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Abstract

The uctuations in the cosmic microwave background (CMB) on large an-

gular scales (> few degrees) are caused by perturbations in the gravitational

�eld via the Sachs{Wolfe e�ect. On intermediate scales, 0:1�
<
� �

<
� 2�, the

dominant contribution is due to coherent oscillations in the baryon radiation

plasma before recombination. Unless the universe is reionized at some red-

shift z > 50, these oscillations lead to the `Doppler peaks' in the angular power

spectrum. In structure formation scenarios based on ination the position of

the �rst peak is typically at ` � 200, with a height which is 4 { 6 times that

of the Sachs{Wolfe `plateau'. Here we present a corresponding study for per-

turbations induced by global textures. We �nd that the �rst Doppler peak is

reduced to an amplitude comparable to that of the Sachs{Wolfe contribution,

and that it is shifted to ` � 350. We believe that our analysis can be easily

extended to other types of global topological defects and general global scalar

�elds.

PACS numbers: 98.80-k 98.80.Hw 98.80C

Presently there are two main classes of models to explain the origin of large scale

structure formation. Initial perturbations can either be due to quantum uctuations

of a scalar �eld during an inationary era[1], or they may be seeded by topological

defects formed during a symmetry breaking phase transition in the early universe[2].

The CMB anisotropies are a powerful tool to discriminate among these models by
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purely linear analysis. Usually CMB anisotropies are parameterized in terms of C`'s,

de�ned as the coe�cients in the expansion of the angular correlation function

h�T
T
(n)

�T

T
(n0)i

���
(n�n0=cos#)

=
1

4�

X
`

(2` + 1)C`P`(cos #):

For scale invariant spectra of perturbations `(` + 1)C` is constant on large angular

scales, say `
<� 50. Both ination and topological defect models lead to approxi-

mately scale invariant spectra on large scales.

Large scale CMB anisotropies are mainly caused by inhomogeneities in the space-

time geometry via the Sachs{Wolfe e�ect[3]. On smaller angular scales (0:1�
<�

�
<� 2�) the dominant contribution comes from coherent oscillations in the baryon{

radiation plasma prior to recombination. On even smaller scales the anisotropies are

damped due to the �nite thickness of the recombination shell, as well as by photon

di�usion during recombination (Silk damping).

Disregarding Silk damping, gauge invariant linear perturbation analysis leads

to[4]

�T

T
=

�
�1

4
D(r)

g � Vjn
j �	+ �

�f
i

+
Z f

i
(	0 � �0)d� ; (1)

where � and 	 are quantities describing the perturbations in the geometry and

V denotes the peculiar velocity of the radiation uid with respect to the overall

Friedman expansion. D(r)
g speci�es the intrinsic density uctuation in the radiation

uid. There are several gauge invariant variables which describe density uctuations;

they all di�er on super{horizon scales but coincide inside the horizon. Below we use

another variable, Dr, for the radiation density uctuation[5]. Since the coherent

oscillations giving rise to the Doppler peaks act only on sub{horizon scales, the

choice of this variable is irrelevant for our calculation.

� , 	 and D(r)
g in Eq. (1) determine the anisotropies on large angular scales1, and

have been calculated for both ination and defect models [6, 7, 8, 9]. Generically,

1One might think that D
(r)
g leads just to coherent oscillations of the baryon radiation uid, but

this is not the case. Note that, e.g., for adiabatic CDM models without source term one can derive

(1=4)D
(r)
g = �(5=3)	 on super{horizon scales. Since for CDM perturbations � = �	 and 	0

' 0,
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a scale invariant spectrum is predicted and thus the Sachs{Wolfe calculations yield

mainly a normalization for the di�erent models. On the other hand the amplitude of

the Doppler peak, which most probably will be measured in the near future, might

be an important discriminating tool between them. In this Letter we present a com-

putation for the Doppler contribution from global topological defects; in particular

we perform our analysis for �3{defects, textures [10], in a universe dominated by

cold dark matter (CDM). We believe that our main conclusion remains valid for all

global defects.

