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Variational Interpolation Algorithm between Weak- andStrong-Coupling ExpansionsH. Kleinert�Institut f�ur Theoretische Physik,Freie Universit�at BerlinArnimallee 14, D - 14195 BerlinAbstractFor many physical quantities, theory supplies weak- and strong-coupling expansionsof the typesP an�n and �pP bn(��2=q)n, respectively. Either or both of these mayhave a zero radius of convergence. We present a simple interpolation algorithm whichrapidly converges for an increasing number of known expansion coe�cients. Theaccuracy is illustrated by calculating the ground state energies of the anharmonicoscillator using only the leading large-order coe�cient b0 (apart from the trivialexpansion coe�cent a0 = 1=2). The errors are less than 0:5% for all g. The algorithmis applied to �nd energy and mass of the Fr�ohlich-Feynman polaron. Our mass isquite di�erent from Feynman's variational approach. Typeset using REVTEX�email: kleinert@einstein.physik.fu-berlin.de; URL: http://www.physik.fu-berlin.de/~kleinert1
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1) Recently, the Feynman-Kleinert variational approximation to path integrals [1] has beenextended to a systematic variational perturbation expansion [2]. This expansion convergesuniformly and fast (for the anharmonic oscillator like e�const�N1=3 in the order N of theapproximation [3]). Due to the uniformity of the convergence, it has given rise to an e�cientmethod for extracting strong-coupling expansions from a weak-coupling expansions [4{6].For many physical systems, there exists an independent knowledge of expansion coe�-cients for weak and strong couplings. Important examples are most lattice models of sta-tistical mechanics. The purpose of this note is to propose a simple algorithm by which thevariational perburbation expansion can be used to �nd a systematic convergent interpolationbetween weak- and the strong-coupling expansions.The algorithm is completely general and holds for any physical system whose quantitiespossess expansions in some coupling constant � of type P an�n, for weak and of the type�pP bn(��2=q)n for strong couplings, where either or both of these expansions may have azero radius of convergence.A typical example is the ground state energy of the anharmonic oscillator with p =1=3; q = 3. We shall use this example to illustrated the power of the algorithm by calculatingthis the leading large-order coe�cient b0, apart from the trivial coe�cent a0 = 1=2. Theerrors are less than 0:5% for all g.To make a prediction, we apply the algorithm to the Fr�ohlich-Feynman polaron [8], [9],where we know for the ground state energy the lowest three perturbation coe�cients forweak couplings as well as the �rst two strong-coupling coe�cients; for the polaron mass,only two strong-coupling coe�cients have been calculated.Our interpolation results can be compared with Feynman's famous variational solutionwith interesting discrepancies for the mass, calling for a calculation of higher perturbationor strong-coupling coe�cients.2) Following the method explained in [3], we rewrite the weak coupling expansion of or-der N , 2



EN = NXn=0 an�n; (1)as E!N = !p NXn=0 an � �!q�n (2)where ! is an auxiliary parameter whose value is eventually set equal to 1 and p; q are twoparameters to be determined by general properties of the strong-coupling expansion. Wenow replace ! by the identical expression! ! p
2 + !2 � 
2 (3)and reexpand EwN in powers of � treating !2�
2 as a quantity of order �. The reexpandedseries is truncating after the order n > N .The resulting expansion has the formWN(�;
) = 
p NXn=1 anfn(
)� �
q�n (4)where fn(
) = N�nXj=0  (p� qn)=2j ! (�)j  1 � !2
2!j : (5)Forming the �rst and second derivatives of WN (�;
) with respect to 
 we �nd the positionsof the extrema and the turning points. The smallest among these is denoted by 
N . Theresulting WN(�) �WN (�;
N ) constitutes the desired approximation to the energy.It is easy to take this approximation to the strong-coupling limit�!1. For dimensionalreasons, 
N increases with � like 
N � �1=qcN , so thatWN (�;
N ) � �p=qcpNw(0)N (6)where w(0)N = NXn=0 anfn(1) 1cqN !n : (7)3



