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ABSTRACT

Using a large and well-controlled sample of clusters of galaxies, we investigate the relation between cluster
velocity dispersions and X-ray temperatures of intra-cluster gas.

The cluster selection is based on nonparametric methods. In particular, we present the 2-D optical maps of
our sample clusters, obtained via the kernel adaptive technique, using an optimized smoothing parameter.

In order to obtain a reliable estimate of the total velocity dispersion of a cluster, independent of the level
of anisotropies in galaxy orbits, we analyze the integrated velocity dispersion pro�les over increasing distances
from the cluster centers. Both increasing and decreasing integrated pro�les are found, but the general trend
is a attening of the integrated velocity dispersion pro�le at the largest radii, thus enabling us to take the
asymptotic value of the integrated pro�le as an estimate of the total velocity dispersion which is independent
of possible anisotropies.

Distortions in the velocity �elds, the e�ect of close clusters, the presence of substructures, and the presence
of a population of (spiral) galaxies not in virial equilibrium with the cluster potential, are taken into account
for reducing the errors in the estimate of the cluster velocity dispersions.

Using our �nal sample of 37 clusters, for which a reliable estimate of the velocity dispersion could be obtained,
we derive a relation between the velocity dispersions and the X-ray temperatures, with a scatter reduced by
more than 30% with respect to previous works.

A �2 �t to the temperature-velocity dispersion relation does not exclude the hypothesis that the ratio
between galaxy and gas energy density (the so-called �spec) is a constant for all clusters. In particular, the value
of �spec = 1, corresponding to energy equipartition, is acceptable.

However, the large data scatter in �-T relation may suggest the presence of intrinsic dispersion. This intrinsic
dispersion may be due to spurious e�ects (we consider the e�ect of cluster ellipticity), as well as to physical
reasons, di�erent values of �spec pertaining to clusters with di�erent properties.

Subject headings: galaxies: clusters of { X-rays: galaxies
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1. INTRODUCTION

The comparison between X-ray and optical properties of
galaxy clusters can help us to understand the structure, dy-
namics, and evolution of these galaxy systems. The availabil-
ity in the literature of large samples of X-ray global quantities
(see, e.g., David et al. 1993), as well as optical quantities for
cluster galaxies (see, e.g., Girardi et al. 1993), allows an accu-
rate determination of the relations existing between X-ray and
optical quantities.

Particularly interesting is the relation between the (line of
sight) dispersion in the velocity distribution of cluster galaxies
(hereafter �) and the X-ray temperature of ICM (hereafter T ),
since both quantities are connected to the gravitational poten-
tial of the cluster. This relation is expected to be strong only
if the gas and the galaxies are in dynamical equilibrium with
the cluster potential. In this case, if the thermal conduction is
e�cient, the X-ray temperature does not depend on distance
from cluster center, and so its value measured in the central
region is linked to the total gravitational potential. Moreover,
the velocity dispersion measured on a galaxy population trac-
ing the whole cluster (hereafter total �) is directly linked to
the total gravitational potential via the virial theorem. This
implies also that the total kinetic energy of galaxies is inde-
pendent of velocity asymmetries (The & White 1986; Merritt
1988).

A related issue is the determination of the ratio between the
speci�c energies of the galaxies and the gas �spec =

�2

kT=�mp
,

where � is the mean molecular weight andmp the proton mass
(see, e.g., Sarazin, 1986).

These topics have already been addressed by many authors
(see, e.g., Smith, Mushotzky, & Serlemitsos 1979; Mushotzky
1984; Mushotzky 1988; Evrard 1990; Edge & Stewart 1991a;
Lubin & Bahcall 1993), who always found a very large scatter
both in the �-T relation, and in the mean value of �spec.

This scatter can arise from a deviation of the observed tem-
perature from the \virial" one, i.e. that expected if the gas is in
dynamical equilibriumwith the cluster potential. For instance,
the gas may be incompletely thermalized, because of an ongo-
ing process of cluster formation through the merger of group
sub-units, as suggested by observations (see, e.g., Zabludo� &
Zaritsky 1995) and by numerical simulations (see, e.g., Evrard
1990). Hot gas injection from galaxies by supernova explosions
(see, e.g., Sarazin 1986; White 1991) can raise the observed
temperature over the virial one; if part of the support against
gravitation is provided by turbulence and magnetic �elds (see,
e.g., Miralda-Escud�e & Babul 1994; Loeb & Mao 1994; Wu
1994), the observed temperature will be lower than the virial
one. Moreover temperature gradients may indicate that ther-
mal conduction is not so e�cient. A preliminary analysis of
ASCA data indicates that, with the exception of central re-
gions, where cooling ows are often present, the clusters are
isothermal to within 15% out to 0.5 h�1Mpc (Mushotzky
1994). This may not be a general property of all clusters, how-
ever (see, e.g., Eyles et al. 1991; Briel & Henry 1994), and
nothing is known about the temperatures of the more external
cluster regions.

Not only T , but also � is probably a source of scatter in
the T{� relation. Although the presence of anisotropies in the
galaxy orbits does not a�ect the value of the total spatial (or
projected) � (The & White 1986; Merritt 1988), it can strongly
inuence � as computed on the central cluster region. The
velocity dispersion pro�les (VDP in the following) are di�erent
for di�erent clusters and still poorly known on average (see,

e.g., Kent & Sargent 1983; Merritt 1987; Sharples, Ellis, &
Gray 1988), so that a measure of � at a given distance from the
cluster center is a poor predictor of the total � in the cluster.

Cluster asphericity may pose another problem since the ob-
served projected � is related to the spatial � via a projection
factor depending on cluster ellipticity and inclination. The 2-D
galaxy distributions and X-ray maps show that several clusters
are elongated (Plionis, Barrow, & Frenk 1991; Jones & Forman
1992; Struble & Ftaclas 1994).

There is evidence that �, as computed on the spiral galaxy
population, is higher than � as computed on the population
of ellipticals, thus suggesting that spirals are far from being
virialized in the cluster potential (see, e.g., Sodr�e et al. 1989;
Biviano et al. 1992; Scodeggio et al. 1994).

More generally, we cannot expect � and T to be good indi-
cators of the cluster potential when the cluster is still far from
dynamical equilibrium, as shown ,e.g., by the presence of sub-
clustering both in the galaxy and in the X-ray emitting gas dis-
tributions (see, e.g., Fitchett 1988; Escalera et al. 1994; Slezak,
Durret, & Gerbal 1994; West 1994). Although the existence of
cluster subclustering is well established, it is not yet well under-
stood how much it inuences cluster dynamics. In particular,
some authors (e.g. Fitchett & Webster 1987; Edge & Stewart
1991a) have claimed that the presence of substructures may
bias the estimate of velocity dispersion. Recent X-ray data
show that both clusters A2256 and A754 have regions with dif-
ferent T providing evidence for an ongoingmerging event (Briel
& Henry 1994; Henry & Briel 1995; Zabludo�& Zaritsky 1995).
Numerical simulations show that the galaxy velocity dispersion
and the gas temperature both increase when (sub)clusters col-
lide (e.g. Schindler & Boehringer 1993; Schindler and Mueller
1993; Roettinger, Burns, & Loken 1993). However, further
numerical simulations are required to examine simultaneous
variations of � and T .

