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Abstract

We formulate a covariant transport approach for high energy nucleus-nucleus

collisions where the real part of the hadron selfenergies is evaluated on the basis

of a NJL-type Lagrangian for the quark degrees of freedom. The parameters of

the model Lagrangian are �xed by the Gell-Mann, Oakes and Renner relation,

the pion-nucleon �-term, the nucleon energy as well as the nuclear binding energy

at saturation density �0. We �nd the resulting scalar and vector selfenergies for

nucleons to be well in line with either Dirac-Brueckner results or those from the

phenomenological optical potential when accounting for a swelling of the nucleon

at �nite nuclear matter density. The imaginary part of the hadron selfenergies is

determined by a string fragmentation model which accounts for the in-medium

mass of hadrons in line with the chiral dynamics employed. The applicability of

the 'chiral' transport approach is demonstrated in comparison with experimental

data from SIS to SPS energies. The enhancement of the K+=�+ ratio in A + A

collisions compared to p + A reactions at AGS energies is reproduced within the

'chiral' dynamics. Furthermore, detailed predictions for the stopping in Pb + Pb

collisions at 153 GeV/A are presented.

1 Introduction

The study of hot and dense nuclear matter by means of relativistic nucleus-
nucleus collisions is the major aim of high energy heavy-ion physics. However,
any conclusions about the nuclear properties at high temperature or baryon
densities must rely on the comparison of experimental data with theoretical
approaches based on nonequilibrium kinetic theory. Among these, the covari-
ant RBUU approach [1{9], the QMD [10] or RQMD model [11] have been
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successfully used in the past. As a genuine feature of transport theories there
are two essential ingredients: i.e. the baryon (and meson) scalar and vector
selfenergies - which are neglected in a couple of approaches - as well as in-
medium elastic and inelastic cross sections for all hadrons involved. Whereas
in the low-energy regime these 'transport coe�cients' can be calculated in the
Dirac-Brueckner approach starting from the bare nucleon-nucleon interaction
[12,13], this is no longer possible at high baryon density (�B � 2-3�0) and high
temperature, since the number of independent hadronic degrees of freedom in-
creases drastically and the nuclear system is expected to enter a phase where
chiral symmetry is restored [14{17]. Such a phase transition is dynamically
due to a change of the nonperturbative QCD vacuum at high temperature
or baryon density and the chiral invariance of the interaction between quarks
and gluons in the QCD Lagrangian. As a consequence the hadron selfenergies
in the nuclear medium should change substantially especially close to the chi-
ral phase transition and any transport theoretical study should include the
generic properties of QCD that so far are known from nonperturbative com-
putations on the lattice [18{21]. However, such nonperturbative calculations
will not be possible for high baryon densities within the next years and we
have to rely on suitable e�ective Lagrangians that lead to the same physical
condensates and thermodynamic behaviour as the original QCD problem.

Our approach thus �rst aims at �xing an e�ective Lagrangian for the quark
degrees of freedom on the mean-�eld (one loop) level for low energy QCD
problems where the gluon �elds Aa

�(x) have been integrated out. The e�ective
interaction determined in this way should not be used in further perturbation
theory (e.g. for scattering or transition rates) since it is supposed to be the
result of an in�nite resummation of interaction diagrams. In the �rst step
of this work we aim at �xing the real part of the quark selfenergy - that
determines the properties of the system in thermodynamic equilibrium - and
in a second step then extract the real part of nucleon selfenergies from quark
con�gurations that describe nuclear matter at �nite density. In a third step
then the imaginary part of the hadron selfenergies - or their collision rates -
will be speci�ed within an extended LUND string model.

Our primary strategy is similar to that of Skyrme forces [22] in the nonrel-
ativistic nuclear physics context or that of the �-! model for a relativistic
description of �nite nuclei and nuclear matter [23]. In fact, it will turn out
that the present approach leads to nucleon selfenergies quite close to those
from the �-! model [24] for the nucleons.

