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Abstract

We establish a simple, explicit relation between the formalisms employed in

the treatments of polarization observables in deuteron two-body electrodis-

integration published by Arenhövel, Leidemann, and Tomusiak in Few-Body

Systems 15, 109 (1993) and the results of the present authors published in

Phys. Rev. C 40, 2479 (1989). We comment on the overlap between the two

sets of results.

In a recent issue of this journal an article [1] by Arenhövel, Leidemann and Tomusiak

(ALT) on “General Formulae for Polarization Observables in Deuteron Electrodisintegration

and Linear Relations” has appeared. Four years earlier [2] we published a comprehensive

treatment of polarization observables in this reaction (DG), and since the ALT paper makes
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no reference to our work we feel obliged to comment on these two papers, and to discuss the

relationship between these two approaches. In this comment we will establish a simple and

explicit relation between the transition amplitudes in the two approaches, whereupon all of

our results [2] become immediately applicable to the ALT formalism.

Before we compare these two papers in detail, we review the arguments which determine

the number of real observables which can be measured in deuteron electrodisintegration. The

total number of spin variables in this reaction are 3×3×2×2 = 36, but because of the parity

constraint, only half of these complex amplitudes, 18, are independent. The number of real

bilinear products which can be formed from these 18 complex amplitudes is 18× 18 = 324

(since A∗B and B∗A are equivalent to two real functions). However, since there are “only”

18 independent complex amplitudes, and since the overall phase can never be determined,

all of these 324 observables depend on products of only 35 independent real functions. The

problem of completely measuring deuteron electrodisintegration reduces to the problem of

designing a program of measurements from which the 35 independent real functions can

unambigously extracted from combinations of the 324 bilinear products measured in actual

experiments. Clearly not all possible measurements are needed for a complete determination,

and as more and more measurements are added to the data base, greater and greater care

must be taken to find new measurements which give truly independent information.

Because of this redundancy, in DG we discussed all possible spin observables which can

be measured in the reaction d(e, e′N1)N2, where nucleon N2 is not observed, and therefore

its polarization is not detected. Hence we limited ourselves to observables in which the

polarization of the virtual photon, the deuteron target, and one outgoing nucleon are mea-

sured, either singlely or in all possible combinations. Choosing a hybrid transversity basis

we were able to obtain a comparatively simple result, and demonstrated that 162 bilinear

products of amplitudes can be measured by looking at reactions where N1 = p. Adding

the cases where N1 = n gives another 162 bilinear products of amplitudes, but only 80

of these are new (see below). We did not discuss measurements in which the polarization

of both of the outgoing nucleons are measured (which requires d(e, e′ ~n ~p) measurements)
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but the remaining 82 products could be measured in this way. We also showed that the

162 observables accessible to N1 = p measurements could not completely determine the 35

independent real quantities, even though 162 is far greater that 35 . At least one neutron

polarization measurement must be made before all 35 independent real quantities can be

extracted, but one such additional measurement is sufficient, in principle, to complete the

program.

The ALT paper is an extension of an earlier paper [3] on complete classification of all

polarization experiments in deuteron photodisintegration. They extend their photodisinte-

gration formalism to include longitudinal polarization of the virtual photon, and the number

of amplitudes is accordingly increased from 12 to 18. They discuss all possible polarization

measurements, including those which can be obtained from d(e, e′ ~n ~p), and hence should

obtain all of the 324 bilinear products. However, their formalism generates twice this many

(648), and they spend some time showing how the parity constraint generates the neces-

sary 324 linear relations between these 648 bilinear products, all of which are nonzero in

their formalism. Unfortunately, the linear relations between the 648 amplitudes make it

difficult to see which measurements are sufficient to extract the 35 truly independent real

functions needed to completely determine all deuteron electrodisintegration observables. At

the end of their paper they say that, in order to fully determine all observables in deuteron

electrodisintegration, “one cannot totally avoid” measuring two observables in which the

polarizations of both outgoing nucleons are measured. This conclusion contradicts the result

of DG, where we showed that no such measurements are required (although it might turn

out that a particular separation strategy might make use of such measurements). We will

compare the results of these two papers in more detail shortly.

Before turning to the details of this discussion, it might help the reader to look at these

two papers within the historical context. The ALT paper is the latest in a long series [3–5]

that can be traced back to J.J. De Swart’s founding paper from 1959 [6], which relied on

the nonrelativistic spin polarization formalism developed by Ashkin and Wolfenstein [7].