In this paper we re-examine the relation between � and T
by taking into account the presence of velocity anisotropies, the
possible tidal e�ects due to close clusters, the presence of sub-
structures, the existence of velocity gradients in cluster �elds,
the kinematical di�erences between spiral and elliptical popu-
lations, and the e�ect of cluster asphericity. The main purpose
of this paper is to make a reliable estimate of the total velocity
dispersion of a cluster, independent of the level of anisotropies
in galaxy orbits, through an analysis of the integrated pro�les
of velocity dispersion over increasing distances from the cluster
center.

In x 2 we describe our data-sample; in x 3 we present our
results and provide the relevant discussion; in x 4 we present a
summary and draw our conclusions. Throughout, all errors are
at the 68% con�dence level (hereafter c.l.), while the Hubble
constant is 100 h�1 km s�1 Mpc�1.

2. THE DATA SAMPLE

Our analysis is based on a sample of 43 clusters, each sam-
pled at least up to half an Abell radius, with at least 25 cluster
members having available redshifts within 1 h�1Mpc from the
center (membership criteria for cluster galaxies are de�ned in
the next section), and with available X-ray temperatures of the
intracluster gas (David et al. 1993). These selection criteria
were chosen in order to allow the determination of the total �
in each cluster through analysis of the VDP. In order to achieve
a su�ciently homogenous sample, the galaxy redshifts in each
cluster have usually been taken from one reference source only,
or from di�erent sources, only when redshifts from these di�er-
ent sources proved to be compatible.
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Figure 2: Velocity dispersion (solid line) and galaxy density
(dashed line) along the sequences beginning with the peak of
the clusters A3391 (upper �gure) and A3395 (lower �gure). Ar-
rows indicate the point where the velocity dispersion is taken.

We applied homogenous procedures to the study of the op-
tical data of these 43 clusters; we used robust mean and scale
estimates (computed with the ROSTAT routines kindly pro-
vided by T. Beers { see Beers, Flynn, & Gebhardt 1990). In
Table 1 we list the cluster names (Col. 1), the references to the
redshift data (Col. 2), the X-ray temperatures and their errors
(Col. 3), as given by David et al. (1993), and the references
to the adopted X-ray centers (Col. 4). The upper limit in the
observed value of T for the cluster A1142 is not available; we
took it to be equal to the observed T plus the largest error on
T in our sample.

In order to consider the possible inuence of neighbouring
clusters, for each object we looked for the presence of ACO clus-
ters (Abell et al. 1989) in a region of � 2 h�1Mpc from the
cluster center and in a redshift range of �0.01. We identi�ed
as neighbours the cluster pairs A399/A401, A3391/A3395. We
considered together the two clusters of each pair in the initial
cluster selection in the redshift space. We used the same treat-
ment also for the cluster pairs A2063/MKW3S, A2634/A2666,
A3558/SC1329-314 presented together by the authors. The in-
uence of close clusters on VDPs is considered in x 3:3.

2.1. CLUSTER MEMBERSHIP

In order to assign cluster membership, we have used both
the velocity and the spatial distribution of galaxies projected
into the cluster area. We have analyzed each cluster velocity
distribution via the adaptive kernel technique (see Appendix
A), that provides the signi�cance of each detected peak in the
velocity distribution, as well as an estimate of the extent of the
overlapping between contiguous peaks. A peak is considered to

Table 1: The Initial Cluster Sample. Velocity and X-ray center
references at the end of the paper (Notes to the Tables)

Name Vel. Refs. T (keV ) X-ray center Refs.
(1) (2) (3) (4)

A 85 [1,2] 6.2+0:2
�0:3

[44]

A 119 [3] 5.9+0:6
�0:6

[45]

A 193 [4] 4.2+1:0
�0:5

[46]

A 262 [5,6,7] 2.4+0:2
�0:1

[44]

A 399 [4] 5.8+0:8
�0:7

[45]

A 400 [8] 2.5+0:4
�0:4

[45]

A 401 [4] 7.8+0:6
�0:6

[45]

A 426 Perseus [9] 6.3+0:2
�0:2

[44]

A 496 [10] 3.9+0:1
�0:1

[45]

A 539 [11] 3.0+0:5
�0:4

[45]

A 548S [12] 2.4+0:7
�0:5

[47]

A 576 [13] 4.3+0:3
�0:3

[46]

A 754 [12] 9.1+0:7
�0:6

[45]

A1060 Hydra [14,15] 3.9+0:2
�0:2

[44]

A1142 [16] 3.7+5:4
�2:0

[48]

A1367 [6,17,18,19] 3.7+0:2
�0:1

[47]

A1644 [15] 4.7+0:5
�0:5

[44]

A1656 Coma [20] 8.3+0:6
�0:5

[45]

A1689 [21] 10.1+5:4
�2:8

[44]

A1736 [12] 4.6+0:7
�0:6

[49]

A1795 [4] 5.8+0:3
�0:2

[46]

A2052 [1,22] 3.1+0:2
�0:2

[45]

A2063 [2,4] 4.1+0:6
�0:6

[48]

A2107 [23] 4.2+1:9
�1:1

[50]

A2151 Hercules [12] 3.8+0:7
�0:5

[51]

A2199 [24] 4.5+0:2
�0:1

[51]

A2256 [25] 7.3+0:5
�0:4

[52]

A2593 [2] 3.1+1:5
�0:9

[44]

A2634 [26,27,28] 3.4+0:2
�0:3

[31]

[29,30,31]

A2670 [32] 3.9+1:6
�0:9

[48]

A2877 [1] 3.5+1:1
�0:8

[47]

A3158 [33,34] 5.5+0:3
�0:4

[44]

A3266 [21] 6.2+0:5
�0:4

[47]

A3391 [21] 5.2+1:3
�0:9

[47]

A3395 [21] 4.7+1:1
�0:7

[47]

A3526 Centaurus [35,36] 3.9
+0:1

�0:1
[44]

A3558 Shapley 8 [14,21,37,38] 3.8+1:2
�0:6

[49]

A3571 [39] 7.6+0:7
�0:6

[53]

A3667 [40] 6.5+1:0
�1:0

[54]

S0805 [1] 1.4+0:3
�0:3

[47]

MKW3S [2,4] 3.0+0:3
�0:3

[44]

MKW4 [41,42] 1.7+1:7
�0:7

[44]

VIRGO [43] 2.4+0:2
�0:2

[46]
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Table 2: E�ects of Galaxy Morphology. References are at the
end of the paper (Notes to the Tables)

Name Ne Nl R� Pm PF Ref.
(1) (2) (3) (4) (5) (6) (7)