The underlying idea of an e�ective 4-point interaction for quarks has already
been discussed e.g. by Vogl and Weise in ref. [25]. Since the fundamental
currents in QCD are color currents, i.e. Ja

� = � q�ta q, an elementary color
current interaction with a universal coupling GC is expected to be dominant.
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An e�ective Lagrangian for �(x1 � x2)-like quark interactions thus reads

Lq(x) = � q(i
�@� � m̂0) q �G2

C

8X
a=1

�
� q�t

a q
�2
; (1)

where ta(a = 1; :::; 8) are the SU(3)color matrices with tr(tatb) = �ab=2; m̂0 a
diagonal mass matrix in avor space, i.e. m̂0 = diag(m0

u;m
0
d;m

0
s) and

� q =
(�u; �d;�s) is the quark spinor in case of SU(3)avor. The color-current interac-
tion is invariant under chiral transformations or SU(3)avor rotations. The
Lagrangian (1), however, in its present form is not yet well suited for the for-
mulation of quark dynamics on the mean-�eld level because antisymmetriza-
tion generates a further mixing of color, avor and Dirac indices. It is thus
more convenient to introduce a Fierz transformation, i.e. to antisymmetrize
the 4-point interaction to proceed with further computations on the Hartree
level. The Fierz transform then generates color singlet as well as color octet
terms, i.e. [25,26]
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where G2
S = 2G2

V = 8
9
G2
C. In (2) the matrices �i(i = 1; ::; 8) stand for the

SU(3)avor degrees of freedom with tr(�i�j) = 2�ij while �0 is given by

�0 =
q

2
3
I3 with I3 denoting the 3x3 unitary matrix in avor space 1 . The

Lagrangian (2) in its color-singlet version has been the starting point for RPA-
type calculations for the bosonic excitations of the nonperturbative QCD vac-
uum, i.e. the mesonic degrees of freedom [25{27]. Similar Lagrangian densities
have also been exploited by a variety of authors [28{36] following an early
suggestion by Nambu and Jona-Lasinio (NJL) [37].

In our present study we will discard the mesonic (RPA-type) sector and con-
centrate on the determination of an e�ective quark-quark interaction by nu-

1The most general four-point interaction compatible with QCD symmetries starts

from combinations of all possible vector and axial currents. Therefore, in general,

there is no strict relationship between GS and GV.
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cleon properties as well as nuclear matter related quantities. Similar concepts
have been proposed by Guichon [38] and Saito and Thomas [39] based on
bag-model wavefunctions. Here we start with a slightly di�erent strategy by
determining the free quark wavefunctions from the experimental data for the
proton electromagnetic formfactor. In this way we intend to circumvent the
problem of absolute con�nement which cannot be dealt with properly using
only a color neutral mean-�eld approach of the NJL-type.

Qur work is organized as follows: In Section 2 we will �x the free parameters
of our model interaction by the Gell-Mann, Oakes and Renner relation [40],
the pion-nucleon �-term and the free 'nucleon' mass. In Section 3 we will then
extend our study to the computation of the energy density of nuclear matter
con�gurations, discuss the necessary modi�cation of the nucleon formfactor
in the medium and present results for the proton-nucleus optical potential as
a function of the laboratory kinetic energy at normal nuclear matter density
�0. We, furthermore, compare our results to the low density, low energy Dirac
phenomenology and point out the open problems. In Section 4 we specify the
modi�cations of the familiar LUND string-fragmentation model [41], which
models the imaginary part of the hadron selfenergies, to include (as a �rst
step) the modi�cation of the hadron masses at �nite baryon density. In Section
5 we apply our transport approach to nucleus-nucleus collisions from SIS to
SPS energies and test its applicability in comparison with experimental data.
Section 6, �nally, is devoted to a summary and discussion of open problems.

2 The isospin symmetric nucleon system

In this Section we concentrate on vacuum as well as nucleon properties where
the nucleons are assumed to be represented by 3 additional valence quarks
on top of the (truncated) Dirac-sea with a formfactor in line with the ex-
perimental data. The singlet terms of the Lagrangian (2) in the mean-�eld
limit - performing the sum over the avor matrix elements - then leads to the
following Lagrangian for � k = (�u; �d;�s),

Lq(x) =
X

k=u;d;s

n
� k

�
i�@� �m0

k

�
 k

+
G2
S

2

��
� k k

�2
+
�
� ki5 k

�2�

�
G2
V

2

��
� k� k

�2
+
�
� k5

� k

�2��
; (3)

where the couplings G2
S and G2

V are now considered as free parameters. For
the systems of positive parity, which are of interest in our present work, also
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the pseudoscalar and pseudovector terms vanish in the Hartree limit such that
we are left with the scalar and vector term, only. This is quite similar to the
�-! model [23] in the nuclear physics context. The hamiltonian density then
is given by

H(x) =
X

k=u;d;s

n
� k

�
�ii@i +m0

k �G2
Sh
� k ki

�
 k

+
G2
S

2
h � k ki

2 +
G2
V

2
h � k� ki

2
o
; (4)

which leads to the gap equations for the e�ective masses mk, i.e.

mk = m0
k �G2

S h
� k ki: (5)

Since the problem (4) decouples in the avor degrees of freedom we will con-
sider in the following only u-quarks assuming m0

u = m0
d and neglect a possible

strangeness content of the nucleon furtheron.

