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Abstract

We calculate the leading perturbative and power corrections to the hadronic

invariant mass and energy spectra in semileptonic heavy hadron decays. We

apply our results to the B system. Moments of the invariant mass spec-

trum, which vanish in the parton model, probe gluon bremsstrahlung and

nonperturbative effects. Combining our results with recent data on B me-

son branching ratios, we obtain a lower bound Λ̄ > 410 MeV and an upper

bound mpole
b < 4.89 GeV. The Brodsky-Lepage-Mackenzie scale setting proce-

dure suggests that higher order perturbative corrections are small for bottom

decay, and even tractable for charm decay.
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I. INTRODUCTION

Our understanding of inclusive decays of hadrons containing at least one heavy quark
has improved greatly over the last few years. The energy released during semileptonic or
radiative decay of heavy hadrons is much larger than the scale ΛQCD of the strong inter-
actions, and therefore an operator product expansion (OPE) exists for some observables in
these decays, including rates and differential spectra [1,2]. The leading power corrections to
the rates and lepton differential spectra for semileptonic decays of heavy hadrons [3–6] have
been studied extensively, as have the power corrections to radiative decays [7].

A major result of this analysis is that, except in regions where the expansion becomes
singular such as the endpoint of the electron spectrum in semileptonic b → u decay, the
corrections to the parton model are quite small, suppressed by O(Λ2

QCD/m
2
b). While this

does mean that the parton model is quite successful, it makes it difficult to test quantitatively
the corrections given by the OPE. In particular, if quark/hadron duality does not hold in
this energy regime, one would expect to see corrections to the parton model which could not
be accounted for by the leading perturbative and 1/mQ corrections. Shifman has recently
criticized the related OPE analysis of τ decay on the basis that violations of duality in the
Minkowski regime introduce large corrections which are not seen at any finite order in the
OPE [8].

In this paper we suggest that hadronic variables, in particular moments of the invariant
mass spectrum dΓ/dsH and the hadron energy spectrum dΓ/dEH , provide a useful testing
ground for the OPE. This is similar to the analogous suggestion, and analysis, for semilep-
tonic τ decays [9,10]. However, unlike the case for τ decays, at tree level the final hadronic
state consists of a single quark. Therefore at lowest order in the OPE the final hadronic
state has fixed invariant mass sH = m2

q, and positive moments of (sH −m2
q), which are cal-

culable as a double expansion in αs(mb) and 1/mb, directly probe physics beyond the parton
model. Similarly, at leading order in the OPE the maximum hadron energy is (m2

b+m
2
q)/2mb

(when the quark q recoils back-to-back with the leptons); the region above this endpoint is
populated only by gluon bremsstrahlung and nonperturbative effects.

In this paper we calculate the corrections to the parton model results for these ob-
servables, up to O(1/m2

b , αs/mb). As discussed in Ref. [11], although the leading power
corrections to leptonic variables arise at O(1/m2

b), for kinematic reasons the leading power
corrections to moments of the invariant mass spectrum arise at O(1/mb). The O(1/m2

b)
corrections to the differential hadronic energy spectrum were first examined in Ref. [12];
however, we disagree with the results presented in that work. We also use the results of
Ref. [13], in which the one-loop corrections to the hadron energy spectrum were calculated.
We combine our results with recent data on B meson branching ratios to obtain a lower
bound on the nonperturbative parameter Λ̄, which is the leading contribution to the differ-
ence between heavy quark and heavy meson masses.

Finally, using the BLM prescription [14] to estimate the size of the two-loop perturbative
corrections to the moments of the invariant mass spectrum, we demonstrate that these
moments appear to have a well-behaved perturbative expansions not only for B decays, but
also for D decays, when the results are expressed in terms of physical observables. This
suggests that studying hadronic observables in semileptonic decays of charmed hadrons,
which are dominated by only two or three resonances, may shed some insight into the
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FIG. 1. The kinematics for B → Xq`ν.

applicability of quark/hadron duality at low energies.

II. KINEMATICS

We start by introducing the kinematic variables describing the final state hadrons. For
definiteness, we will consider semileptonic B decay, although the analysis extends simply to
the decays of charmed hadrons.

The kinematics of the inclusive process B → Xq`ν is shown in Fig. 1. The four-velocity
of the B meson is vµ, and qµ is the four-momentum of the lepton pair. The total energy of
the leptons in the B rest frame is v · q, and their invariant mass is q2. It is convenient to
define dimensionless quantities Ê0 and ŝ0,

Ê0 = v · (Pb − q)/mb = 1− v · q̂ , (2.1)

ŝ0 = (Pb − q)
2/m2

b = 1− 2v · q̂ + q̂2 ,

where q̂µ = qµ/mb. At leading order in 1/mb, Ê0 and ŝ0 are simply the scaled energy and
squared invariant mass of the final hadronic state. However, since they are scaled by the b
quark mass, this identification does not hold at subleading order in 1/mb.1 Instead, they are
related to the physical hadronic energy and squared invariant mass,

EH = v · (PB − q) = mB − v · q , (2.2)

sH = (PB − q)
2 = m2

B − 2mBv · q + q2 ,

through

EH = Λ̄−
λ1 + 3λ2

2mB

+

(
mB − Λ̄ +

λ1 + 3λ2

2mB

)
Ê0 + . . . ,

sH = m2
q + Λ̄2 + (m2

B − 2Λ̄mB + Λ̄2 + λ1 + 3λ2) (ŝ0 − m̂
2
q) (2.3)

+ (2Λ̄mB − 2Λ2 − λ1 − 3λ2)Ê0 + . . . ,

where m̂q = mq/mb, and the ellipses denote terms higher order in 1/mb. The quantities Λ̄,
λ1 and λ2 arise in the relationship between the quark and meson masses [15,16],

1This fact was neglected in Ref. [12].
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mB = mb + Λ̄−
λ1 + 3λ2

2mb

+ . . . ,

mB∗ = mb + Λ̄−
λ1 − λ2

2mb

+ . . . . (2.4)

From the measured B–B∗ mass splitting, λ2 ' 0.12GeV2. We note that in contrast to
the lepton spectra, there are 1/mb corrections both to the physical hadronic invariant mass
spectrum and to the physical hadronic energy spectrum, although these corrections are
absent for the ŝ0 and Ê0 spectra [11].

While the complete shape of the Ê0 spectrum may be calculated (away from the parton
model endpoint Ê0 = 1

2
(1 + m̂2

q)) with the standard OPE analysis, only suitably averaged
features, such as moments, of the ŝ0 spectrum may be computed reliably. The difference
arises because each point of the Ê0 spectrum receives contributions from states of different
invariant masses, making the process inclusive, whereas by definition each point of the ŝ0

spectrum only receives contributions from states of a single invariant mass. This may be
seen explicitly by carrying out the usual OPE analysis for inclusive decays in the variables
ŝ0 and Ê0, instead of the usual leptonic variables v · q̂ and q̂2.