A 119 58 13 0.98 0.83 0.82 [1]
A 400 58 24 1.24 0.98 0.57 [2,3,4,5]
A 426 Perseus 54 45 2.69 0.69 0.36 [4,5,6,7]
A 496 54 18 0.97 0.56 0.34 [3]
A 539 46 35 4.76 0.92 0.94 [4,5,8]
A 754 62 14 1.90 0.06 0.36 [9]
A1060 Hydra 82 56 2.01 >0.99 0.25 [10,11]
A1644 70 20 1.77 0.95 0.51 [9]
A1656 Coma 173 85 4.93 0.25 0.98 [12]
A2063 37 17 1.37 0.42 0.78 [3]
A2151 Hercules 56 44 1.45 0.99 0.10 [9]
A2256 46 13 0.92 0.49 0.98 [3]
A2634 61 22 0.69 0.44 >0.99 [3]
A2670 90 26 1.12 0.60 0.89 [13]
A2877 35 10 0.96 0.88 >0.99 [3]
S0805 74 39 1.77 0.62 0.48 [14]
VIRGO 179 246 2.06 0.32 >0.99 [15]

be real if it is detected at a c.l. � 99%; the main cluster body
is then naturally identi�ed as the highest signi�cant peak. All
galaxies not belonging to this peak are rejected as non-cluster
members. We stress that this procedure is non-parametric, like
the method of weighted gaps which is frequently used in the
literature (see, e.g., Beers, Flynn, & Gebhardt 1990; Beers et
al. 1991; Girardi et al. 1993); the advantage of the adaptive
kernel technique vs. the weighted-gap one is that the former
allows us to represent the data without binning and to quantify
the overlapping between contiguous peaks.

We suspect that clusters with strong (> 20%) peak overlap-
ping in their velocity distributions, viz. A548(60%), A1367(66%),
A1689(20%), A1736(24%), A3526(56%), are very far from dy-
namical equilibriumand we discuss them separately (see x 3.4).
The following analysis concerns the remaining 38 clusters.

We applied to each cluster sample a 2-D adaptive kernel
analysis (see Appendix A). Using the 2-D adaptive kernel tech-
nique, we obtained, as in the 1-D case, the signi�cance, the
number of galaxies and the galaxy density of each peak.

In order to separate the clusters from their neighbours we
used the 2-D analysis, choosing for each cluster the correspond-
ing peak (A399, A401, A3391, A3395). For clusters A2634 and
A3558 we considered all the galaxies within 2 h�1Mpc and 1
h�1Mpc from the cluster center in order to separate them from
their neighbours A2666 and SC1329-314, respectively. More-
over, we never considered galaxies beyond 5 h�1Mpc from
their cluster center.

Since the velocity dispersion depends on galaxy velocities,
but also on the distribution of galaxies in space, it would be
best to have samples complete to a limiting magnitude. In
particular, if a deeper sampling of galaxies (in terms of mag-
nitudes) has been made by observers in the central regions,
the velocity dispersion of the galaxies in the central region will
weigh too much in the computation of the total velocity disper-
sion, based on the total galaxy sample. This is very dangerous
if the VDP is rapidly increasing/decreasing. Therefore, for all
our clusters with available galaxy magnitudes, we looked at
the galaxy magnitudes as a function of clustercentric distance.

Table 3: The �nal sample. The asterisk indicates that only
early-type galaxies are used in the analysis.

Name N R RGD PDS
(1) (2) (3) (4) (5)

A 85 131 4.49 0.75 0.359
A 119 80 1.46 0.33 0.987
A 193 58 0.89 - 0.651
A 262 78 4.95 0.37 0.602
A 399 92 1.71 - 0.285
A 400� 59 1.22 0.23 0.391
A 401 123 2.11 0.45 0.358
A 426 Perseus 127 2.70 0.27 0.144
A 496 151 1.38 0.47 0.978
A 539 102 4.87 0.07 0.998
A 576 48 1.22 - 0.059
A 754 83 2.47 >0.99 0.458
A1060� Hydra 82 2.08 0.16 0.894
A1142 44 2.21 >0.99 0.618
A1644 92 1.95 - 0.895
A1656� Coma 170 4.98 0.93 0.296
A1795 87 1.76 0.12 0.346
A2052 62 1.37 - 0.593
A2063 91 4.77 0.05 0.802
A2107 68 0.99 - 0.801
A2151� Hercules 58 1.88 0.41 0.980
A2199 51 3.22 0.28 0.292
A2256� 47 0.93 - 0.885
A2593 37 1.39 0.36 0.534
A2634� 69 0.87 0.56 0.335
A2670 215 2.24 0.15 0.920
A2877� 37 1.04 - 0.662
A3158 35 1.44 - 0.629
A3266 132 1.11 0.55 0.479
A3391 55 0.90 0.49 0.271
A3395 107 1.14 0.34 0.982
A3558 Shapley 8 206 0.98 0.49 0.988
A3571 70 0.96 - 0.057
A3667 123 2.25 0.37 0.697
S0805 120 1.90 0.72 0.558
MKW3S 30 3.47 - 0.802
MKW4 53 4.88 0.99 0.964
VIRGO� 180 2.03 0.66 0.996

We have noted that some clusters are sampled more deeply
close to the center than they are outside. We have rejected the
fainter galaxies of these clusters so as to eliminate any trend
of the limiting magnitude to vary with clustercentric distance.
Incompleteness e�ects in the external regions of some clusters
are not very important, since the integral VDP attens out in
these regions.

2.2. EFFECTS OF GALAXY MORPHOLOGY

In 17 (out of 38) clusters we have at least partial information
on galaxy morphologies. In order to test for di�erent means
and variances in velocity distributions of early- and late-type
galaxies, we applied the standard means-test and F-test (Press
et al. 1992), to the subsamples of early and late-type galaxies,
within the largest area occupied by both galaxy populations.

Table 2 lists the 17 clusters used in the morphological anal-
ysis. In Col. (1) we list the cluster names; in Cols. (2) and (3)
the numbers of early-typeNe and late-typeNl galaxies (respec-
tively), within the radius R� listed in Col. (4); in Cols. (5) and
(6) Pm and PF , the probabilities that means and velocity dis-
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Figure 3: In the upper �gure we show the double-peak velocity
distribution of cluster A3526. In the lower �gure we plot the
VDP corresponding to the most important peak and the VDP,
with higher �, corresponding to the two peaks together.

persions of early and late-type galaxy velocity distributions are
di�erent, according to the means-test and F-test, respectively;
in Col. (7) the relevant morphology reference sources.

When the probability for the early- and late-type galaxy
populations to have di�erent velocity distributions was larger
than 0.95, according to at least one of the two tests, we chose to
consider only early-type galaxies (this was the case in the clus-
ters: A400, A1060, A2151, and A1656, A2256, A2634, A2877
and Virgo, according to the means- and F-test, respectively).
The selection procedure (described in x 2.1) was then repeated
on these nine clusters, by consideringonly the early-typegalaxy
population; however, we found no substantial di�erence with
respect to an a posteriori selection.