Our approach has a similarly long lineage dating back to the relativistic spin polarization
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(helicity) formalism of Jacob and Wick (JW) [8] who, among other things, established a link

with the nonrelativistic formalisms. This method allows a simple exploration of parity and

other symmetries, as well as complete separations of amplitudes. The first application of

the JW formalism to the problem of deuteron photo- and electrodisintegration was made

by LeBellac, Renard and Tran Thanh Van in a series [9–13] of formal and practical papers

in the mid-sixties. At that time the helicity formalism was still sufficiently new to warrant

a comparison with the older nonrelativistic formalism. The relation between the two, in

the form of formulae for multipoles, was explicitly spelled out in Appendix B of Ref. [9] for

the photodisintegration amplitudes and in section 4.2 of Ref. [11], as well as in section 5

of Ref. [12] for the electrodisintegration amplitudes. Although the helicity formalism has

its complexities, it does lead to final results with patterns simple enough to allow for a

comparatively simple discussion of separation strategies.

We now turn to a detailed comparison of the ALT and DG papers. Our approach (DG)

begins with the use of helicity amplitudes with parity transformation properties summarized

by the following relation

〈λp λn|Jλγ |λD〉 ≡ 〈λp λn|J · ελγ |λD〉 (1a)

〈λp λn|Jλγ |λD〉 = (−1)(λp−λn)−(λγ−λD)〈−λp − λn|J−λγ | − λD〉 , (1b)

where J · ελ = Jµ ε
µ
λ, using the Bjorken and Drell metric [14], and the initial state consists

of a virtual photon with helicity λγ and a deuteron (particle No. 2 in the sense of Jacob and

Wick [8]) with helicity λD, and the final state consists of an outgoing proton with helicity

λp and neutron (particle No. 2) with helicity λn. The hadronic response current, Jµ, is

defined in the ejectile plane, defined in Fig. 2 of Ref. [2]. The ALT paper is based on the

use of reduced amplitudes tsmsλm, where λ and m are the virtual photon and deuteron spin

projections in the direction of the momentum transferred by the scattered electron, q, and

the spins of the outgoing nucleons are coupled into states of total spin s = 0 or 1, with total

spin projection ms in the direction of the relative momentum pnp of the outgoing np pair

in the center of momentum (c.m.) frame. For our present task it is a fortunate coincidence
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that ALT chose the spin quantization axis for the deuteron to be in the direction of q, and

the quantization for the final state nucleon spins to be along the direction of the relative np

momentum in the c.m. frame of the outgoing pair 1, because this makes it easy to identify

their spin projections with our helicities, as follows:

λ= λγ

m= −λD

ms= λp − λn . (2)

However, the ALT decision to work with amplitudes with a definite value of the total nuclear

spin s leads to subsequent differences in appearance between the two approaches. In spite

of this, the simple relations (2) allow us to connect our helicity formalism with the ALT

formalism using only Clebsch-Gordan coefficients.

For s = 1,ms = ±1, the relation to the helicity states is straightforward:

t11λm = C〈+1
2
− 1

2
|Jλ| −m〉 (3a)

t1−1λm = C〈−1
2

+ 1
2
|Jλ| −m〉 , (3b)

where C is a proportionality factor. The Jacob-Wick (helicity) parity conservation relation

(1b) gives the following parity relations for the ms = ±1 ALT amplitudes

t1±1λm = C〈±1
2
∓ 1

2
|Jλ| −m〉

= (−1)ms+λ+mC〈∓1
2
± 1

2
|J−λ|m〉

= (−1)ms+λ+mt1∓1−λ−m

= (−1)1+s+ms+λ+mt1∓1−λ−m , (4)

in agreement with Eq. (4) of ALT.

1This choice was made in the original treatment [6], but was forgotten in the meantime and that

has lead to some confusion. Compare the final state polarization results in Refs. [4] and [5].
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The comparison of the s = 1,ms = 0 and s = 0,ms = 0 states is less straightfor-

ward. In these cases we need to form the symmetric and antisymmetric normalized linear

combinations of the two outgoing nucleon helicities and find:

t10λm = C
1
√

2

[
〈+1

2
+ 1

2
|Jλ| −m〉+ 〈−1

2
− 1

2
|Jλ| −m〉

]
(5a)

t00λm = C
1
√

2

[
〈+1

2
+ 1

2
|Jλ| −m〉 − 〈−

1
2
− 1

2
|Jλ| −m〉

]
. (5b)