The full strong-coupling expression is obtained by writing WN (�;
) = 
pwN (�̂; !2=
2);with �̂ � �=
q; and expanding wn in powers of !2=
2. which behaves for � ! 1 like(1=c2)(�=!q)�2=q. The result isWN (�) = �p=q "b0(c) + b1(c)� �!q��2=q + b2(c)� �!q��4=g + : : :# (8)with bn(c) = 1n!w(n)N (�̂; 0)�̂(2n�p)=qj�̂=1=cq (9)and the superscript (n) denotes the nth derivative with respect to !̂2.The parameters p and q in the expansion (2) are now determined to render the correctleading and the successive powers of � in the strong-coupling expansion (8).The leading coe�cient cN in the optimal frequency 
n is found by searching for theextrema of the leading coe�cient b0(c) as a function of c and choosing the smallest of them.Explicitly bn(c) = NXl=0 al N�nXj=0  (p � lq)=2j !� jn� (�1)j�ncp�lq�2n: (10)Next we have to correct for the fact that for large but �nite � 
 has corrections to thebehavior �1=qc. The coe�cient c will depend on � likec(�) = c+ c1 � �!q��2=q + c2 � �!q��4=g + : : : ; (11)requiring a reexpansion of c-dependent coe�cients bcn in (8). The expansion coe�cients nare determined by extremizing b2n(c). The �nal result can again be written in the form (8)with bcn replaced by bn which are determined by the equations shown in Table 1. The twoleading coe�cients receive no correction and are omitted.It is now obvious that the knowledge of any strong-coupling coe�cients b0; b1 can be ex-ploited to determine approximately further coe�cients aN+1; aN+2; : : : and thus carryWN(�)to higher orders. We merely have to solve Eq. (10) for as many bn as are available.4



3) The weak-coupling expansion of the anharmonic oscillator looks like (1) with � = g=4(for a potential is gx4=4). The lowest coe�cient has is given by the ground state energy andhas the value a0 = 1=2.The strong-coupling behavior is known from general scaling arguments to start outlike g1=3 followed by powers of g�1=3; g�1; g�5=3. Inspection of (8) shows that this corre-sponds to p = 1 and q = 3. The leading coe�cient is known extremely accurately [7,5],b0 = 0:667 986 259 155 777 108 270 962 016 919 860 : : : . This is now used to determine anapproximate a1 (forgetting that we know the exact value aex1 = 3=4). The energy (4) readsfor N = 1: W1(�;
) = 
4 + 14
 + a14
2 : (12)Equation (10) yields, for n = 0: b0 = c4 + a1c2 : (13)Di�erentiating b0 with respect to c we �nd c = c1 � 2a1=31 . Inserting this into (13) �xesa1 = (4=3b0)3 = 0:773 970 : : :, quite close to the exact value. With our approximate a1 wecalculate W1(�;
) at its minimum, where
1 = 8>>><>>>: 2p3! cosh h13acosh(g=g(n))i2p3! cos h13 arccos(g=g(n))i for g > g(n);g < g(n); (14)with g(0) � 2!3=3p3. The result is shown in Fig. (1). Since the di�erence with respect tothe exact solution would be to small to be visible on a direct plot of the energy, we displaythe ratio with respect to the exact energy W1(�)=Eex. The accuracy is everyhwere betterthan 99.5 %. For comparison, we also display the much worse (although also quite good)variational perturbation result using the exact aex1 = 3=4.4) Let us now turn to the polaron model. The Hamiltonian operator readsH = p22mb +Xk �h!oaykak +Xk �Vkakeikx + h:c:� (15)5



where mb is the e�ective mass of the electron in the conduction band, p is the electronmomentum, !O is the frequency of optical phonons which are created and annihilated by aykand ak, and Vk = �i�h!jkj �4��V �1=2  �h2mb!O!1=4 (16)speci�es the electron-phonon interaction in the volume V . The Fr�ohlich coupling constant� = e2�hcsmbc22�h!O � 1"1 � 1"0� (17)involves the fundamental constants e; c; �h and the electronic and static dielectric constants"1 and "0, respectively. This form of Vk assumes the size of the polaron to be large withrespect to the lattice spacing. It further ignores spin and relativistic e�ects and the dispersionof the electron band.In natural units with �h = c = mb = !O = 1, the partition function of the polaron inthermal equilibrium at a �xed temperature T is described by the path integralZ(�) = Z Dx(� ) exp "�12 Z �0 d� _x2 + �23=2 Z �0 Z �0 d�d� 0 e�j��� 0jjx(� )� x(� 0)j# (18)where � = 1=T is the inverse temperature (at Boltzmann constant kB = 1). The weak-coupling expansion of the energy of the polaron is known up to the order �3 [10]:Ew = ��� 0:0159196220�2 � 0:000806070048�3 �O(�4): (19)For strong couplings, the energy is [11]Es = �0:108513�2 � 2:836 �O(��2): (20)The polaron mass has the corresponding expansions [12], [11]:mw = 1 + �6 + 0:02362763�2 +O(�4) (21)ms = 0:0227019�4 +O(�2): (22)Feynman was the �rst to �nd a uniform all-coupling constant expressions from a variationalapproximation to the path integral (18): 6