The Doppler contribution to the CMB anisotropies is given by

"
�T

T
(x;n)

#Doppler

=
1

4
Dr(xrec; trec) +V(xrec; trec) � n; (2)

where xrec = x � nt0. In the previous formula n denotes a direction in the sky

and t is the conformal time, with t0 and trec the present and recombination times,

respectively. To evaluate Eq. (2) we calculate Dr and V at trec. We consider a

two{uid system: baryons plus radiation, which prior to recombination are tightly

coupled, and CDM. The evolution of the perturbation variables in a at background,


 = 1, is described by[5]
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�
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(3)

where subscripts r and c denote the baryon{radiation plasma and CDM, respectively;

D; V are density and velocity perturbations; w = pr=�r, c
2
s = p0r=�

0
r and � = �r+�c.

The only place where the seeds enter this system is through the potentials 	 and �.

These potentials can be split into a part coming from standard matter and radiation,

and a part due to the seeds, 	 = 	(c;r) +	s and � = �(c;r) + �s, where 	s and �s

the usual Sachs{Wolfe result �T=T = (1=3)	(xrec; trec) is recovered. Neglecting D
(r)
g , the result

would be 2	 and therefore wrong by a factor of 6!
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are determined by the energy momentum tensor of the seeds. In this way, �nally

the seed source terms below arise[4].

From Eqs. (3) we derive two second order equations for Dr and Dc, namely

D00
r +

a0

a
[1 + 3c2s � 6w + F�1�c]D

0
r �

a0

a
�cF

�1(1 + w)D0
c

+4�Ga2[�r(3w
2 � 8w + 6c2s � 1)� 2F�1w�c(�r + �c)

+�c(9c
2
s � 7w) +

k2

4�Ga2
c2s]Dr � 4�Ga2�c(1 + w)Dc = (1 + w)S ; (4)

D00
c +

a0

a
[1 + (1 + w)F�1�r(1 + 3c2s)]D

0
c �

a0

a
(1 + 3c2s)F

�1�rD
0
r

�4�Ga2�cDc � 4�Ga2�r(1 + 3c2s)[1� 2(�r + �c)F
�1w]Dr = S ; (5)

where F � k2(12�Ga2)�1 + �r(1 + w) + �c and S denotes a source term, which in

general is given by S = 4�Ga2(� + 3p)seed. In our case, where the seed is described

by a global scalar �eld �, we have S = 8�Ga2(�0)2. From numerical simulations one

�nds that the integral of a2j�0j2 over a shell of radius k, can be modeled by[9]

a2hj�0j2i(k; t) =
1
2A�

2

p
t[1 + �(kt) + �(kt)2]

; (6)

with � denoting the symmetry breaking scale of the phase transition leading to

texture formation. The parameters in (6) are A � 3:3, � � �0:7=(2�) and � �

0:7=(2�)2. On super{horizon scales, where the source term is important, this �t is

accurate to about 10%. As we argue later, analytical estimates support this �nding.

On small scales the accuracy reduces to a factor of 2. By using this �t in the

calculation of Dr and Dc from Eqs. (4), (5) we e�ectively neglect the time evolution

of phases of (�0)2; the incoherent evolution of these phases may smear out subsequent

Doppler peaks[11], but will not a�ect substantially the height of the �rst peak.

From Dr and D0
r we calculate the Doppler contribution to the C`'s according to

C` =
2

�

Z
dk

"
k2

16
jDr(k; trec)j2j2` (kt0) + (1 + w)�2jD0

r(k; trec)j2(j0`(kt0))2
#
; (7)

where j` denotes the spherical Bessel function of order ` and j 0` stands for its deriva-

tive with respect to the argument. As we will see below, the angular power spectrum
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`(` + 1)C` yields the Doppler peaks.

In order to solve Eqs. (4), (5) we need to specify initial conditions. For a given

scale k we choose the initial time tin such that the perturbation is super{horizon and

the universe is radiation dominated. In this limit the evolution equations reduce to

D00
r �

2

t2
Dr =

4

3

A�p
t
; (8)

D00
c +

3

t
D0

c �
3

2t
D0

r �
3

2t2
Dr =

A�p
t
; (9)

with particular solutions

Dr = �16

15
�At3=2 ; Dc = �4

7
�At3=2 : (10)

In the above equations we have introduced � � 4�G�2, the only free parameter in

the model. We consider perturbations seeded by the texture �eld, and therefore

it is incorrect to add a homogeneous growing mode to the above solutions. With

these initial conditions, Eqs. (4), (5) are easily integrated numerically, leading to

the spectra for Dr(k; trec) and D0
r(k; trec) [see, Fig. 1].