For the nonperturbative vacuum we then end up with the gap equation in
phase space for the e�ective quark mass mu of u or d quarks:

mu = m0
u +G2

S

g

(2�)3

Z
d3p

muq
p2 +m2

u

�(�S� j p j) = m�
V (6)

where we have introduced an euclidian cuto� parameter �S to regularize the
divergent integral over the Dirac sea. Alternatively, one might also introduce
covariant cuto� schemes as in [25,34], but for reasons to discussed below in
context of eq. (8) we prefer to use the euclidian scheme, since we are basically
interested in quark con�gurations with a well de�ned rest frame. In eq. (6)
the factor g = 6 arizes from the trace over color and spin in eq. (5). The
gap equation (6) then leads to a constituent quark mass mu > m0

u in the
nonperturbative vacuum.

The coupling constant GS together with the cuto� parameter �S now can
be determined via the Gell-Mann, Oakes and Renner relation [40] assuming
h�uui = h�ddi,

m2
� f

2
� = �(m0

u +m0
d) h�uui ; (7)

where f� = 93:3 MeV is the pion decay constant, m� the physical pion mass
and h�uui the scalar condensate (for u or d quarks in the vakuum). Choosing
m0

u = 7 MeV as an average value of the light quark mass the quark condensate
then amounts to h�uui1=3 � �230 MeV; a value which is achieved by choosing
a cuto� �S � 0:59 GeV and GS � 4:95 GeV�1 in (6).
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In the presense of additional localized light valence quarks on top of the Dirac
sea the gap equation (6) modi�es locally to

mu(r) = m0
u �G2

S

g

(2�)3

Z
d3p

mu(r)q
p2 +mu(r)2

fu(r;p)

+G2
S

g

(2�)3

Z
mu(r)q

p2 +mu(r)2
�(�S� j p j); (8)

where fu(r;p) denotes the phase-space distribution of a single u-quark which
has to determined in a model dependent way.

In view of an implementation in a transport theory this expression now is
evaluated in the local density approximation for fu(r;p) on the basis of the
experimental electromagnetic formfactor of the proton which is well repre-
sented by a dipole approximation even up to momentum transfers Q2 � 25
GeV2/c2 [42]. This implies that the quark charge distribution (of a proton) is
of the exponential form [43]

h yq(r) q(r)i � N0 exp(� j r j =b0) = �q(r); (9)

where r is given in fm, b0 = 0:25 fm and N0 = (8�r30)
�1 provides normalization

to 1. Considering now a nucleon state averaged over spin and isospin, i.e. a
mixture of proton, neutron and �0s of average mass MN � 1:085 GeV, we
obtain for the u-quark density

�u(r) �
3

2
N0 exp(� j r j =b0); (10)

where the factor 3/2 reects the average u-quark content of the states con-
sidered. In the local density approximation the phase-space distribution for
u-quarks then is given by

fu(r;p) = �(pF(r)� j p j) (11)

with the local Fermi momentum

pF(r) = (6=g �2)1=3�u(r)
1=3: (12)

This approximation has been quite successfully applied in the nuclear physics
context [1,2] and also been adopted in [44,45] for quark oriented models. It is
a legitimate approximation for the quark phase-space distribution as long as
one is interested in expectation values like the total energy, only.
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The coordinate-space dependence of mu(r) (full line) for the nucleon is shown
in Fig. 1 together with the u-quark density huy(r)u(r)i = �u(r). In the interior

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6
 m* [GeV]

 ρ / 4 [1/fm3]

 -<qq>1/3 [GeV]

r [fm]

Fig. 1. E�ective mass m� (full line), quark density (dashed line) and scalar conden-

sate � < �qq >1=3 (dotted line) as a function of the radial distance from the quark

center.

of the nucleon the e�ective quark mass drops to about m0
u = 7 MeV and thus

the quark scalar selfenergy US to zero.