The inclusive B meson decay rate is given by

Γ(B → Xq`ν) ∼
∫

dŝ0 dÊ0

√
Ê2

0 − ŝ0Lµν(ŝ0, Ê0)W
µν(ŝ0, Ê0) , (2.5)

where Lµν is the spin summed lepton tensor Lµν ∝ (qµqν−gµνq2). Using the optical theorem,
the nonperturbative hadronic tensor W µν is related to the imaginary part of the forward
scattering amplitude [1,2],

W µν =
∑
X

〈B| Jµ†h |X〉〈X| J
ν
h |B〉(2π)4δ4(PB − PX − q)

= −2 Im 〈B| i
∫

dx e−iq·x T
[
Jµ†h (x)Jνh(0)

]
|B〉 (2.6)

≡ 2 ImT µν

where Jµh = qγµ 1
2
(1− γ5)b. The time-ordered product T µν may be written via an operator

product expansion as a power series in αs(mb) and 1/mb.
In the v · q̂ plane, for fixed q̂2, the correlator T µν has the analytic structure shown

in Fig. 2a, as discussed in Ref. [2]. There are cuts along the real axis, a physical one
(corresponding to B decays) for v · q̂ ≤ 1

2
[1+ q̂2− m̂2

q], and an unphysical one (corresponding
to scattering processes) for v · q̂ ≥ 1

2
[(2 + m̂q)2 − q̂2 − 1]. The one-particle pole lies at

the right hand end of the physical cut. After an integral over the charged lepton energy,
the decay rate is computed by performing an integration over the top of the physical cut,
for
√
q̂2 ≤ v · q̂ ≤ 1

2
(1 + q̂2 − m̂2

q), followed by an integration over 0 ≤ q̂2 ≤ (1 − m̂q)2.
Note that in the limit m̂q → 0 and q̂2 → 1, the physical and unphysical cuts pinch the
region of integration. In this corner of the parameter space, the operator product expansion
breaks down. Attempts to resum the OPE to all orders in this region have thus far proven
inconclusive [4,17,18].

Mapping from the v · q̂ plane to the ŝ0 plane at fixed Ê0, one finds two cuts on the positive
ŝ0 axis, as shown in Fig. 2b. The physical cut, which terminates in the one-particle pole,
extends over ŝ0 ≥ m̂2

q . The unphysical cut lies away from the pole, at ŝ0 ≥ m̂2
q +4m̂q +4Ê0.
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FIG. 2. The analytic structure of Tµν , (a) in the v · q̂ plane, and (b) in the ŝ0 plane. Both the

physical and unphysical cuts are shown, as well as the position of the one-particle pole.

The region of integration in ŝ0 is given by max(2Ê0 − 1, m̂q) ≤ ŝ0 ≤ Ê2
0 , to be followed by

an integration in Ê0, over m̂q ≤ Ê0 ≤ 1.
In these variables, the region of integration only touches the unphysical cut in the limit

m̂q → 0 and Ê0 → 0, which from Eq. (2.1) is equivalent to the condition for the cuts to pinch
in the v · q̂ plane. In this singular region, as before, the operator product expansion breaks
down. We also note that the integration region covers the one-particle pole at ŝ0 = m̂2

q only

if Ê0 ≤
1
2
(1 + m̂2

q). Indeed, this corresponds to the maximum energy the final quark can
take away in the decay process. The cut for ŝ0 > m̂2

q is populated only by multiparticle final
states generated by the radiation of gluons. In perturbation theory, then, the differential
spectrum dΓ/dÊ0 for Ê0 >

1
2
(1 + m̂2

q) is of order αs.
As is the case for τ decays, the contour of integration in Eq. (2.5) may be deformed away

from the physical region, except at the point the contour crosses the physical cut. However,
we note that in contrast to τ decays, the integrand in Eq. (2.5) does not have a double zero
where the deformed contour approaches the physical region. It is possible, therefore, that
deviations from quark/hadron duality in the Minkowski regime may be more pronounced in
semileptonic heavy hadron decay than in τ decay.

III. SPECTRAL MOMENTS

In this section we compute the spectral moments at the parton level. We will treat
both the leading power corrections, proportional to λ1 and λ2, and the leading perturbative
contributions, proportional to αs(mb). We take the two types of corrections in turn.

A. Power Corrections

For the computation of the power corrections, it is convenient to decompose the time
ordered product T µν into the form factors

T µν(ŝ0, Ê0) = −gµνT1(ŝ0, Ê0) + vµvνT2(ŝ0, Ê0) + . . . , (3.1)
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where the omitted form factors vanish for massless leptons in the final state. In terms of T1

and T2 the differential spectrum is given by

1

Γ0

dΓ

dŝ0dÊ0

= −
32

π
Im
√
Ê2

0 − ŝ0

[
3(1− 2Ê0 + ŝ0)T1(ŝ0, Ê0) + (Ê2

0 − ŝ0)T2(ŝ0, Ê0)
]
, (3.2)

where

Γ0 =
G2
Fm

5
b|Vbq |

2

192π3
(3.3)

is proportional to the total decay rate.
The leading 1/mb corrections to the hadronic quantities T1 and T2 were calculated in

Refs. [3,4]. In terms of ŝ0 and Ê0, they are given by

T1(ŝ0, Ê0) =
1

ŝ0 − m̂2
q + iε

[
Ê0

2
−

λ1

12m2
b

−
λ2

4m2
b

]

+
1(

ŝ0 − m̂2
q + iε

)2

[
λ1

6m2
b

(
5Ê2

0 − 3Ê0 − 2ŝ0

)
+

λ2

2m2
b

(
5Ê2

0 + Ê0 − 2ŝ0

)]
(3.4)

+
1(

ŝ0 − m̂2
q + iε

)3

[
2λ1

3m2
b

Ê0(ŝ0 − Ê
2
0)

]
,

T2(ŝ0, Ê0) =
1

ŝ0 − m̂2
q + iε

[
1−

5λ1

6m2
b

−
5λ2

2m2
b

]

+
1(

ŝ0 − m̂2
q + iε

)2

[
7λ1

3m2
b

(Ê0 − 1) +
λ2

m2
b

(5Ê0 − 3)

]
(3.5)

+
1(

ŝ0 − m̂2
q + iε

)3

[
4λ1

3m2
b

(ŝ0 − Ê
2
0)

]
.

Integrating this expression with respect to Ê0, we find the leading power correction to the
invariant mass spectrum. Of course, since there is only a single quark in the final state,
this expression is a singular function with support only at ŝ0 − m̂2

q. Only its moments,
which we present below, are meaningful. The corrections to the hadronic energy spectrum,
obtained by integrating first with respect to ŝ0, are more interesting, and are presented in
Appendix A.

Because the expansions of T1 and T2 in terms of 1/mb contain pole factors 1/(ŝ0− m̂2
q)
n,

it is simplest to compute the moments of (ŝ0 − m̂2
q) rather than those of ŝ0. The requisite

calculations are straightforward but tedious, and we present only the final results. It is
convenient to scale the various contributions to Γ0 rather than to the full width Γ; the
quantities which we will present below are then of the form

M(n,m) =
1

Γ0

∫
(ŝ0 − m̂

2
q)
nÊm

0

dΓ

dŝ0dÊ0

dŝ0dÊ0 , (3.6)

for integers n and m. They are related to the parton level moments by a scaling to the
corrected decay rate,

〈Êm
0 (ŝ0 − m̂

2
q)
n〉 =

Γ0

Γ
M(n,m) . (3.7)
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FIG. 3. The Feynman diagrams which contribute to the moments at order αs. There are also

wave function corrections, which we do not show.