Integrating Eq. (7), we obtain the Doppler contribution to the CMB anisotropies

[see, Fig. 2]. For ` < 1000, we �nd three peaks located at ` = 365, ` = 720 and

` = 950. Silk damping, which we have not taken into account here, will decrease the

relative amplitude of the third peak with respect to the second one; however it will

not a�ect substantially the height of the �rst peak.

Our most important results regard the amplitude and position of the �rst Doppler

peak, for which we �nd

`(` + 1)C`

���
`�360

= 5�2 : (11)

It is interesting to notice that the position of the �rst peak is displaced by �` � 150

towards smaller angular scales than in inationary models [6]. This might be due

to the di�erence in the growth of super{horizon perturbations, which is Dr / t3=2

in our case, and Dr / t2 for inationary models.
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Figure 1: The dimensionless power spectra, k3jDrj
2 (solid line) and kjD0

rj
2 (dashed line)

in units of (A�)2, are shown as functions of k. These are exactly the quantities which enter

in the expression for the C`'s. We set h = 0:5 ; 
B = 0:05 and zrec = 1100.

One may understand the height of the �rst peak from the following analytic

estimate: matching the sub{horizon with the super{horizon solutions of Eq. (5), in

the matter dominated era, one �nds

Dc � �2

5
A�(k=2�)1=2t2 :

From Eq. (4) we then obtain in this limit Dr � A�k�3=2. Plugging this latter value

into Eq. (7) we get roughly

`(` + 1)C` � (A�)2 ;

for the height of the �rst peak.

Let us now compare our value for the Doppler peak with the level of the Sachs{

Wolfe plateau [7, 8, 9],

`(` + 1)C`

���
SW

� (6� 14)�2: (12)

It is apparent from Eqs. (11) and (12) that the Doppler contribution from textures

is substantially smaller than for inationary models.
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Figure 2: The angular power spectrum for the Doppler contribution to the CMB

anisotropies is shown in units of �2. We set cosmological parameters h = 0:5 ; 
B = 0:05

and zrec = 1100.

Normalizing with COBE{DMR experiment[12]

`(` + 1)C`

���
COBE

� 8� 10�10 ;

one �nds the symmetry breaking energy scale, and from this � � 10�5. This value

for � depends of course on the numerical simulations[7, 8, 9].

We believe that our result, stating that the �rst Doppler peak has a height

comparable to the Sachs{Wolfe plateau, is valid for all global defects. This depends

crucially on the 1=
p
t behavior of (a�0)2 = _�2 on large scales (cf. Eq. (6)), which is

a generic feature of global defects: on super{horizon scales, _�2(k) represents white

noise superimposed on the average given by _�2(k = 0) /
p
V =t2. Since there are

N = (L=t)3 independent patches in a simulation of linear size L, the amplitude of

_�2(k) is proportional to L3=2=(t2
p
N) / 1=

p
t. (Notice that this argument does not

apply for local cosmic strings.)

Based on our analysis we conclude that if the existence of Doppler peaks is indeed

con�rmed and the height of the �rst peak is larger than about twice the level of the
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Sachs{Wolfe plateau, namely

`(` + 1)C`

���
peak

> 2� 10�9 ;

and if the �rst peak is positioned at ` < 300, then global topological defects are

ruled out. On the other hand, if the �rst Doppler peak is positioned at ` � 350 and

its height is below the above value, global defects are strongly favored if compared

to inationary models. To our knowledge this is the �rst clear �ngerprint within

present observational capabilities, to distinguish among these two competing models

of structure formation.

As we were completing our work, a preprint[15] on the same issue, but follow-

ing a di�erent approach, came to our attention. The authors calculate the Doppler

peaks from cosmic textures in the synchronous gauge. A main assumption of that

analysis, which is not shared by us, is that spatial gradients in the scalar �eld are

frozen outside the horizon, and therefore time derivatives are negligible. Even though

we basically agree with the shape and position of their Doppler peaks, we draw a

stronger conclusion regarding the di�erence between texture and inationary power

spectra, since we also calculate the height of the Doppler peaks, for which these

authors do not present any estimates.
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