The energy density T 00(r) - for the average nucleon system considered - in
phase-space representation reads (including a factor of 2 from the summation
over u and d quarks)

T 00(r) = 2g
Z

d3p

(2�)3

q
p2 +mu(r)2 f(r;p)

�2g
Z

d3p

(2�)3

q
p2 +mu(r)2 �(�S� j p j)

+2
�
1

2
G2
S�S(r)

2 +
1

2
G2
V�V (r)

2
�
� Evac (13)

where the vacuum contribution

Evac = �2

(
g

Z
d3p

(2�)3

q
p2 +m2

u �(�S� j p j) +
1

2
G2
S�

2
S0

)
(14)
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has been subtracted. �S = (m � m0)=G2
S is the scalar density and �V =

g

(2�)3

R
d3p fu(r;p) the vector density. The total energy hHi of a quark con�g-

uration described by fu(r;p) then is obtained by integrating
R
d3r T 00(r).

The average nucleon energy to be �xed in our case corresponds to 1.085 GeV,
which is the average of the nucleon and the � mass. Our �t provides GV = 4:2
GeV�1 for the total energy of a nucleon using fu(r;p) = �(pF(r)� j p j) with
pF(r) from (12). The pion-nucleon �-term, de�ned by the following matix
elements with the nucleon state,

��N =
1

2
(m0

u +m0
d) hNj�uu +

�ddjNi ; (15)

within the parameters stated above leads to ��N � 47 MeV which is well in
line with the value extracted from pion-nucleon s-wave scattering of 45 � 7
MeV from [46].

3 Symmetric nuclear matter

In order to evaluate the energy density for symmetric nuclear matter con�gu-
rations we have to introduce in addition to fq = fu(r;p) a phase-space distri-
bution for the nucleons or 'localized' quark states fN. Denoting by (rN;pN) the
position and momentum of a nucleon, the corresponding quark phase-space
distribution fq(r;p)rN;pN is obtained from a translation of the center of fq by

rN and a proper Lorentz transformation by �N = p=
q
p2 +m2

N in phase space,

i.e. a contraction of fq by �1N =
q
1� �2N in coordinate space and dilation

in momentum space by N, which keeps the individual phase space integral
invariant.

As an example the local quark phase-space distribution fu(r;p) - as met in
the overlap regime of two colliding quark states - is depicted in Fig. 2 as a
function of px and pz for py = 0. It's macroscopic parameters are given by
the relative momenta P1; P2 of the 'quark wave functions' with respect to the
nuclear matter rest frame and the individual Fermi momenta pF1(r); pF2(r)
that are determined by the individual densities at space position r by pF(r) =
(6g�2�iq(r))

1=3 as before. The Dirac sea contribution is indicated by the sphere
with radius �S.

Iteration of the gap equation (8) then yields the e�ectivemassm(r;P1; P2; �1; �2)
as well as the scalar density �S(r). The resulting quark vector (solid lines) and
scalar densities (dashed lines) are displayed in Fig. 3 as a function of z = r

for x = y = 0 for di�erent distances R of the two nucleons (and a constant
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quarks

antiquarks

ΛS

P1 P2

pF1

pF2

Fig. 2. Characteristic quark phase-space distribution in the overlap regime for two

colliding nucleons for py = 0. The sphere with radius �S characterizes the Dirac sea

contribution at rest.

relative momentum P = 0:2 GeV/c). Due to the gap equation (8) the scalar
quark density drops substantially even for a moderate overlap of the nucleons
(R � 1:6fm), which reects the 'intermediate' range (�-�eld) attraction of
the two nucleons, whereas the overlap of the vector densities becomes more
substantial at short distance (R � 0:5fm), which reects the !-�eld in terms
of the conventional �-! model [23].

For isospin symmetric nuclear matter the nucleon phase-space distribution for
�xed spin and isospin is given by

fN(rN;pN) = �(pF� j pN j) (16)

with the nucleon Fermi momentum given by pF = (6=4�2�N)1=3 where �N is
the nuclear matter density which will be discussed in units of �0 � 0:17 fm�3.
In addition, the 'localized wave packets' move with individual momenta pN
that are selected by Monte Carlo with the constraint j pN j� pF. The nucleon
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Fig. 3. Spatial quark distribution (full lines) and scalar quark density (dashed lines)

for two colliding nucleons with relative momentum P = 0:2 GeV/c for di�erent

relative distances R from 0.8 fm to 2.4 fm.

phase-space distribution is generated by Monte Carlo for 64 nucleons in a
unit volume (a = 1 fm, pF = 1 fm�1) and the density dependence of the
total energy is obtained by proper scaling of the individual positions rN with
a � ��1=3 while the individual momenta are scaled with �1=3.