B. Perturbative Corrections

The perturbative corrections to T1 and T2 are most conveniently calculated directly
from the graphs in Fig. 3. The radiative contributions to 〈(ŝ0 − m̂2

q)
n〉 come only from

bremsstrahlung graphs and are straightforward to compute for arbitrary m̂q. We find

1

Γ0

dΓ

dŝ0
=
αs

π

1

ŝ0 − m̂2
q

[
(ŝ0 − 1)

27ŝ2
0

(
−9m̂4

q − 6m̂6
q + ŝ0(18m̂

2
q + 81m̂4

q + 48m̂6
q) (3.8)

+ ŝ2
0(93− 316m̂2

q + 243m̂4
q + 102m̂6

q) + ŝ3
0(−41− 478m̂2

q + 9m̂4
q)

+ ŝ4
0(−95− 64m̂2

q) + 55ŝ5
0

)
+

4

9
ln ŝ0

(
−3 + 5m̂2

q − 18m̂4
q − 9m̂6

q + ŝ0(−5 + 45m̂2
q − 9m̂4

q − 3m̂6
q)

+ 9 ŝ2
0(1 + 2m̂2

q) + 2m̂2
q ŝ

3
0 − 2ŝ4

0

) ]
,

from which it is easy to extract the moments 〈(ŝ0 − m̂2
q)
n〉. Similarly, weighting with extra

factors of Ê0 yields the radiative correction to the momentsM(n,m), for n ≥ 1 and any m.
The one-loop radiative corrections to the hadronic energy spectrum, and hence to the

moments M(0,m), are considerably more difficult to compute. This is because they receive
contributions from both virtual graphs and bremsstrahlung graphs, only the sum of which
is infrared finite. The complete calculation of the radiative corrections to the differential
energy spectrum dΓ/dÊ0 was computed by Czarnecki, Jeżabek and Kühn [13].

We present the full perturbative corrections to 〈Ê0〉 and 〈Ê2
0〉 in Appendix A. In the

limit m̂q → 0 they take the simple form

M(0,1)
pert.(m̂q = 0) =

[
1381

900
−

7

30
π2
]
αs

π
= −0.768

αs

π
,

M(0,2)
pert.(m̂q = 0) =

[
2257

3600
−

4

45
π2
]
αs

π
= −0.250

αs

π
. (3.9)
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C. Corrections to the Moments

We now combine the results of the previous subsections to present the full expressions
for the parton-level moments, including the leading perturbative and power corrections.

The first two moments of the hadronic invariant mass spectrum are given by

M(1,0) =
αs

π

[
91

450
+

71

18
m̂2
q −

158

27
m̂4
q +

34

9
m̂6
q +

1

18
m̂8
q −

2873

1350
m̂10
q

+
(
4m̂2

q +
40

9
m̂4
q −

8

3
m̂6
q +

20

3
m̂8
q +

56

45
m̂10
q

)
ln m̂q

]
(3.10)

+
λ1

2m2
b

[
13

10
−

27

2
m̂2
q − 16m̂4

q + 32m̂6
q −

9

2
m̂8
q +

7

10
m̂10
q − 60m̂4

q ln m̂q − 12m̂6
q ln m̂q

]
+

λ2

2m2
b

[
3

2
−

9

2
m̂2
q + 8m̂4

q − 24m̂6
q +

45

2
m̂8
q −

7

2
m̂10
q + 12m̂4

q ln m̂q − 36m̂6
q ln m̂q

]
,

M(2,0) =
αs

π

[
5

324
−

137

450
m̂2
q −

101

36
m̂4
q +

86

81
m̂6
q −

29

36
m̂8
q +

37

18
m̂10
q +

6341

8100
m̂12
q (3.11)

−
(

10

3
m̂4
q +

152

27
m̂6
q +

14

3
m̂8
q + 4m̂10

q +
56

135
m̂12
q

)
ln m̂q

]
+

λ1

2m2
b

[
−

16

45
+

16

5
m̂2
q − 16m̂4

q + 16m̂8
q −

16

5
m̂10
q +

16

45
m̂12
q −

128

3
m̂6
q ln m̂q

]
.

The first mixed moment is

M(1,1) =
αs

π

[
9

100
+

209

180
m̂2
q −

149

108
m̂4
q +

4

3
m̂6
q −

49

36
m̂8
q +

1457

2700
m̂10
q −

23

60
m̂12
q (3.12)

+
(

7

5
m̂2
q +

10

9
m̂4
q +

4

3
m̂6
q +

2

3
m̂8
q +

23

45
m̂10
q +

4

15
m̂12
q

)
ln m̂q

]
+

λ1

2m2
b

[
23

90
−

1

2
m̂2
q + 12m̂4

q − 16m̂6
q +

13

2
m̂8
q −

27

10
m̂10
q +

4

9
m̂12
q

+12m̂4
q ln m̂q +

20

3
m̂6
q ln m̂q

]
+

λ2

2m2
b

[
13

30
+

3

2
m̂2
q − 4m̂4

q −
3

2
m̂8
q +

49

10
m̂10
q −

4

3
m̂12
q + 12m̂4

q ln m̂q − 20m̂6
q ln m̂q

]
.

The first two moments of the hadron energy spectrum are given by

M(0,1) =
[

7

20
−

5

4
m̂2
q + 8m̂4

q − 8m̂6
q +

5

4
m̂8
q −

7

20
m̂10
q + 6m̂4

q ln m̂q + 6m̂6
q ln m̂q

]
+A1(m̂q)

αs

π
(3.13)

+
λ1

2m2
b

[
1− 8m̂2

q + 8m̂6
q − m̂

8
q − 24m̂4

q ln m̂q

]
+
λ2

2m2
b

[
7m̂2

q − 20m̂4
q + 20m̂8

q − 7m̂10
q + 24m̂2

q ln m̂q − 48m̂4
q ln m̂q

]
,

M(0,2) =
[

2

15
−

1

5
m̂2
q − 2m̂4

q + 2m̂8
q +

1

5
m̂10
q −

2

15
m̂12
q − 8m̂6

q ln m̂q

]
+A2(m̂q)

αs

π
(3.14)
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+
λ1

2m2
b

[
43

90
−

3

2
m̂2
q + 14m̂4

q − 16m̂6
q +

9

2
m̂8
q −

17

10
m̂10
q +

2

9
m̂12
q

+ 12m̂4
q ln m̂q +

28

3
m̂6
q ln m̂q

]
+

λ2

2m2
b

[
13

30
−

21

2
m̂2
q + 50m̂4

q − 52m̂6
q +

21

2
m̂8
q +

49

10
m̂10
q −

10

3
m̂12
q

+ 12m̂4
q ln m̂q + 28m̂6

q ln m̂q

]
,

where the functions Am(m̂q) are presented in Appendix A.
Finally, we obtain the leading corrections to the total decay rate by taking the n = m = 0

moment. Of course, this result is not new; we present it for completeness and because we
will need it to normalize the moments. We find

Γ(B → Xqeν̄) = Γ0

[
f0(m̂q) +

1

2m2
b

f1(m̂q, λ1, λ2) +A0(m̂q)
αs
π

]
, (3.15)

where

f0(m̂q) = 1− 8m̂2
q + 8m̂6

q − m̂
8
q − 24m̂4

q ln m̂q ,

f1(m̂q, λ1, λ2) = λ1

(
1− 8m̂2

q + 8m̂6
q − m̂

8
q − 24m̂4

q ln m̂q

)
(3.16)

+ λ2

(
−9 + 24m̂2

q − 72m̂4
q + 72m̂6

q − 15m̂8
q − 72m̂4

q ln m̂q

)
.