The symmetric combination Eq. (5a) is actually the s = 1 amplitude because it has the

appropriate phase under the parity transformation as the rest of the triplet:

t10λm = C
1
√

2

[
〈+1

2
+ 1

2
|Jλ| −m〉+ 〈−1

2
− 1

2
|Jλ| −m〉

]
= C

1
√

2

[
(−1)λ+m〈−1

2
− 1

2
|J−λ|m〉+ (−1)λ+m〈+1

2
+ 1

2
|J−λ|m〉

]
= (−1)λ+mt10−λ−m

= (−1)ms+λ+mt10−λ−m

= (−1)1+s+ms+λ+mt10−λ−m . (6)

The singlet Eq. (5b), on the other hand, is antisymmetric and hence has the opposite phase

under parity:

t00λm = C
1
√

2

[
〈+1

2
+ 1

2
|Jλ| −m〉 − 〈−

1
2
− 1

2
|Jλ| −m〉

]
= C

1
√

2

[
(−1)λ+m〈−1

2
− 1

2
|J−λ|m〉 − (−1)λ+m〈+1

2
+ 1

2
|J−λ|m〉

]
= (−1)1+λ+mt00−λ−m

= (−1)1+ms+λ+mt00−λ−m

= (−1)1+s+ms+λ+mt00−λ−m . (7)

All cases can be described by a single formula

tsmsλm = (−1)1+s+ms+λ+mts−ms −λ−m , (8)

which is exactly Eq. (4) of [1]. Thus we have shown that the ALT amplitudes are simple

linear combinations of the helicity amplitudes. From this point on the comparison between
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the two papers is strictly a matter of transcription of the results from one notation to the

other.

Of course, in matters like this, transparent and concise notation is very important, and

following a suggestion by Moravcsik, we found that a hybrid transversity basis gave com-

paratively simple results. Our hybrid basis is obtained from the helicity basis by rotating

the amplitudes by −π/2 around the x axis. This is equivalent to using amplitudes in which

hadron spins are quantized with respect to the y axis, but the photon spin remains quantized

with respect to the z axis. The construction of this basis is described in Sec. II.E of DG,

and the explicit transformations for helicity basis to hybrid basis are given in the Appendix

of that article. This basis could also be expressed in terms of the ALT amplitudes by com-

bining the relations (3) and (5) with the transformations given in DG. Final results for the

observables in which N1 = p, expressed as bilinear products of the hybrid amplitudes, are

summarized in Tables X–XII of DG. Because of the use of the hybrid basis, one-half of the

entries in these tables are zero, and all of the 162 nonzero entries are linear combinations of

162 different real bilinear products. In the language of ALT, there are no linear relations

connecting these products to each other.

As discussed in DG, it is possible to obtain a simple understanding of the origin of the

162 independent real bilinear products determined by reactions in which N1 = p. These

measurements divide the 18 independent complex amplitudes into two disjoint classes of 9

amplitudes each [defined explicitly in Eq. (99) of DG], in the sense that these measurements

determine all products of amplitudes in each class, but no products of amplitudes in one

class with those in another. Hence N1 = p measurements determine 9 × 9 + 9 × 9 = 162

independent products. Now, the same Tables X–XII can be used to obtain the observables for

neutron measurements (in which N1 = n), provided one exchanges five of the amplitudes in

one class with five in the other (see DG for details). Hence neutron measurements determine

2 × (4 × 5 + 5 × 4) = 80 new real bilinear products, the remaining 82 being identical to

those already fixed by the proton measurements. In the ALT language, the identity of the

82 products which occur in both proton and neutron measurements could be written as
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linear relations, but the simplicity of the pattern of results given in Tables X–XII makes this

unnecessary. Finally, the remaining 2× (4× 4 + 5× 5) = 82 products of amplitudes arising

from products amplitudes with one from each of the two groups of 5 amplitudes exchanged

in the p→ n substitution, and similar products between the two groups of 4 amplitudes not

exchanged in the p→ n substitution, cannot be determined by either class of experiments,

and require d(e, e′ ~p~n) experiments, as stated at the beginning of this comment. That does

not mean, however, that these experiments are necessary for the complete separation of

amplitudes.

We conclude by emphasizing that any attempt to discuss complete separations in reac-

tions as complex as deuteron electrodisintegration, or to find “the most suitable complete

set” of amplitudes, requires that the relations between the observables and the bilinear prod-

ucts from which they are determined be as simple as possible. We believe that the hybrid

transversity basis, popularized by Moravscik and developed in DG, is just such a basis. The

ALT choice of the final state spin quantization axis makes a simple, direct link between their

amplitudes and the hybrid basis possible. Despite the fact that one can view the problem

of complete separation of amplitudes as solved by this basis, it would still be satisfying to

see the ALT results expressed in this basis.
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