A snapshot of the quark density (for �xed z) at normal nuclear matter density
�0 is shown in the upper part of Fig. 4; the resulting e�ective mass mu(r)
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according to the gap equation (8) - for the con�guration shown in the upper
part of Fig. 4 - is displayed in its lower part. Since at normal nuclear matter
density the overlap of the nucleons is only moderate, the individual scalar
'quark bags' can still approximately be separated in space for a given time.
As a consequence the average quark mass follows according to the Hellmann-
Feynman theorem and the GOR relation (7) [47]

m�(�0) = m�
V (1�

��N

f2�m
2
�

�0) � 0:65 m�
V ; (17)

where m�
V is the vacuum e�ective mass from (6).

A further problem is related with the change of the nucleon formfactor in
the medium. As suggested e.g. by the interpretation of the EMC e�ect in ref.
[48] or arguments based on chiral symmetry by Brown [16] the nucleon might
change its size in the nuclear medium such that the vector density of a quark
is no longer given by (9). We account for such in-medium e�ects by modifying
the width parameter b0 in (9) as

b0(�N) = 0:25 fm

 
1 + �

�N

�0

!
(18)

with a parameter � to be determined by the nuclear matter saturation point
(see below).

As an example we show a snapshot of the quark distribution at 4 � �0 for
� = 0:18 in Fig. 5 (upper part) together with the corresponding quark mass
m�(x; y; z =const) (lower part) from the gap equation (8). Since the overlap
of the quark distributions now becomes substantial, the average quark mass
drops to about 30 MeV indicating partial chiral symmetry restoration.

As is well known from elastic proton-nucleus scattering [49] the scalar nucleon
selfenergy shows an explicit momentumdependence which is not accounted for
in the traditional mean-�eld theory of Walecka [24]. Consequently one also has
to investigate the question of the momentumdependence of the e�ective quark
mass. In this respect we turn back to the quark phase-space con�guration
depicted in Fig. 2 and show in Fig. 6 the resulting e�ective mass m�(�q; P )
for P1 = P2 = P; �1 = �2 = �q to illustrate the smooth general dependence
on density and relative momentum. It is clearly seen from Fig. 6 that the
e�ective mass drops with density � and increases for �xed � with the relative
momentum Pr = 2P thus leading to a reduced scalar attraction for higher
relative momentum.

Technically the nonlinear solutions for mu and �S are stored on a grid as a
function of P1; P2; �1; �2 and serve as input for the futher computations.

11



0.5 1.0 1.5

0.5

1.0

1.5

0.2

0.4

0.6

0.8

1.0

1.2

ρ  
[f

m
-3

]

y [
fm

]

x  [fm]

0.5 1.0 1.5

0.5

1.0

1.5

0.00

0.05

0.10

0.15

m
*  [

G
eV

]

y [
fm

]

x  [fm]

Fig. 4. Snapshot of the spatial quark distribution (for �xed z) at normal nuclear

matter density �0 (upper part) together with the resulting e�ective quark mass m�

(lower part).

Whereas the momentum dependence of the scalar sector now is �xed by the
gap equation (8), we have to deal furtheron with slight modi�cations of the
Lorentz vector interaction which for nucleons is known to show an explicit
momentum dependence, too [49]. Corresponding nonlocal generalizations of
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Fig. 5. Snapshot of the spatial quark distribution (for �xed z) at 4��0 (upper part)

together with the resulting e�ective quark mass m� (lower part).

the NJL Lagrangian have been suggested by Bowler and Birse [50]. We thus
adopt a similar concept and assume that the vector interaction in (13) is
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Fig. 6. E�ective quark mass m� as a function of P = P1 = P2 and �q = �1 = �2.

mediated by massive color neutral gluons which implies to modify the coupling

GV ! GV

�2
V

�2
V + q2

(19)

where �V � 1:2 � 1:5 GeV either stands for the glue ball mass or simply a
vector cuto�, respectively, and q denotes the momentum transfer in the quark-
quark interaction. This strategy is similar to that used in e�ective meson-
exchange interactions for hadron-hadron scattering [51]. Fixing �V � 1:5 GeV
the energy density for almost arbitrary nucleon con�gurations fN(rN;pN) then
is given by eq. (13) and the total energy of the con�guration is obtained by
integration over

R
d3r T 00(r).