The power correction f1(m̂q, λ1, λ2) was first obtained in Refs. [3,4], and the perturbative
correction A0(m̂q), which we present in Appendix A, was first found in Ref. [19]. It takes a
simple form when m̂q → 0, for which

A0(m̂q = 0) =
25

6
−

2

3
π2 . (3.17)

IV. APPLICATION TO B MESON DECAYS

The relations (2.3) allow moments of the physical parameters EH and sH to be expressed
in terms of the parton-level moments. For the first two moments of sH we find

〈sH〉 = m2
q + Λ̄2 + (m2

B − 2Λ̄mB + Λ̄2 + λ1 + 3λ2) 〈ŝ0 − m̂
2
q〉

+ (2Λ̄mB − 2Λ̄2 − λ1 − 3λ2)〈Ê0〉 ,

〈s2
H〉 = m4

q + 2Λ̄2m2
q + 2m2

B(m2
q + Λ̄2)〈ŝ0 − m̂

2
q〉

+ 2m2
q(2Λ̄mB − 2Λ̄2 − λ1 − 3λ2)〈Ê0〉

+ (m4
B − 4Λ̄m3

B + 6Λ̄2m2
B + 2λ1m

2
B + 6λ2m

2
B)〈(ŝ0 − m̂

2
q)

2〉 (4.1)

+ 4Λ̄2m2
B〈Ê

2
0〉+ 4Λ̄m3

B〈Ê0(ŝ0 − m̂
2
q)〉 ,

where all expressions are valid to relative order Λ2
QCD/m

2
b and to all orders in mq/mb. It

is straightforward to extend the analysis to higher moments 〈snH〉. Similarly, the leading
moments of EH are given by
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〈EH〉 = Λ̄−
λ1 + 3λ2

2mB

+

(
mB − Λ̄ +

λ1 + 3λ2

2mB

)
〈Ê0〉 ,

〈E2
H〉 = Λ̄2 + (2Λ̄mB − 2Λ̄2 − λ1 − 3λ2)〈Ê0〉 (4.2)

+(m2
B − 2Λ̄mB + Λ̄2 + λ1 + 3λ2)〈Ê

2
0〉 .

On the right hand side of these expressions appear the parton level moments 〈Êm
0 ŝ

n
0 〉, which

are obtained from the quantitiesM(n,m) by multiplying by the scale factor Γ0/Γ.

A. Decay to an up quark

For m̂q = 0, such as in the quark decay b→ u`ν̄, we find the simple expressions

〈ŝ0〉 =
91

450

αs

π
+

13λ1

20m2
B

+
3λ2

4m2
B

,

〈ŝ2
0〉 =

5

324

αs

π
−

16λ1

90m2
B

, (4.3)

〈Ê0〉 =
7

20

(
1 +

137

630

αs

π
+

13λ1

14m2
B

+
9λ2

2m2
B

)
,

〈Ê2
0〉 =

2

15

(
1 +

257

480

αs
π

+
31λ1

24m2
B

+
49λ2

8m2
B

)
,

〈Ê0ŝ0〉 =
9

100

αs

π
+

23λ1

180m2
B

+
13λ2

60m2
B

,

accurate up to corrections of order αs/m2
B and 1/m3

B . These then yield the physical moments

〈sH〉 = m2
B

[
91

450

αs
π

+
7Λ̄

10mB

(
1−

227

630

αs
π

)
+

3

10m2
B

(
Λ̄2 + λ1 − λ2

)]
,

〈s2
H〉 = m4

B

[
5

324

αs

π
+

604Λ̄

2025mB

αs

π
+

8

15m2
B

(
Λ̄2 −

λ1

3

)]
, (4.4)

〈EH〉 =
7

20
mB

[
1 +

137

630

αs

π
+

13Λ̄

7mB

(
1−

137

1170

αs

π

)
+

12λ2

7m2
B

]
,

〈E2
H〉 =

2

15
m2
B

[
1 +

257

480

αs

π
+

13Λ̄

4mB

(
1 +

17

780

αs

π

)
+

13

4m2
B

(
Λ̄2 −

4

39
λ1 +

5

13
λ2

)]
.

B. Decay to a charm quark

For b → c decays, we make use of the fact that the charm quark is also heavy to write
mc/mb as a power series in 1/mB , 1/mD. Let us define the spin-averaged meson masses,

m̄D ≡
mD + 3mD∗

4
= mc + Λ̄−

λ1

2mD

+ . . . ' 1975MeV (4.5)

m̄B ≡
mB + 3mB∗

4
= mb + Λ̄−

λ1

2mB

+ . . . ' 5313MeV ,
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which gives

mc

mb

=
m̄D

m̄B

−
Λ̄

mB

(
1−

m̄D

m̄B

)
−

Λ̄2

m2
B

(
1−

m̄D

m̄B

)
+

λ1

2mBmD

(
1−

m̄2
D

m̄2
B

)
(4.6)

= 0.372− 0.628
Λ̄

mB

− 0.628
Λ̄2

m2
B

+ 1.16
λ1

m2
B

,

accurate up to corrections of order 1/mBm
2
D. This substitution introduces additional

O(1/mB , 1/mBmD) corrections to the parton level moments.2 We find

〈ŝ0 − m̂
2
q〉 = 0.051

αs

π
+ 0.16

αs

π

Λ̄

mB

+ 0.51
λ1

m2
B

+ 1.14
λ2

m2
B

,

〈(ŝ0 − m̂
2
q)

2〉 = 0.0053
αs

π
+ 0.017

αs

π

Λ̄

mB

− 0.14
λ1

m2
B

, (4.7)

〈Ê0〉 = 0.489

[
1 + 0.043

αs

π
− 0.78

Λ̄

mB

(
1− 0.12

αs

π

)
− 0.44

Λ̄2

m2
B

+ 1.96
λ1

m2
B

+ 2.53
λ2

m2
B

]

〈Ê2
0〉 = 0.242

[
1 + 0.099

αs

π
− 1.50

Λ̄

mB

(
1− 0.12

αs

π

)
− 0.19

Λ̄2

m2
B

+ 3.64
λ1

m2
B

+ 4.69
λ2

m2
B

]

〈Ê0(ŝ0 − m̂
2
q)〉 = 0.030

αs

π
+ 0.077

αs

π

Λ̄

mB

+ 0.18
λ1

m2
B

+ 0.53
λ2

m2
B

,

and for the total rate,

Γ

Γ0
= 0.369

(
1− 1.54

αs

π
+ 3.35

Λ̄

mB

(
1− 1.86

αs

π

)
+ 5.81

Λ̄2

m2
B

− 5.69
λ1

m2
B

− 7.47
λ2

m2
B

)
. (4.8)

The physical moments are then

〈sH − m̄
2
D〉 = m2

B

[
0.051

αs

π
+ 0.26

Λ̄

mB

(
1 + 0.38

αs

π

)
+ 0.26

1

m2
B

(
Λ̄2 + 3.9λ1 − 1.2λ2

)]
,

〈(s2
H − m̄

2
D)2〉 = m4

B

[
0.0053

αs

π
+ 0.067

Λ̄

mB

αs

π
+ 0.065

1

m2
B

(
Λ̄2 − 2.1λ1

)]
(4.9)

〈EH〉 = 0.489mB

[
1 + 0.043

αs

π
+ 0.27

Λ̄

mB

(
1 + 0.19

αs

π

)
+ 0.33

1

m2
B

(
Λ̄2 + 4.3λ1 + 2.9λ2

)]
,

〈E2
H〉 = 0.242m2

B

[
1 + 0.099

αs

π
+ 0.55

Λ̄

mB

(
1 + 0.28

αs

π

)
+ 0.75

1

m2
B

(
Λ̄2 + 3.5λ1 + 2.2λ2

)]
,

where the corrections to these expressions are of order αs/m2
B and 1/m3

B . Note that in these
expansions, there is no hidden dependence on the quark masses; here the coefficients are
functions only of physical quantities.