2.3. THE FINAL SAMPLE

Our �nal cluster sample contains 38 clusters. Fig. 1 rep-
resents the 2-D galaxy distributions as adaptive kernel den-
sity contour maps (sometimes zoomed in on a central region).
Moreover, in Fig. 1 we indicate the position of the X-ray cen-
ter as found in the literature (see Tab. 1 and the discussion in
x 3.2) and we plot a 10-arcminutes radius circle to give a rough
indication of the region used in the T estimates (only in the
case of Virgo do we take a radius of 40 arcminutes). We ap-
plied the 2-D adaptive kernel method to this �nal sample and
we estimated the relative importance of peaks in each cluster
by normalizing the galaxy density of the peak to the density
of the most signi�cant peak. We also computed the probabil-
ity of substructure PDS according to the test of Dressler &
Schectman (1988a). The �nal sample is presented in Table 3.
In Col. (1) we list the cluster names; in Cols. (2) and (3) the

number of galaxy members N , and the cluster extension R (in
Mpc) of the �nal sample, respectively; in Col. (4) the relative
galaxy density,RGD, of the secondary peak, when statistically
signi�cant; and in Col. (5) the PDS substructure probability.

3. RESULTS AND DISCUSSION

3.1. VELOCITY GRADIENTS IN THE CLUSTER

VELOCITY FIELD

The cluster velocity �eld may be inuenced by the existence
of other structures on larger scales such as a nearby cluster or
the supercluster to which the cluster belongs, or �laments, and
so on. Each asymmetrical e�ect could produce a velocity gra-
dient in the cluster velocity �eld. We analyzed the presence
of velocity gradients, performing for each cluster a multiple
linear regression �t to the observed velocities with respect to
the galaxy positions (ascension and declination) in the plane
of the sky (see, e.g., den Hartog & Katgert 1994). For each
cluster we computed the velocity gradients and the coe�cient
of multiple determinationR2, 0 � R2 � 1, which measures the
amount of deviation of the dependent variable due to the set
of the two independent variables (e.g. NAG Fortran Worksta-
tion Handbook, 1991). We tested the signi�cance of the �tted
velocity gradients using 1000 Monte-Carlo simulations for each
cluster, performed by randomly shu�ing the galaxy velocities
and computing the R2 coe�cient every time. For each cluster
we de�ned the signi�cance of velocity gradients as the fraction
of times in which the R2 we obtain from simulations is smaller
than the observed R2. This signi�cance is greater than 99%
for �ve clusters: A399, A401, A2107, S805, and Virgo. For
these �ve clusters we applied a correction by subtracting the
velocity gradients from each galaxy velocity and renormalizing
the velocities so as to leave their average unchanged. However,
the correction has little e�ect both on the shape of VDP (dis-
cussed in x 3.2) and on the total velocity dispersion (the mean
absolute correction is � �30 km s�1 ).

3.2. VELOCITY DISPERSION PROFILES

We considered the line of sight velocity dispersions inte-
grated on larger and larger radii. It is important to analyse the
integral VDP, because of the particular signi�cance of the total
value of velocity dispersion (which is independent of velocity
anisotropies, see x 1) as well as for establishing the dependence
of the estimate of � on the sample extension in each cluster. In
Fig. 1 we plotted the integral VDP vs. the clustercentric dis-
tance for each cluster. The velocity dispersions are computed
using the robust velocity dispersion (e.g. Beers, Flynn, and
Gebhardt 1990); the bands in Fig. 1 represent the bootstrap
errors (at 68% c.l.). The horizontal lines show the values of the
velocity dispersion, with their respective error bands, obtained
from the temperatures listed in Tab. 1 under the condition of
perfect galaxy/gas energy equipartition, i.e. �spec = 1, and
molecular weight � = 0:58, which is the adopted average value
for clusters (Edge & Stewart 1991a).

The crucial importance of the choice of cluster center and
the possible di�erences among centers determined by di�erent
procedures are pointed out in several papers (e.g. Beers &
Tonry 1985; Rhee & Latour 1989). Since we want to compare
our velocity dispersions with X-ray temperatures, we chose the
X-ray centers published in the literature. However, the com-
puted VDPs at large radii are not strongly a�ected by di�erent
choices of cluster center (we used the position of the �rst-ranked
galaxy, and the peak of density galaxy distribution, too). The
contour maps in Fig. 1 show that the X-ray and galaxy density
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centers are similar. In several clusters (e.g. Virgo) this agree-
ment is better when the early-type rather than the late-type
galaxy population is considered.

3.3. TOTAL VELOCITY DISPERSIONS

The trend of integrated VDP happens to be di�erent for
di�erent clusters in the central region, but it is generally at in
the external region. The increasing/decreasing trends of VDP
in the central region may be due both to velocity anisotropies
and to darkmatterdistribution,but it is not easy to disentangle
these e�ects (e.g. Merritt 1988) and we postpone this analysis
to a future work. However, the atness of VDPs in the external
region suggests that, there, possible velocity anisotropies no
longer a�ect the value of �.

Moreover, the VDP attens out at about 1 h�1Mpc . For
cluster masses of about 1014 � 1015 h�1 M�, this size cor-
reponds to that of the collapsed and virialized region. So we
expect that the asymptotic value of � is representative of the
total kinetic energy of galaxies.

For each cluster we take the �nal value of � in the observed
VDPs as a fair estimate of the total �. There are, however,
a few exceptions. Clusters A3391 and A3395, which close to
one another, both have a VDP strongly increasing towards the
external regions, probably because of the presence of a neigh-
bouring cluster. For these close clusters, we computed � along
a sequence of galaxies with decreasing density starting from a
density maximum (see Appendix A). In Fig 2 we plot the veloc-
ity dispersion (as well the galaxy density) along the sequences
beginning with the peak of the clusters A3391 and A3395. In
the A3391/A3395 region there are only 3 signi�cant density
peaks: two correspond to the clusters and the third is an inter-
mediate group (see also the map in Fig. 1). For both A3391 and
A3395 we adopted the value of � obtained before we encounter
the following density peak, representing the intermediate group
(see Fig. 2a,b). These values of � are similar to the values of �
in the lowest point of VDP (see Fig 1).

The adopted � values are presented in Table 4. In Col. (1)
we list cluster names; in Cols. (2) and (3) � and �spec =

�2

kT=�mp
, with their respective errors.

3.4. THE EFFECTS OF SUBSTRUCTURES

Up to now a large fraction of observed clusters have shown
substructures, whose detection increases with the growing
availability of the data (see the Coma cluster, e.g. Escalera
et al. 1993). So the question is not whether a cluster has or
not has substructures, but rather how far the cluster is from
dynamical equilibrium. As described in x2.1, we decided to ex-
clude fromour analysis 5 clusters with strong overlappingof the
peaks in the velocity distribution. As an example, in Fig. 3a
we show the double-peak velocity distribution of A3526 (see
Lucey, Currie & Dickens 1986). In Fig. 3b we plot the VDP
corresponding to the most important peak and the VDP, with
higher �, corresponding to the two peaks taken together. We
think that these clusters are probably very far from dynamical
equilibrium, and perhaps they are examples of merging clus-
ters. The same may be true for other clusters, however; for
example, A754 is apparently bimodal in the 2-D map (see also
Zabludo� & Zaritsky 1995). We shall discuss it in the next
section.