Before evaluating the energy density for nuclear matter con�gurations we have
to make sure that for vanishing nuclear density the energy of a nucleon moving
with momentum pN = 3pq agrees with the dispersion relation of a free nucleon,
i.e.

E(pN) =
q
p2N +M2

N ; (20)

where MN is the nucleon mass in its rest frame. This is indeed the case as
shown in Fig. 7, where the relation (20) (solid line) is compared to the result
from integrating T 00(r) over r (dotted line). The slight deviations from the
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exact result (20) provide a measure of the numerical accuracy achieved in the
computations.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1.0
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1.6

1.8

 (pN
2+MN

2)1/2

 HSD

E
 [

G
eV

]

pN [GeV/c]

Fig. 7. Free nucleon dispersion relation (20) (solid line) and
R
d3r T 00(r) (dotted

line) for a 'nucleon' moving with momentum PN.

Now performing the integration of T 00 over coordinate space and averaging
over characteristic samples for nuclear matter con�gurations (as shown in Fig.
4) 2 , dividing by the number of nucleons on the grid and subtracting the bare
nucleon mass we can compute the energy per nucleon E=A(�=�0) and thus
establish a direct link between the energy density of quarks with the energy
per nucleon of isospin symmetric nuclear matter at �nite nucleon density �=�0.
The resulting energy per nucleon (nucleon mass subtracted) (for � = 0:18) is
shown in Fig. 8 (full line) 3 in comparison to the Dirac-Brueckner results from
[13] (full squares) and the parametrizations POL6 and POL7 of the RBUU
approach [7] that were found to optimally describe heavy-ion reactions in the
energy regime up to about 1 GeV/A [9]. We �nd the binding energy per
nucleon (� �16 MeV at �N = �0) to be reproduced well for � � 0:18 which

2 For technical reasons we �rst look for the 'nucleon' that exhibits a maximum

quark density at a given grid point r (giving �1; P1) and then sum up the quark

contributions of the other 'nucleons' (giving �2; P2). The corresponding values for

m� and T 00(r) are the taken from the parametrized con�gurations displayed in Fig.

2. We have tested for a couple of samples that this approximate evaluation works

quite well if ensemble averages for nuclear matter con�gurations are considered.
3The model described here is denoted by Hadron-String-Dynamics (HSD) (see

below).
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Fig. 8. Equation of state for nuclear matter; HSD (solid line), DBHF (full squares);

RBUU results: POL6 (dotted line), POL7 (dashed line) from ref. [9].

corresponds to a swelling of the nucleon by 18% at normal nuclear matter
density. For � = 0 there is no minimum in the energy per nucleon due to the
Pauli pressure such that the swelling of the nucleon - which enhances the scalar
attraction and reduces the vector repulsion - is a necessary phenomenon within
the present approach to achieve proper binding. We note that the resulting
incompressibilityK of nuclear matter amounts to about K � 250 MeV. Since
the energy per nucleon in our approach (HSD) is well in between the limits of
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POL6 and POL7 as extracted from detailed comparisons in ref. [9] for nucleus-
nucleus collisions in the SIS energy regime, we infer that the equation of state
generated by the model is quite realistic in the lower density (� � 3�0) regime.
Its extension to 10�0 (lower part of Fig. 8), however, is questionable and has
to be examined in comparison to experimental ow data at much higher (e.g.
AGS) bombarding energies.