2In the rest of this section, we will treatmB/mD asO(1). Thus, byO(1/mB) we denote corrections

both of order 1/mB and 1/mD.
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We can also expand our results about the small velocity (SV) limit [20], ΛQCD � mb −
mc � mc < mb. In this limit, only the D and D∗ states are produced. Expanding in powers
of 1− m̂c and ΛQCD/(mb −mc), we find

〈sH − m̄
2
D〉 = m2

B (1− m̂c)
3

[
4

21

αs

π
+

4Λ̄

mb −mc

+
λ2 − 2λ1

(mb −mc)2
+ . . .

]
+O(1− m̂c)

4. (4.10)

Note that in the SV limit, as expected, the average invariant mass of the final hadron is m̄D,
and therefore the D and D∗ are produced in the ratio 1:3. Furthermore, corrections to the
average invariant mass due to production of excited states are suppressed by (1− m̂c)3.

Finally, all of these results may be applied to the inclusive decays of the Λb, with the
obvious replacements Λ̄→ Λ̄Λ, λ1 → λ1Λ, λ2 → 0, where

mΛb = mb + Λ̄Λ −
λ1Λ

2mb

+ . . . . (4.11)

We also note that, in order to avoid introducing factors of Λ̄ and λ1 from the meson sector into
the expansion, in Eq. (4.5) the spin-averaged meson masses should be replaced by baryon
masses. Since the uncertainty in mΛb is ±50 MeV [21], this introduces large uncertainties
into the moments of Λb spectra, when written in terms of physical masses.

V. A LOWER BOUND ON Λ̄

Although the invariant mass spectrum for B → Xceν̄ has not been measured, we may
use the recent OPAL measurement [22] of the branching ratio to the narrow P wave charmed
mesons, the D1(2420) and D∗2(2460), to place a lower limit on Λ̄. In Ref. [22], the branching
ratio to these states was estimated to be 34± 7%. From Ref. [23], we take the ratio of D
to D∗ production in B → Xc`ν, for which several experimental measurements have been
combined consistently:

Γ(B → D∗eν̄e)

Γ(B → Deν̄e) + Γ(B → D∗eν̄e)
= 0.65± 0.06 . (5.1)

We estimate the minimum value for the first moment of the invariant mass spectrum by
taking the 1σ limits of these experimental results. Hence, we take a 27% branching fraction
to the P wave states, and assume that the rest of the branching fraction is saturated by the
D and D∗ in the ratio 0.41:0.59. The minimum value for the first moment 〈sH − m̄2

D〉 is
then

〈sH − m̄
2
D〉min. ' 0.27

[
(2.450GeV)2 − (1.975GeV)2

]
+ 0.43

[
(2.010GeV)2 − (1.975GeV)2

]
+ 0.30

[
(1.869GeV)2 − (1.975GeV)2

]
(5.2)

= 0.51GeV2 .

For the second moment, we will be conservative and neglect the small (and positive) contri-
bution of the ground state doublet. We find

〈(sH − m̄
2
D)2〉min. ' 0.27×

[
(2.450GeV)2 − (1.975GeV)2

]2
= 1.2GeV4. (5.3)
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FIG. 4. Correlated one-loop limits on Λ̄ and λ1. The shaded region is ruled out by our analysis

of the first two moments of (sH − m̄
2
D).

Solving Eq. (4.9) for the first moment, we find

Λ̄ >

[
0.41− 1.41

αs

π
− 0.07

(
λ1

0.1GeV2

)]
GeV. (5.4)

The nonperturbative parameters Λ̄ and λ1 are well-defined only at a given order in pertur-
bation theory [24]. Our limits apply to these quantities defined at one loop. We will use
the coupling constant αs(mb) = 0.2 in what follows. Since λ1 is closely related to minus
the kinetic energy of the b quark in the B meson, it is expected to be negative. Under this
assumption, we obtain the lower bound

Λ̄ > 340MeV. (5.5)

This limit corresponds to an upper bound on the b quark pole mass of mpole
b < 4.97GeV.

In Ref. [25], the stringent inequality λ1 ≤ −3λ2 ≈ −0.35GeV2 was proposed; in such a case
we would find the more restrictive bound

Λ̄ > 570GeV, (5.6)

corresponding to the upper limit mpole
b < 4.71GeV.

If we also use the bound (5.3) on the second moment, we may relax the assumptions on
λ1 and obtain correlated limits on Λ̄ and λ1. These are plotted in Fig. 4. By this method,
we obtain the lower bound

Λ̄ > 410MeV , (5.7)

independent of λ1. Where the bound on Λ̄ is saturated, λ1 = −0.11GeV2. Our result implies
the upper limit mpole

b < 4.89GeV, without any assumption on λ1 being made.
This approach complements the recent proposal [26] that Λ̄ and λ1 be extracted from

moments of the photon energy spectrum in the rare process B → Xsγ.
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VI. HIGHER LOOPS

In order to apply our results consistently, it is important to know the scale at which to
evaluate αs(µ) in the radiative corrections. It has been shown recently [27] that the näıve
choice µ = mb significantly underestimates the size of the two-loop effects. In particular,
the prescription of Brodsky, Lepage and Mackenzie (BLM) [14] suggests that the relevant
scale for the radiative corrections in B → Xueν̄ decay is µ ∼ 0.07mb, when expressed in
terms of the b quark pole mass, indicating that two-loop effects are substantial.

It has also been stressed, however, that the BLM prescription may give a misleadingly low
scale when relating unphysical quantities [28]. In particular, Λ̄ is related to the pole mass of
the heavy quark, which is not an observable, and in fact suffers from an inherent ambiguity in
its definition [24]. In this section, we show that although the BLM prescription indicates that
radiative corrections to the first two moments of the invariant mass spectrum for semileptonic
b→ u decay are uncontrolled when expressed in terms of the HQET parameter Λ̄, they are
well behaved when expressed in terms of physical quantities.

The portion of the two loop correction to Eq. (4.4) which is proportional to the QCD
evolution parameter β0 may be determined from the one loop correction, calculated with a
massive gluon in the final state, using the techniques of Ref. [29]. Some of the details of the
computation are given in Appendix B; we find, for m̂q = 0,

1

m2
B

〈sH〉 =
91

450

αs(mb)

π
+
(

53

180
π2 −

276043

108000

)
β0

(
αs(mb)

π

)2

+
7

10

Λ̄

mB

+ . . . (6.1)

' 0.20
αs(mb)

π
+ 3.15

(
αs(mb)

π

)2

+
7

10

Λ̄

mB

+ . . .