Less apparent substructures are debatable, and we are far
from understanding their inuence on the overall cluster dy-
namics (e.g. Gonz�alez-Casado,Mamon, & Salvador-Sol�e 1994).
Moreover, di�erent methods of analysis are suitable for detect-

Table 4: The velocity dispersion and �spec. The asterisk indi-
cates that only early-type galaxies are used in the analysis.

Name � (Km=s) �spec
(1) (2) (3)

A 85 1069.+105:
� 92:

1.12+0:26
�0:25

A 119 850.+108:
� 92:

0.74+0:26
�0:24

A 193 756.+119:
� 83:

0.82+0:46
�0:28

A 262 575.+ 69:

� 43:
0.83+0:27

�0:16

A 399 1195.+ 94:

� 79:
1.49+0:44

�0:38

A 400� 607.+ 76:

� 72:
0.89+0:37

�0:35

A 401 1142.+ 80:

� 70:
1.01+0:22

�0:20

A 426 Perseus 1284.+140:
� 95:

1.59+0:40
�0:29

A 496 750.+ 61:

� 56:
0.87+0:16

�0:15

A 539 747.+105:
� 93:

1.13+0:50
�0:43

A 576 1006.+138:
� 91:

1.43+0:49
�0:36

A 754 784.+ 90:

� 85:
-

A1060� Hydra 614.+ 52:

� 43:
0.59+0:13

�0:11

A1142 631.+156:
�114:

0.65+1:27
�0:59

A1644 937.+107:
� 77:

1.13+0:38
�0:31

A1656� Coma 913.+ 73:

� 63:
0.61+0:14

�0:12

A1795 887.+116:
� 83:

0.82+0:26
�0:18

A2052 679.+ 97:

� 59:
0.90+0:32

�0:21

A2063 664.+ 50:

� 45:
0.65+0:19

�0:18

A2107 625.+ 75:

� 58:
0.56+0:39

�0:25

A2151� Hercules 743.+ 95:

� 68:
0.88+0:39

�0:28

A2199 860.+134:
� 83:

1.00+0:35
�0:21

A2256� 1279.+136:
�117:

1.36+0:38
�0:32

A2593 700.+116:
� 69:

0.96+0:78
�0:47

A2634� 705.+ 97:

� 61:
0.89+0:30

�0:23

A2670 983.+ 72:

� 54:
1.50+0:84

�0:51

A2877� 748.+126:
� 81:

0.97+0:63
�0:43

A3158 1046.+174:
� 99:

1.21+0:47
�0:32

A3266 1182.+100:
� 85:

1.37+0:34
�0:28

A3391 990.+254:
�128:

1.14+0:87
�0:49

A3395 934.+123:
�100:

1.12+0:56
�0:41

A3558 Shapley 8 997.+ 61:

� 51:
1.59+0:69

�0:41

A3571 1085.+110:
�107:

0.94+0:28
�0:26

A3667 1208.+ 95:

� 84:
1.36+0:42

�0:40

S0805 549.+ 52:

� 48:
1.30+0:53

�0:51

MKW3S 612.+ 69:

� 52:
0.76+0:25

�0:20

MKW4 539.+ 85:

� 59:
1.04+1:36

�0:65

VIRGO� 643.+ 41:

� 30:
1.04+0:22

�0:18
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Figure 4: The 38 data point of the �nal sample. The solid
line is the �t on 37 clusters excluding A754 (solid point). The
dashed line represents the model with �spec = 1.

Figure 5: The con�dence ellipse at 2 standard deviations
(95:4% c.l.), corresponding to � = 10a � T b as �tted in eq. 1.
The asterisk represents the cluster model of perfect galaxy/gas
energy equipartition, i.e. �spec = 1.

ing di�erent kinds of substructure (see, e.g., West, Oemler, &
Dekler 1988). As the question remains open, in this paper
we preferred not to apply any corrections to account for the
presence of cluster substructures. Bird, Mushotzky, & Metzler
(1995) corrected for the presence of substructures by using the
KMM method of decomposition in a set of gaussianvelocity dis-
tributions (see also Ashman et al. 1994). It is clear, however,
that this correction cannot take into account the presence of
velocity anisotropies which produce non-gaussian velocity dis-
tributions. Our non-parametric selection of clusters takes this
(possible) problem into account.

3.5. THE � - T RELATION

In order to describe the physical law which links � and
T , two independent variables, it is necessary to use regres-
sion methods which treat the variables symmetrically (see, e.g.,
Kendall & Stuart 1979). When uncertainties in both variables
are signi�cant and known, Isobe et al. (1990) and Feigelson &
Babu (1992) recommend a (double) weighted functional regres-
sion procedure which accounts for errors in both axes. In this
paper we used a Maximum Likelihood estimate of the regres-
sion lines (see, e.g., Kendall & Stuart 1979; Press et al. 1992)
in order to �t the logarithmic quantities log �-log T after hav-
ing symmetrized the errors of T and � listed in Tabs. 1 and 4,
respectively.

We obtained � = 102:56�0:03 � T 0:56�0:05. In order to mea-
sure the scatter of the data about the line we computed the
standard deviation (hereafter s.d.) of the residuals (i.e. the
distances between the data and the �tted line). This s.d. is
reduced with respect to the one we computed using both data
and �tted lines of other authors (Edge & Stewart 1991a; Lu-
bin & Bahcall 1993; and Bird, Mushotzky, & Metzler 1995).
Cluster A754, which is also one of the most 2-D structured
clusters in our sample, gives the largest residual, at about 3
s.d.'s. Surprisingly the presence of substructure leads either
to hotter temperature or to lower velocity dispersion than re-
quired by the cluster model with � = 1. Since A754 is also a
well-known substructured cluster (e.g. Fabricant et al. 1986;
Slezak, Durret, & Gerbal 1994) and shows evidence of subclus-
ter collision (Zabludo� & Zaritsky 1995) we prefer to exclude
A754 from the following analyses.

On the remaining 37 clusters we �tted

� = 102:53�0:04 � T 0:61�0:05 ; (1)

the s.d. of residuals being reduced by more than 30% with
respect to previous works (see Tab. 5). In Fig. 4 we plot the
data points and the �tted line on 37 clusters. We devoted
particular attention to the error analysis. The errors in eq. 1
are projections of the con�dence ellipse at the 68% c.l. In order
to study the compatibilityof a model with the data, in Fig. 5 we
plot the con�dence ellipse at the 95.4% c.l. (corresponding to
2 s.d.). The model of perfect galaxy/gas energy equipartition,
�spec = 1, represented by an asterisk in Fig. 5, is compatible
with our data.

When considering the subsample of 16 clusters with known
galaxymorphological informationwe obtained � = 102:59�0:04 �
T 0:50�0:07 , consistent within the errors with eq. 1.

