide class of models embedded recently into this scheme [49] in-

cludes the so called quasi-solvable models; some of them are physically relevant.
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