' 0.013 + 0.013 +
7

10

Λ̄

mB

+ . . . ,

where β0 = 11 − 2nf/3 and in the last line we have taken αs(mb) ' 0.2. Clearly the
perturbation expansion is poorly controlled. In the BLM scale-setting prescription, the
scale µBLM of the coupling is chosen such that the two-loop contribution proportional to β0

is absorbed into the one-loop correction. The poor convergence of the series is reflected in
the low BLM scale for this process:

µBLM = mb exp
[
−2

(
53

180
π2 −

276043

108000

)
/

91

450

]
' 0.03mb ' 140MeV . (6.2)

However, our expression for 〈sH〉 is given in terms of the unphysical parameter Λ̄. While
this is perfectly acceptable as an intermediate step, since we are ultimately interested only
in relations between observable quantities, it has the effect of making the perturbative
expansion appear ill-behaved. Instead, let us define the “decay mass” of the b quark, mΓ

b ,
via the charmless semileptonic partial width of the B meson,

Γ(B → Xueν̄e) ≡
G2
F |Vub|

2

192π3
(mΓ

b )
5. (6.3)

The decay mass mΓ
b is a physical observable and is therefore well-defined. It is related to

the pole mass via the expansion
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mΓ
b = mpole

b

1 +
(

5

6
−

2

15
π2
)
αs(mb)

π
− (0.596β0 + c)

(
αs(mb)

π

)2

+ . . .+
λ1 − 9λ2

10m2
b

+ . . .

 .
(6.4)

The two-loop term proportional to β0, which one expects to dominate the two loop result,
was calculated in Ref. [27]. The constant c has not been computed. Since mpole

b is not
well-defined due to renormalon effects, the perturbation series in Eq. (6.4) has a renormalon
ambiguity at O(1/mb).

Defining a physical version of the parameter Λ̄,3

Λ̄Γ
b ≡ mB −m

Γ
b , (6.5)

we have

Λ̄

mB

=
Λ̄Γ
b

mB

+
(

5

6
−

2

15
π2
)
αs(mb)

π
− (0.596β0 + c)

(
αs(mb)

π

)2

+O(α3
s, 1/m

2
b) , (6.6)

and Eq. (6.1) becomes

1

m2
B

〈ŝH〉 ' (0.202− 0.337)
αs(mb)

π
+ (3.151− 3.752)

(
αs(mb)

π

)2

+
7

10

Λ̄Γ
b

mB

' −0.135
αs(mb)

π
− 0.601

(
αs(mb)

π

)2

+
7

10

Λ̄Γ
b

mB

' −0.0086− 0.0024 +
7

10

Λ̄Γ
b

mB

. (6.7)

The perturbation expansion clearly has improved dramatically. The corresponding BLM
scale is now

µBLM = mb exp [−(2/9)0.601/0.135] ' 0.37mb , (6.8)

which is significantly greater than before.
It is interesting to note that the cancellation we observe in Eq. (6.7) persists at higher

orders in the bubble sum. Using the techniques of Ref. [30] we can calculate then loop bubble
graph, from which we may extract the coefficient of βn0α

n+1
s in the perturbative expansion

for 〈ŝ0〉. Although there is no reason to believe that this is the dominant contribution at
this order, since there is no β0 → ∞ limit of QCD in which the quark and gluon bubble
graphs dominate, it does give one class of contributions to the n loop graphs which displays
a factorial divergence at large orders in perturbation theory.

Using the techniques of Ref. [30], the perturbation series in Eq. (6.1) continues as

3Note that unlike Λ̄, mQ−m
Γ
q is not universal for heavy quarks, and differs in the b and c systems.

Since it explicitly violates heavy quark symmetry, it is not useful to reformulate HQET in terms

of this more physical quantity.
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1

m2
B

〈ŝH〉 = 0.202
αs(mb)

π
+ 3.151

(
αs(mb)

π

)2

+ 51.91

(
αs(mb)

π

)3

(6.9)

+940.52

(
αs(mb)

π

)4

+ 19347.5

(
αs(mb)

π

)5

+
7

10

Λ̄

mB

+ . . . ,

and using the results of Ref. [31] for the higher order relation betweenmb and mΓ
b , Eq. (6.7)

continues as

1

m2
B

〈ŝH〉 = (0.202− 0.337)
αs(mb)

π
+ (3.151 − 3.752)

(
αs(mb)

π

)2

+(51.91− 50.37)

(
αs(mb)

π

)3

+ (940.52 − 782.42)

(
αs(mb)

π

)4

+(19347.5 − 14424.2)

(
αs(mb)

π

)5

+
7

10

Λ̄Γ
b

mB

+ . . .

= −0.135
αs(mb)

π
− 0.601

(
αs(mb)

π

)2

+ 1.56

(
αs(mb)

π

)3

(6.10)

+148.1

(
αs(mb)

π

)4

+ 4923.

(
αs(mb)

π

)5

+
7

10

Λ̄Γ
b

mB

+ . . .

' −0.0086 − 0.0024 + 0.0004 + 0.0026 + 0.0051 +
7

10

Λ̄Γ
b

mB

+ . . .

Note that even at higher orders there is significant cancellation between the two series. The
remaining bad behaviour presumably reflects the presence of unphysical parameters (such
as Λ̄2 and λ1) at higher orders in the operator product expansion. Assuming the series is
asymptotic, the size of the smallest term in the expansion gives a measure of the uncertainty
in the sum of the series.

We find a similar cancellation for the second moment of sH. However, the cancellation
occurs between terms of different orders in β0, providing a simple example of a large effect
(in this case, a significant cancellation) which is missed by the “näıve nonabelianization” of
Refs. [30,31].4 For m̂q = 0 and to order 1/mb, we find

1

m4
B

〈s2
H〉 = 〈ŝ2

0〉 + 4
Λ̄

mB

(
〈Ê0ŝ0〉 − 〈ŝ

2
0〉
)

+ . . . . (6.11)

Since 〈Ê0ŝ0〉 and 〈ŝ2
0〉 are both order αs, there is no β0α

2
s term introduced by expressing

〈s2
H〉 in terms of Λ̄Γ

b . However, näıvely counting of powers of β0 does not work here, because
〈ŝ2

0〉 � 〈Ê0ŝ0〉, 〈ŝ0〉. Instead, the O(β0α
2
s) correction to 〈ŝ2

0〉 is the same order as the O(α2
s)

term introduced by expressing 〈s2
H〉 in terms of Λ̄Γ

b . Using the β0α
2
s term as an estimate of

the full two loop correction to 〈s2
0〉 alone, we find, using the same technique as before,

4We also note that, since the cancellation occurs between different powers of β0, it has nothing

to do with the cancellation of renormalons in 〈s2H〉, at least in the bubble approximation.
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〈s2
0〉 =

5

324

αs(mb)

π
+
(

277

648
π2 −

25511

6075

)
β0

(
αs(mb)

π

)2

+ . . . , (6.12)

and so

1

m4
B

〈s2
H〉 = 0.015

αs(mb)

π
+ 0.0196β0

(
αs(mb)

π

)2

+ 0.298

(
Λ̄Γ
b

mB

− 0.48
αs(mb)

π

)
αs(mb)

π
+ . . .

= 0.015
αs(mb)

π
+ 0.033

(
αs(mb)

π

)2

+ 0.298
Λ̄Γ
b

mB

αs(mb)

π
+ . . .

' 9.5× 10−4 + 1.3× 10−4 + 0.298
Λ̄Γ
b

mB

αs(mb)

π
+ . . . . (6.13)

VII. SUMMARY AND CONCLUSIONS

We have used the operator product expansion and the heavy quark limit to compute
the hadronic energy and invariant mass spectra in semileptonic heavy meson decays. Our
expressions are complete up to order αs in perturbation theory, and up to order αs/mb and
1/m2

b in the heavy quark expansion. The effects of finite final state quark masses have been
taken into account, so it is possible to apply our results to the important decay b→ c `ν.