EF = Minv;w 34v (v �w)2 � �p� Z 10 d�e��fw2� + [(v2 � w2)(1� ��"v)=v]g1=2 (23)and mF = 1 + 13p��v3 Z 10 d�� 2e��f!2� + [(v2 � !2)(1� e��v)=vg1=2 ; (24)the latter being evaluated at the parameters v(�); w(�) obtained in minimizingEF. For weakcoupling Feynman's expressions are exact only to the order �. They have the expansions[10]:EF;w = ��� 0:012345�2 � 6:43434 � 10�4�3 � 4:643 � 10�5�4 � 3:93� 10�6�5 � : : : (25)mF;w = 1 + �6 + 2:469136 � 10�2�2 + 3:566719 � 10�3�3 + 5:073952 � 10�4�4 + : : : (26)For strong couplings, the expansions areEF;s � �0:106103�2 � 2:8294 � 4:86399=�2 � 34:1952=�4 + : : : (27)mF;s � 0:020141�4 � 1:012775�2 + 11:85579 + : : : (28)With the help of the interpolation algorithm based on the variational perturbation expan-sion we shall �nd new expressions for E and m which share with Feynman's the validity forall �, but are more reliable at small and large � by possessing the presently most preciseweak- and strong-coupling expansions (19), (20) and (21), (22).5) We now apply our interpolation algorithm the expansions (19) and (20) for the energy.To make the series start out with �0 as required by the general ansatz (2), we remove anoverall factor �� from E and deal with �E=�.Then we see from (20) that the correct leading power in the strong-coupling expansionrequires taking p = 1; q = 1. The knowledge of b0 and b1 allows us to extend the knownweak coupling expansion (19) by two further expansion terms. Their coe�cients a3; a4 aresolutions of the equationsb0 = 35128a0c+ a1 + 158 a2c + 2a3c2 + a4c3 (29)b1 = 3532 a0c � 54 a2c3 +�a3c3 : (30)7



The constant c governing the growth of 
N for � ! 1 is obtained by extremizing b0 in c,which yields the equation 35128a0 � 158 a2c2 � 4a3c3 � 4a4c5 = 0: (31)The simultaneous solution of (29)|(31) rendersc4 = 0:09819868;a3 = 6:43047343 � 10�4; (32)a4 = �8:4505836 � 10�5:The reexpanded energy (4) reads explicitly (for E including the earlier-removed factor ��)W4(�;
) = a0��� 35128
� 3532
 + 3564
3 � 732
5 + 5128
7�� a1�2+ a2�3 �� 158
 + 54
3 + �38
5�+ a3�4 �� 2
2 + 1
4�� a4�5 1
3 (33)Extremizimg this we �nd 
4 as a function of � [it turns out to be quite well approximatedby the simple function 
4 � c4�+ 1=(1 + 0:07�)]. This is to be compared with the optimalfrequency obtained from minimizing the lower approximation W2(�;
):
22 = 1 + 4a23a0x2 +s�1 + 4a23a0x2�2 � 1; (34)which behaves likes c2� + 1 + : : : with c2 = q8a2=3a0 � 0:120154. The resulting energy isshown in Fig. 2, where it is compared with the Feynman variational energy. For complete-ness, we have also plotted the weak-coupling expansion, the strond-coupling expansion, thelower approximation W2(�) , and two Pad�e approximants which were given in the last ofRefs. [10] as upper and lower bounds to the energy.6) Consider now the polaron mass, where the strong-coupling behavior (22) �xes p = 4; q = 1.The coe�cient b0 allows us to determine an approximate coe�cient a3 and to calculate thevariational perturbation expansion W3(�). From (10) we �nd the equationb0 = �a1c3=8 + a3c; (35)8