With the exception of A754, the average value of �spec is
1:03� 0:05.

Edge & Stewart (1991a), having found that the computed
�spec correlated with � and not with T , suggested that the
values of � are not reliable. Actually, also in our sample there is
a signi�cant correlation between �spec and �. It is well possible
that our values of � are still a�ected by some uncorrected bias,
but in any case it is not possible to draw any conclusion on
that by using the correlation between �spec and T or �. This
is due to the fact that �spec is de�ned as a function of T and �,
and this automatically induces correlations between �spec, T
and �. This point is extensively described, in a similar context,
by Mezzetti et al. (1982). In particular, de�ning �xy as the
Pearson's correlation coe�cient between log(x) and log(y), and
�x as the standard deviationof the log(x) variable, it is possible
to show that:

��� =
2��(1� ��T

�T

2��
)p

4�2
� + �2

T
� 4��T���T

(2)

and

��T =
�T (2��T

��

�T
� 1)p

4�2
� + �2

T
� 4��T���T

: (3)

So, these two correlations do not contain any further infor-
mation about the log(T )�log(�) correlation. Moreover, due to
the de�nition of �spec, this may turn out to be correlated with
log(T ) and/or log(�) even in the case that log(T ) and log(�)
are not correlated at all.

If �spec is indeed constant for all clusters, the �-T relation
could be an e�cient method for identifying clusters far from
dynamical equilibrium when they deviate from the �tted (or
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Reference Nc



��
�

� 

�T
T

�
Fitted Relation sd of residuals h�speci �spec rms

(1) (2) (3) (4) (5) (6) (7) (8)

Edge & Stewart, 1991 23 0.12 0.18 � = 102:60�0:08 � T0:46�0:12 1.46 0.91 0.38

Lubin & Bahcall, 1993 41 0.11 0.17 � = 102:52�0:07 � T0:60�0:11 1.61 1.14 0.57

Bird, Mushotzky, & Metzler, 1995 22 0.17 0.21 � = 102:44�0:09 � T0:69�0:13 1.69 0.90 0.37

This paper 37 0.11 0.17 � = 102:53�0:04 � T0:61�0:05 1.00 1.03 0.29

Table 5: Comparison with Other Works. In column 2 the num-
ber of clusters in the sample. In columns 3 and 4 the average
relative error on � and T . In column 6 the s.d. of residu-
als in log� � logT plane normalized to our value (0.054). In
columns 7 and 8 the average �spec, as obtained directly from

�spec =
�2

kT=�mp
, and its rms.

expected) relation. In this paper we parametrize the presence
of substructure by selecting, from among many possibilities,
the 2-D density parameter, RGD, and the well known param-
eter by Dressler & Schectman (1988a), PDS. We found no
correlation between substructure parameters, RGD and PDS,
and the (absolute) residuals in our �-T relation. However, clus-
ter A754, which has the highest RGD in our sample, is about
3 s.d.'s from the �-T relation. It is clear that a deeper un-
derstanding of the dynamical e�ect of substructures is needed
before we can reach any de�nite conclusion.

3.6. THE EFFECT OF ASPHERICITY

According to the �2 �t probability, the �t to the data in the
log T -log � plane is acceptable at the 2% c.l.. This result may
suggest that the errors do not take into account other sources
of scatter, e.g. cluster asphericity.

The e�ect of cluster asphericity on the estimate of the total
velocity dispersion may be estimated directly if one assumes
that clusters are axisymmetric (prolate or oblate), that isoden-
sity surfaces are concentric, similar ellipsoids, and that galaxies
are distributed in a way similar to the total binding mass. In
this case it is possible to evaluate analytically the projection
factor between the line-of-sight velocity dispersion and the cor-
responding 3D value, as a function of the inclination and of the
intrinsic shape (eccentricity � or axial ratio �) of the cluster
(see Appendix B).

Interestingly, even if the projection factor usually di�ers
from the spherically symmetric value (i.e.

p
3), its expectation

value, averaged on inclination, di�ers by less than 3% from
p
3

also in the case � = 0:7 , which is the highest observed value
in the cluster sample analyzed by Struble and Ftaclas (1994).
The same result is obtained if, following Plionis, Barrow &
Frenk (1991), one assumes that clusters are prolate and have
a gaussian distribution of intrinsic axial ratios with a mean
of 0.5 and a s.d. of 0.15. It follows that there is no reason
to adopt a projection factor di�erent from

p
3. Adopting the

above-mentioned distribution of axial ratios, one obtains that
the standard deviation in log(�) induced by a random orien-
tation of aspherical clusters is 0.04, corresponding to 63% of
the observed scatter (see Table 5). Increasing the log� errors
with this value, we improve the �2 probability of the �t (30%).
Hence it is possible that asphericity is partially (if not com-
pletely) responsible for the scatter in the T � � relation.

Struble & Ftaclas (1994) listed the apparent ellipticities,

as obtained by optical analysis, for a very large cluster sam-
ple. In the sample we studied there is no signi�cant correlation
between these ellipticities and the (absolute) residuals of our
�-T or the values of �spec. However, this correlation could be
easily concealed by the indirect correspondence between real
and apparent ellipticity, by the presence of substructures and
projection e�ects, as well as by measurement errors.

3.7. PHYSICAL INTRINSIC DISPERSION

The (possible) intrinsic dispersion in the �-T relation could
be due to real physical di�erences among di�erent clusters, i.e.
di�erent values of �spec pertaining to clusters with di�erent
properties.

We found no signi�cant correlationbetween (absolute)resid-
uals from the relation (or �spec values) and several cluster
properties: richness class, Bautz-Morgan type and Rood-Sastry
type (Abell, Corwin, & Olowin 1989, Struble & Rood 1987,
Struble & Ftaclas 1994), and mass ow rate in cooling ows
(Stewart et al. 1984; Edge, Stewart, & Fabian 1992; White
private communication 1994). However, some possible phys-
ical correlations might be concealed by the e�ect of cluster
asphericity (see x 3.6) or other spurious e�ects.

The matter could be clari�ed by the fact that the galaxy/gas
energy ratio is predicted to be the same both when obtained
from spectral data, �spec, and when obtained from �tting geo-
metrical cluster quantities, �fit, on the assumption that the
galaxies and the gas are in hydrostatic equilibrium within
the cluster potential. However, the precise formulation of
�fit depends on additional hypotheses (see Gerbal, Durret, &
Lachi�eze-Rey 1994 and references therein). It is claimed that
the discrepancy between �spec and �fit (e.g. Edge and Stewart
1991a) disappears when less restrictive hypotheses are consid-
ered (Bahcall & Lubin 1994 and Gerbal, Durret, & Lachi�eze-
Rey 1994).

Our average value of �spec = 1:03 is still consistent with
the value of �fit = 0:84� 0:1 proposed by Bahcall & Lubin
(1994). However, we suggest a further re-formulationof �fit for
a fruitful comparison between average or individual � values.
In fact, previous works assumed isothermal galaxy distribution
(d�2r=d r = 0, where �r is the radial component of the spatial
velocity dispersion) and often also null anisotropy, but these
hypotheses are no longer valid in the presence of strong velocity
anisotropy as (possibly) suggested by our cluster VDPs.