Our analysis provides a test of the applicability of the OPE to these decays, and of
the crucial underlying concept of global duality. Only appropriately weighted integrals of
the theoretical spectra may be compared meaningfully with experiment, and we focus on
the leading moments. As an initial application, we used the recent measurement of the B
branching fraction to excited D mesons to put bounds on the nonperturbative parameters
Λ̄ and λ1. We found Λ̄ > 410MeV, which led to a constraint on the b quark pole mass,
mpole
b < 4.89GeV. More stringent tests will have to await the availability of more precise

data. The success or failure of our predictions will determine the confidence with which
one will trust these theoretical techniques in the extraction of CKM matrix elements from
semileptonic bottom and charm decays.

We also investigated the behaviour of the perturbation series at higher order in αs,
to gain insight into the trustworthiness of the lowest order calculation and the choice of
renormalization scale µ. We found that when written in terms of the unphysical quantity Λ̄,
the perturbation series for 〈sH〉 seems to be quite badly behaved, with a BLM scale µBLM

too low to be meaningful. However, when we define a more physical “decay mass” mΓ
b , and

through it a physical Λ̄Γ
b , the perturbation series improves dramatically. The cancellations

which we find persist to higher order in αs, at least when one includes the leading powers
of β0. The perturbation series for 〈s2

H〉 also is improved by writing it in terms of physical
quantities, although the required cancellations occur between terms of different order in β0,
indicating the failure of “näıve nonabelianization” in the computation of this quantity.

We have focused on the application to B decays, however, the BLM analysis suggests
that the perturbative corrections are under control for D decays as well. The extension of
our results to charm is straightforward.
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APPENDIX A: THE PARTON LEVEL HADRONIC ENERGY SPECTRUM

In this appendix we discuss the corrections to the parton level hadronic energy spectrum,
dΓ0/dÊ0. Both the perturbative and the power corrections are somewhat unwieldy; we
present them here for completeness.

The power correction may be computed by integrating the doubly differential spec-
trum (3.2) over ŝ0. The integral will be nonzero only if Ê0 ≤

1
2
(1 + m̂2

q), because, as
discussed in Section II, only in this case does the integration region overlap with the one-
particle pole at ŝ0 = m̂2

q. This is a reflection of the fact that the maximum energy a single
quark can carry away from the decay is 1

2
(1 + m̂2

q). In the presence of additional strongly

interacting particles such as gluons, the total hadronic energy Ê0 can exceed 1
2
(1 + m̂2

q).
However, the initial motion of the b quark inside the B meson can produce fluctuations

of the maximum allowed final quark energy above 1
2
(1 + m̂2

q). These fluctuations appear in

the differential rate as singular functions δ(Ê0 −
1
2
(1 + m̂2

q)) and δ′(Ê0 −
1
2
(1 + m̂2

q)), which
are resummed into a smooth function extending beyond the parton model endpoint. For a
more detailed discussion of this subject see Refs. [4,17,18].

Including the leading power corrections, then, the expression for the hadronic energy
spectrum is given by5

1

Γ0

dΓ

dÊ0

= 16
√
Ê2

0 − m̂2
q

[
3Ê0 − 4Ê2

0 − 2m̂2
q + 3Ê0m̂

2
q

]
+

16√
Ê2

0 − m̂2
q

[
λ1

2m2
b

(
−6Ê2

0 + 12Ê3
0 +

20

3
Ê4

0 + 3m̂2
q − 6Ê0m̂

2
q −

52

3
Ê2

0m̂
2
q +

23

3
m̂4
q

)

+
λ2

2m2
b

(
−3Ê0 − 6Ê2

0 + 36Ê3
0 + 20Ê4

0 + 3m̂2
q − 21Ê0m̂

2
q − 52Ê2

0m̂
2
q + 23m̂4

q

)]

5We do not agree with the expression presented in Ref. [12].
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+(1− m̂2
q)

3

[
λ1

3m2
b

(5− m̂2
q)−

λ2

m2
b

(1− 5m̂2
q)

]
δ

(
Ê0 −

1

2
(1 + m̂2

q)
)

+
λ1

6m2
b

(1− m̂2
q)

5 δ′
(
Ê0 −

1

2
(1 + m̂2

q)
)

+O(αs, 1/m
3
b) . (A1)

Integrating this expression with respect to Ê0, we find the power corrections (3.13) to the
moments 〈Ê0〉 and 〈Ê2

0〉.
The expression for the perturbative correction to the hadronic energy spectrum is even

more cumbersome. For the complete spectrum at finite m̂q, we refer the reader to Ref. [13].
As an illustration we present here the perturbative corrections at m̂q = 0, separately for

Ê0 <
1
2

and Ê0 >
1
2
:

1

Γ0

dΓ

dÊ0

∣∣∣∣∣
pert.

0<Ê0<
1
2

=
αs

π
E2

0

[
36−

32

3
π2 −

496

9
Ê0 +

128

9
π2Ê0 +

52

3
Ê2

0 −
112

45
Ê3

0 +
64

135
Ê4

0

−24 ln(2Ê0) +
64

3
Ê0 ln(2Ê0) + 16 ln(2Ê0) ln(1− 2Ê0) (A2)

−
64

3
Ê0 ln(2Ê0) ln(1− 2Ê0) + 16Li2(2Ê0)−

64

3
Ê0Li2(2Ê0)

]
,

1

Γ0

dΓ

dÊ0

∣∣∣∣∣
pert.

1
2
<Ê0<1

=
αs
π

[
208

45
+

1058

45
Ê0 −

646

9
Ê2

0 +
1592

27
Ê3

0 −
52

3
Ê4

0 +
112

45
Ê5

0 −
64

135
Ê6

0

+
5

9
ln(2Ê0 − 1) +

8

3
Ê0 ln(2Ê0 − 1) +

16

3
Ê2

0 ln(2Ê0 − 1) (A3)

−
64

9
Ê3

0 ln(2Ê0 − 1) + 8Ê2
0 ln2(2Ê0 − 1)−

32

3
Ê3

0 ln2(2Ê0 − 1)

−16Ê2
0 ln(2Ê0) ln(2Ê0 − 1) +

64

3
Ê3

0 ln(2Ê0) ln(2Ê0 − 1)

−16Ê2
0Li2

(
1

2Ê0

)
+

64

3
Ê3

0Li2

(
1

2Ê0

)
+ 16Ê2

0Li2

(
2Ê0 − 1

2Ê0

)

−
64

3
Ê3

0Li2

(
2Ê0 − 1

2Ê0

)]
.

This spectrum is shown in Fig. 5. The logarithmic divergence as Ê0 → 1
2

from above is

integrable. The region Ê0 >
1
2

receives contributions only from brehmsstrahlung graphs.

Note that the spectrum falls extremely rapidly with increasing Ê0.
The radiative corrections Am(m̂q) to the moments 〈Êm

0 〉 may be obtained by integrating
the full expressions found in Ref. [13]. We find

A0(m̂q) =
25

6
−

2

3
π2 −

478

9
m̂2
q +

64

3
π2(1 + m̂2

q)m̂
3
q −

32

3
π2m̂4

q +
478

9
m̂6
q

−
(

25

6
+

2

3
π2
)
m̂8
q −

2

3
(36 + m̂4

q)m̂
4
q ln2 m̂2

q

+
(
−

40

3
m̂2
q +

256

3
(1 + m̂2

q) ln(1 + m̂q)m̂
3
q − 60m̂4

q +
8

9
m̂6
q −

34

9
m̂8
q

)
ln m̂2

q

+
(
−

34

9
+

128

9
m̂2
q −

128

9
m̂6
q +

34

9
m̂8
q

)
ln(1− m̂2

q) (A4)
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FIG. 5. The order αs contribution to the differential energy spectrum (1/Γ0)dΓ/dÊ0, for

m̂q = 0, in units of αs/π. In the region Ê0 >
1
2 , this is the leading nonzero contribution. The

logarithmic divergence at Ê0 = 1
2 is integrable.