whose minimum lies at c3 = q8a2=3a0 [this value follows, of course, also directly from (37],where b0 = q32a33=27a1. Using b0 from (22), we obtain a3 = [27a1b20=32]1=3 � 0:0416929.From (4) we haveW3(�; !) = a0 + a1� �
38 + 3
4 + 38
!+ a2�2 + a3�3
: (36)This is extremal at 
23 = 1 + 4a33a1x2 +s�1 + 4a33a1x2�2 � 1: (37)The approximation W3(�) = W3(�;
3) for the polaron mass is shown in Fig. 3, where itis compared with the weak and strong-coupling expansions and with Feynman's variationalresult. To see better the di�erences between the strongly rising curves, we have divided outthe asymptotic behavior Mas = 1+b0�4 before plotting the data. As for the energy, we haveagain displayed two Pad�e approximants given by the last of Refs. [10] as upper and lowerbounds to the energy. Note that our interpolation di�ers considerably from Feynman's andhigher order expansion coe�cients in the weak or the strong coupling expansions will benecessary to �nd out which is the true behavior of the model.Our curve has, incidentally, the strong-coupling expansionms = 0:0227019�4 + 0:125722�2 + 1:15304 +O(��2); (38)the �2-term being in sharp contrast with Feynman's expression (28). On the weak-couplingside, a comparison of our expansion with Feynmans's in Eq. (26) shows that our coe�centa3 � 0:0416929 is about 10 times larger than his.Both di�erences are the reason for our curve forming a positive arch in Fig. 2, whereasFeynman's has a valley. It will be interesting to �nd out how the polaron mass reallybehaves. This would be possible by calculating a few more terms in either the weak- or thestrong-coupling expansion.Note that our interpolation algorithm is much more powerful than Pad�e's. First, wecan account for an arbitrary fractional leading power behavior �p as � ! 1. Second, the9



successive lower powers in the strong-coupling expansion can be spaced by an arbitrary 2=q.Third, our functions have in general a cut in the complex �-plane approximating the cutsin the function to be interpolated [13]. Pad�e approximants, in contrast, have always aninteger power behavior in the strong-coupling limit, a unit spacing in the strong-couplingexpansion, and poles to approximate cuts.AcknowledgementThe author thanks Prof. J.T. Devreese for sending him a perprint of his new review articlePolarons.
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FIGURES
logg=4W1=Eex

FIG. 1. Plot of the ratio of the intepolation energy with respect to the exact energy as a functionof the coupling constant. The accuracy is everyhwere better than 99.5 %. For comparison, we alsoplot the variational perturbation result using the exact a1 = 3=4. �
EFIG. 2. The polaron energy obtained from our variational interpolation between the weakcoupling expansion (dashed) and the strong-coupling expansion (short-dashed) to be comparedwith Feynman's variational approximation (fat dots). The dotted curves are Pad�e approximantswhich were given in the last of Refs. [10] as upper and lower bounds to the energy.12



�
m=(1 + b0�4)

FIG. 3. The polaron mass curve interpolating optimally between the weak-(dashed) andstrong-coupling expansions (short-dashed). To see better the di�erences between the stronglyrising functions, we have divided out the asymptotic behavior Mas = 1 + b0�4 before plottingthe curves. The fat dots show Feynman's variational approximation. The dotted curves are Pad�eapproximants which were given in the last of Refs. [10] as upper and lower bounds to the mass.
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TABLESTABLE I. Equations determining the coe�cients bn in the strong-coupling expansion from thefunctions bn(c) and their derivatives. For brevity, we have suppressed the argument c in the entries.n bn �cn�12 b2 + c1b01 + 12c21b000 b01=b0003 b3 + c2b01 + c1b02 + c1c2b000 + 12c21b001 + 16c31b(3)0 b02 + c1b001 + 12c21b(3)0 )=b0004 b4 + c3b01 + c2b02 + c1b03 + (12c22 + c1c3)b000 (b03 + c2b001 + c1b002 + c1c2b(3)0+c1c2b001 + 12c21b002 + 12c21c2b(3)0 + 16c31b(3)1 + 124c41b(4)0 +12c21b(3)1 + 16c31b(4)0 )=b000
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