4. SUMMARY AND CONCLUSIONS

We analyzed a cluster sample characterized by the homo-
geneity of the redshift data in each cluster. We used robust
estimates for location and scale in the velocity distribution and
a nonparametric method for the selection of cluster members
in redshift space. Actually, if the swift increase/decrease of
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observed VDP in the central regions of some clusters is an in-
dication of strong velocity anisotropies, we cannot expect the
velocity distribution to be gaussian. So the choice of non para-
metric methods seems the most reasonable one.

We present the 2-D optical maps of our sample clusters,
obtained by the kernel adaptive technique, using an optimized
smoothing parameter.

The clusters with the strong presence of substructures, as
shown by a bimodal distribution of galaxy redshifts, were re-
jected from the �nal sample. Less apparent substructures were
parametrized by applying two di�erent tests.

The value of the integrated � is reliable if computed on a
magnitude complete sample; otherwise, a di�erent sampling
in di�erent cluster regions may bias the observed value of �
towards the local value corresponding to the region with deeper
sampling. For our clusters with available galaxy magnitudes,
we extracted subsamples complete in magnitude.

Our analysis lends support to the scenario in which late-
type galaxies may not be in dynamical equilibrium with the
cluster, since 8 of the 17 clusters we analyzed show signi�-
cant di�erences in mean- and/or �-values between early- and
late-type galaxies. For the 5 clusters, which show signi�cant
di�erence in �, the � value computed using the global popula-
tion is larger by about 190 km/s, on average, with respect to
the � value computed using the early-galaxies. Moreover, the
e�ect concerns poorer and cooler clusters. In fact, we found
kinematical di�erences for 6 of 10 clusters with kT � 3:9 keV
(the median value of kT in the sample), but only for 2 of 7
clusters with kT > 3:9 keV. One can hypothesize that in the
poorer and cooler clusters the spirals are still infalling, but in
the richer and hotter clusters the spirals have already reached
virial equilibrium. Neglecting this e�ect could strongly a�ects
the slope of the � - T relation.

Our analysis of integral VDP shows that the value of � is
dependent on the radius at which it is computed. The aver-
age of the absolute di�erences between � as computed at 0.5
h�1Mpc and the total value of � is � 90 km s�1 ; for a few
clusters this di�erence is larger than 300 km s�1 . The in-
crease/decrease of VDP in internal cluster regions suggests the
possible presence of velocity anisotropies.

We found that cluster VDP can be strongly a�ected by the
inuence of close clusters (as in the case of A3391/A3395, see
x 3.3). The presence of substructures, �laments and superclus-
ters does not seem to induce an asymmetric velocity �eld in the
cluster. This can be checked by noting that signi�cant velocity
gradients are found only in 4 out of 38 clusters.

As a consequence of our accurate analysis of velocity dis-
persion, the scatter in the log�- logT plane is reduced by
more than 30% with respect to previous determinations. The
gas/galaxy energy equipartitionmodel, �spec = 1, is consistent
with our data; this con�rms previous results (Edge & Stewart
1991a; Lubin & Bahcall 1993), but is in disagreementwith Bird,
Mushotzky, & Metzler (1995). We obtain an average value of
�spec = 1:03� 0:05.

The scatter in the �-T relation suggests that part of the
dispersion is intrinsic. This intrinsic dispersion may have sev-
eral di�erent origins. Part of the scatter can be explained by
the e�ect of cluster asphericity, while part may be physical,
di�erent values of �spec pertaining to clusters with di�erent
properties. Yet, in our sample no signi�cant correlations are
found between the (absolute) residuals of the �tted � � T re-
lation and the projected ellipticity, substructure parameters,
richness class, Bautz-Morgan type and Rood-Sastry type, and
mass ow rate in cooling ows.
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APPENDICES

A ADAPTIVE KERNEL DENSITY

If we have a sample of data ~�1; ~�2; : : : ; ~�N in d dimensions,
we can de�ne an empirical distribution function:

g(~�) =
1

N

X
i=1;N

�(~�� ~�i): (4)

It contains all the information in the sample but is not a sat-
isfactory estimate of the true distribution f . In fact, the short

wavelength behavior of g(~�) is a consequence of discrete sam-

pling. A smooth estimate f̂ may be obtained by convolving g

with a probability density function K(~xj~�), kernel of the inte-
gral function:

f̂(~x) =

Z
Rd

g(~�)K(~xj~�)d~� = 1

N

X
i=1;N

K(~xj~�i); (5)

whereRd is the d-dimensionReal region of integration. As ker-

nel we chose a function K(~xj~�i) = K(~x;� = ~�i; �) with � = ~�i
(position of the datum) and the smoothing parameter � large

enough for f̂ to be a smooth function. We obtained an esti-
mate of f by eliminating the short-wavelength behavior of g
without modifying its long-wavelenghts behavior. Obviously

too large a value of � will oversmooth f̂, hiding its true fea-
tures. There seems to be general agreement that the choice of
the kernel shape is not important; hence we decided to use a
gaussian, because of its analytical properties (see, e.g., Merritt
& Tremblay, 1994). The choice of the value of the smoothing
parameter is crucial. A single value of � will be too large to
describe fairly a rapidly changing true probability density, and
too small where the probability density is smoother. To avoid
this problem several authors have introduced an adaptive ker-
nel function, with the smoothing parameter � sensitive to the
local density of data. Silvermann (1986), once he obtained a
pilot estimate fp with a �xed �, de�nes:

�i =

0
B@
hQ

j=1;N
fp(~xj)

i 1

N

fp(~xi)

1
CA

�

�: (6)

Hence the greater fp(~xi), the lower �i. The sensitivity param-
eter � is usually �xed to 1=2.

The problem of choosing an optimal and objective value of �
still remains. Pisani (1993), following an idea developed by
Stone (1984), proposes minimizing the integrated square error:

ISE =

Z
Rd

(f(~x)� f(~�))2d~x; (7)
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which is equivalent to minimizing the quantity:

Mf (�) = ISE �
Z
Rd

f2d~x =

Z
Rd

f̂2d~x� 2

Z
Rd

f f̂d~x: (8)

The quantity f f̂ is unknown, but we can note (Stone 1984)
that: Z

Rd

f f̂d~x =
1

N

X
i=1;N

Z
Rd

K(~x� ~xi)f(~x)d~x: (9)

The expectation value of this quantity is the expectation of the
average of

R
Rd

K(~x � ~y)f(~x)d~x. But the expectation of the

average of a variable is equal to the mean of the same variable:

E

"
1

N

X
i=1;N

Z
Rd

K(~x� ~xi)f(~x)d~x

#
=

Z
Rd

f(~y)d~y

Z
Rd

K(~x�~y)f(~x)d~x:

(10)
And, reversing the same argument with the probability func-
tion f(~x)f(~y):

E

�Z
Rd

f f̂d~x

�
= E [K(~x� ~y)] = E

"
1

N(N � 1)

XX
i6=j

K(~xi � ~yj)

#
;

(11)
where ~x and ~y are independent variables each having density
f . That leads to the unbiased estimate:Z

Rd

f f̂d~x =
1

N(N � 1)

XX
i6=j

K(~xi � ~yj): (12)

Hence we are able to expressMf (�) simply by using the known

estimate f̂ . The functionMf (�) has a minimum and the cor-
responding �-value is the optimal smoothing parameter.