+
(

8

3
−

128

3
(1 + m̂2

q)m̂
2
q + 80m̂4

q +
8

3
m̂8
q

)
ln m̂2

q ln(1− m̂2
q)

+
(
4 +

128

3
(1 + m̂2

q)m̂
3
q + 64m̂4

q + 4m̂8
q

)
Li2(m̂

2
q)

−
512

3
m̂3
q(1 + m̂2

q)Li2(m̂q) ,

A1(m̂q) =
1381

900
−

7

30
π2 −

(
3133

900
+

5

18
π2
)
m̂2
q +

(
99329

1350
+

16

3
π2
)
m̂4
q −

1408

45
π2m̂5

q

−
(

100729

1350
−

16

3
π2
)
m̂6
q +

(
4933

900
−

5

18
π2
)
m̂8
q −

(
6743

2700
+

7

30
π2
)
m̂10
q

+
(
6m̂4

q +
34

3
m̂6
q −

5

18
m̂8
q −

7

30
m̂10
q

)
ln2 m̂2

q (A5)

+
(
−

47

30
m̂2
q +

1651

45
m̂4
q −

5632

45
ln(1 + m̂q)m̂

5
q +

1391

45
m̂6
q +

121

135
m̂8
q −

409

450
m̂10
q

)
ln m̂2

q

+
(
−

61

50
+

97

54
m̂2
q − 4m̂4

q + 4m̂6
q −

97

54
m̂8
q +

61

50
m̂10
q

)
ln(1− m̂2

q)

+
(

14

15
+

10

9
m̂2
q −

100

3
m̂4
q +

2816

45
m̂5
q −

100

3
m̂6
q +

10

9
m̂8
q +

14

15
m̂10
q

)
ln m̂2

q ln(1− m̂2
q)

+
(

7

5
+

5

3
m̂2
q − 32m̂4

q −
2816

45
m̂5
q − 32m̂6

q +
5

3
m̂8
q +

7

5
m̂10
q

)
Li2(m̂

2
q)

+
11264

45
m̂5
q Li2(m̂q) ,

and

A2(m̂q) =
2257

3600
−

4

45
π2 +

(
2929

5400
−

1

5
π2
)
m̂2
q −

324727

10800
m̂4
q +

64

5
π2(1 + m̂2

q)m̂
5
q

+
(

173

162
−

208

27
π2
)
m̂6
q +

304877

10800
m̂8
q +

(
1297

1800
−

1

5
π2
)
m̂10
q
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−
(

36283

32400
+

4

45
π2
)
m̂12
q −

(
116

9
m̂6
q +

1

5
m̂10
q +

4

45
m̂12
q

)
ln2 m̂2

q (A6)

+
(
−

2

45
m̂2
q −

131

20
m̂4
q +

256

5
(1 + m̂2

q) ln(1 + m̂q)m̂
5
q −

5467

135
m̂6
q −

829

180
m̂8
q

+
23

450
m̂10
q −

173

675
m̂12
q

)
ln m̂2

q

+
(
−

298

675
+

1

25
m̂2
q + 2m̂4

q − 2m̂8
q −

1

25
m̂10
q +

298

675
m̂12
q

)
ln(1− m̂2

q)

+
(

16

45
+

4

5
m̂2
q −

128

5
(1 + m̂2

q)m̂
5
q +

440

9
m̂6
q +

4

5
m̂10
q +

16

45
m̂12
q

)
ln m̂2

q ln(1− m̂2
q)

+
(

8

15
+

6

5
m̂2
q +

128

5
(1 + m̂2

q)m̂
5
q +

416

9
m̂6
q +

6

5
m̂10
q +

8

15
m̂12
q

)
Li2(m̂

2
q)

−
512

5
(1 + m̂2

q)m̂
5
q Li2(m̂q) .

The correction A0(m̂q) to the total rate is equivalent to the result presented in Ref. [19].

APPENDIX B: BUBBLE GRAPHS

The n-loop bubble graph contribution to moments of ŝ0 may be calculated from the one
loop graph evaluated with a finite gluon mass [29,30]. In this appendix, we briefly outline
this calculation using the methods of Ref. [30]. Only the bremmstrahlung graphs in Fig. 3
contribute to the moments of ŝ0 for n ≥ 1. We consider the expansion

dΓ

dŝ0

=
∞∑
j=0

dj(ŝ0)β
j
0

(
αs

π

)j+1

+ . . . , (B1)

where β0 = 11− 2nf/3 and the ellipses denote terms which have fewer powers of β0αs and
hence are not obtainable from the bubble graphs. Note that these are not suppressed terms
in any limit of QCD, although they may be numerically small. The nth moment of ŝ0 then
has the expansion

M(n,0) =
∞∑
j=0

m
(n)
j βj0

(
αs

π

)j+1

+ . . . , (B2)

where

m
(n)
j =

∫ 1

0
dŝ0 ŝ

n
0 dj(ŝ0) . (B3)

Define d0(ŝ0, λ̂
2) and m

(n)
0 (λ̂2) to be the one-loop corrections calculated with a finite

gluon mass λ, and λ̂ ≡ λ/mb. Then

m
(n)
0 (λ̂2) =

∫ 1

λ̂2
dŝn0 d0(ŝ0, λ̂

2) , (B4)

and we have [30]
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dj(ŝ0) = −
1

4j
dj

duj

∣∣∣∣∣
u=0

sin(πu)

πu

∫ ŝ0

0

(
λ̂2eC

)−u d

dλ̂2
d0(ŝ0, λ̂

2) , (B5)

where C is a scheme-dependent constant. In the V scheme [14], C = 0, while in the MS
scheme, C = −5/3. Eqn. (B5) may be written in the form

dj(ŝ0) =
j∑

k=0

ck Jk(ŝ0) , (B6)

where Jk is defined by

Jk(ŝ0) ≡
∫ ŝ0

0
dλ̂2 lnk(λ̂2)

d

dλ̂2
d0(ŝ0, λ̂

2) . (B7)

.
Taking moments of both sides of Eq. (B6), we have

m
(n)
j =

j∑
k=0

ck

∫ 1

0
dŝ0 ŝ

n
0

∫ ŝ0

0
dλ̂2 lnk(λ̂2)

d

dλ̂2
d0(ŝ0, λ̂

2)

=
j∑

k=0

ck

∫ 1

0
dλ̂2

∫ 1

λ̂2
dŝ0 ŝ

n
0 lnk(λ̂2)

d

dλ̂2
d0(ŝ0, λ̂

2) (B8)

=
j∑

k=0

ck

∫ 1

0
dλ̂2 lnk(λ̂2)

d

dλ̂2
m

(n)
0 (λ̂2) ,

where we have used the fact that d0(λ̂2, λ̂2) = 0 to move the ŝ0 integral to the right of the
λ̂2 derivative.

It is straightforward to derive analytic expressions for the moments m(n)
0 (λ̂2) from the

graphs in Fig. 3; however the resulting formulas are lengthy and we will not reproduce them
here. For j = 1 the integrals in Eq. (B8) may be performed analytically, giving the O(α2β0)
correction to M(n,0), while for j > 1 we performed the integrals numerically to obtain the
contribution from higher loops in the bubble sum.
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