A1. SOME QUANTITIES USED IN THE PAPER

Having evaluated the density, following the method of clus-
tering analysis introducedby Pisani (1993) and its multivariate
extension (Pisani 1995), we are able to:

� associate each object with its own density peak;

� calculate the signi�cance of a peak;

� compute the probability that an object could belong to
a peak, and hence the overlapping between two peaks;

� generate a sequence of objects with decreasing density
starting from a peak top.

It is possible to associate a galaxy with a peak by using the
sequence:

~xi+1 = ~xi +

2
64 dPN

j=1

�
~rf̂(~xj )

f̂(~xj )

�
2

3
75 ~rf̂(~xi)

f̂(~xi)
; (13)

where d is the number of dimensions. Usually we obtain iso-
lated objects, which permit us to de�ne �0 = maxf�ig in the
�eld. We can see the density f(~x) as the realization of � di�er-
ent peaks:

f(~x) =
X
�=0;�

f�(~x) (14)

where f�(~x) =
1

N

P
i2�

K(~x;~xi; �i) is the probability density

of the �-th peak and f0(~x) =
1

N
K(~x;~xi; �0) is the probability

density of the i-th isolated object. We can de�ne the likelihood:

LN =
Y
i=1;N

f(~xi) (15)

and compute the signi�cance of the �-th peak by calculating:

�2 = �2 ln
�
L(�)

LN

�
; (16)

where L(�) is the value that LN would have if each object of
the �-th peak were described by f0(~x), i.e. if it belonged to the
�eld (Materne 1979).

The probability that an object belongs to the �eld can be eval-
uated by:

P (i 2 0) =

1

N
K(~x;~xi; �0)

f(~xi)
; (17)

and, similarly, the probability of belonging to the �-th peak is:

P (i 2 �) = �
f�(~xi)

f(~xi)
; (18)

where � is equal to 1� P (i 2 0) from the normalization con-
dition

P
�
P (i 2 �) + P (i 2 0) = 1. We can thus evaluate

the overlapping between two peaks �; � counting the objects
associated with peak � and with P (i 2 �) > P (i 2 0) and the
objects of � with P (i 2 �) > P (i 2 0).

To obtain a sequence of objects with decreasing density, we
start from the object closest to the top of a peak (Kittler 1976
and Pisani 1995). Then we de�ne as neighbours all the objects
at ~xi closer to the starting point at ~x1 than the sum �1 + �i.
We choose as our second point the object with highest density
among the neighbours. Then we add to the set of neighbours
all those of the second point and iterate the procedure. When
we �nd, as a term of the sequence, an object associated with
another peak, we restart the procedure from this peak. Then,
when we have as a sequence term another object of the previous
peak, we merge the two peaks and continue the procedure.

This way it is possible to study the VDP by taking into
account the ellipticity of a cluster or to analyse the VDP of a
structured cluster by distinguishing the presence of substruc-
tures (see also Pisani 1995).

B PROJECTION FACTOR

We follow the formalism and the content of paragraphs 2.5
and 4.3 of Binney and Tremaine (1987, BT). We assume that
clusters are axisymmetric (prolate or oblate), that isodensity
surfaces are concentric, similar ellipsoids, and that galaxies are
distributed in a way similar to the total binding mass. We also
assume that the virial theorem holds, that rotation is negligi-
ble (see, e.g., Rood et al. 1972; Gregory & Ti�t 1976; Dressler
1981), and that ellipticity is produced by velocity anisotropy
and not by tidal interaction (as, on the contrary, proposed by
Salvador-Sol�e & Solanes 1993). If, as suggested by these au-
thors, the ellipticity were produced by a tidal e�ect, but the
kinetic energy tensor is isotropic, there would be no dependence
of the velocity dispersion on the direction of the line of sight.
Since, on the contrary, we want to estimate an upper limit to
the sensitivity of the velocity dispersion to the position of the
observer, we neglect tidal elongationand assume that the shape
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of clusters is entirely due to anisotropy in the kinetic energy
tensor.

We use the tensor virial theorem to link the shape of the
cluster to its internal motion. We de�ne an orthogonal refer-
ence system x1, x2, x3, coincident with the principal axes of
the ellipsoid, x3 being the symmetry axis of the system. If the
kinetic energy of galaxies is due to their random motions, the
kinetic energy tensor is given by 1

2
�jk (see eq. 4.74 of BT),

and the tensor virial theorem is reduced to �jk + Wjk = 0,
whereWjk is the potential energy tensor (see eq. 2-123 of BT).

From the symmetry assumed, we have �11 = �22 = M�2
0
,

where M is the total mass of galaxies and �0 is the velocity
dispersion along a line of sight lying in the equatorial plane
of the cluster. The component along the symmetry axis is
written as �33 = (1 + �)�11. The total kinetic energy of the
system is K = 1

2

P
j
(�jj) = 1

2
M�2

3D
, so that one obtains

�3D = �0
p
3 + �. If the line of sight forms an angle i with the

x3 axis, the observed velocity dispersion �los is linked to �0
by the relation �2

los
= �2

0
sin2 i+ �2

0
(1 + �) cos2 i (compare eq.

4.96b of BT, but notice the di�erent assumption on the sign of
�). Combining this with the above relations gives

�3D = �los

r
3 + �

1 + � cos2 i
(19)

Now, from the tensor virial theorem and from the above-
mentioned relation, it turns out that

1 + � =
�33

�11

=
W33

W11

=
a2
3
A3

a2
1
A1

; (20)

where the ai are the ellipsoid semi-axes and the Ai are the
expressions given in Table 2.1 of BT. This result, due to the
assumptionswe made, is entirely independent of the radial den-
sity distribution in the cluster (see eq. 2.134 of BT and the
following discussion).

If the cluster is prolate (a1 = a2 < a3), with the axial ratio
� = a1=a3, Table 2.1 of BT gives

� =
2

�2

ln

�
�

1�
p
1��2

�
�
p

1� �2

p
1��2

�2
� ln

�
�

1�
p
1��2

� � 1; (21)

so that the projection factor for the velocity dispersion fp =
�3D=�los, using equations (19) and (21), may be expressed as
a function of the intrinsic axial ratio and the inclination of the
cluster.

In a similar way, if the cluster is oblate (a1 = a2 > a3),
with the axial ratio � = a3=a1, one obtains

� = 2�2

1

�
� arcsin

p
1��2p

1��2

arcsin

p
1��2p

1��2
� �

� 1: (22)

The value of � is positive for prolate clusters and negative
for oblate ones.
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