Via the simulation of nuclear matter con�gurations - as described above - we
are now in the situation to establish a close connection between scalar and
vector quark densities and scalar and vector nucleon densities. The key link
in this respect is given by relation (17) at low nucleon density. In this respect
we show in Fig. 9 the average e�ective quark mass (in units of the vacuum
mass m�

V ) (solid line) as a function of the nuclear density �N as obtained from
the nuclear matter simulations. As discussed before, the e�ective quark mass
drops by about 35 % at �0 according to (17), however, essentially continues
with a constant slope up to about 2 � �0 � 0:33fm�3 in line with the Dirac-
Brueckner analysis in ref. [52](cf. also ref. [53]). The bare quark mass then is
reached at about � � 0:6fm�3. It is worth noting that the e�ective nucleon
mass (normalized to the vacuum mass) in the RBUU approach of ref. [9] shows
the same scaling with density up to about �0 which is also well in line with
Dirac phenomenology. As a consequence it is natural to de�ne a nucleon scalar
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0.0
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m
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Fig. 9. E�ective mass divided by the vacuum mass; quark mass m�(�N) in the HSD

approach (solid line); nucleon mass in the RBUU approach: POL6 (dotted line),

POL7 (dashed line).
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selfenergy US(�) in the nuclear medium via the e�ective quark masses as

US(�N) = �MN (1 �
m�(�N)

m�
V

); (21)

whereMN denotes the free nucleon mass. By eq. (21) the nucleon e�ectivemass
M�

N or scalar selfenergy US is entirely determined by the average quark e�ective
mass m� generated by the gap equation (8). The nucleon vector selfenergy
U�(�N ; p) then can be determined from (21) and the numerical result for the
EOS in Fig. 8 (solid line) by identifying

E=A = T 00
N =�N �MN (22)

with the 'nucleon' energy density (cf. ref. [7])

T 00
N =

4

(2�)3)

Z
d3p

q
p2 +M�2

N +
1

2
�NSUS

+
1

2
~G2
V4

2
Z

d3p1

(2�)3
d3p2

(2�)3
fN(p1)

�2
V

�2
V + (p1 � p2)2

fN(p2) (23)

with

�NS =
4

(2�)3

Z
d3p

M�
Nq

p2 +M�2
N

fN (p) (24)

where now only the nucleon vector selfenergy is still undetermined. Assuming,
however, that the momentum dependence of U�(�N; p) is the same as for the
quarks given by (19) the EOS in Fig. 8 �xes completely also the nucleon vector
coupling ~G2

V and thus the zeroth component of the vector selfenergy U0 as a
function of the nuclear density �N i.e.

U0(p) = 4 ~G2
V

Z
d3p0

(2�)3
�V

�2
V + (p � p0)2

f(p0) (25)

In Fig. 10 we compare the explicit momentum dependence of the nucleon
selfenergies at density �0 with Dirac-Brueckner results from [13] (full dots). In
the lower part of Fig. 10 the real part of the Schroedinger equivalent potential

USEP = US(�0; P ) + U0(�0; P ) +
1

2M
(US(�0; P )

2 � U0(�0; P )
2)

+U0(�0; P )

p
P 2 +M2 �M

M
(26)
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Fig. 10. Nucleon selfenergies US, U0 and the Schroedinger equivalent potential USEP
as a function of the nucleon kinetic energy Ekin with respect to the nuclear matter

rest frame. HSD (solid line), DBHF (full squares), exp. data from Hama et al. [49]

(crosses).

is additionally shown (full line) in comparison to the optical potential anal-
ysis from Hama et al. [49] (dashed line) and Dirac-Brueckner computations
from [13] up to momenta of 1 GeV/c. This comparison shows that the overall
properties of the nucleon selfenergies are reasonably met by our approach.

Apart from the close analogy of our results with the �-! model at 'low' mo-
menta (cf. Fig. 10) we are especially interested in the 'high' momentum prop-
erties of the present approach where the standard �-! model is known to fail
signi�cantly. This de�ciency has been especially addressed in the works by
Weber et al. [7{9] where an explicit momentum dependence has been intro-
duced by Fock diagrams of similar form as (25); however, the extrapolation
of this ansatz to momenta of a few GeV/c is quite uncertain. The respective
results from our present approach for the scalar and vector nucleon selfen-
ergy as well as the Schroedinger equivalent optical potential in analogy to
Fig. 10 are displayed in Fig. 11 up to relative kinetic energies of 15 GeV.
Whereas the scalar and vector nucleon selfenergies are found to gradually de-
crease with momentum (or kinetic energy) - which is a direct consequence
of the cuto� �v � 1:5 GeV or scalar glueball mass introduced in eq. (19) -
the Schroedinger equivalent potential exhibits a maximum of about 60 MeV
at 1 GeV and drops again for higher momenta. Thus we expect the e�ects
from the real part of the nucleon selfenergies to be of minor importance in
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the initial phase of nucleus-nucleus collisions at bombarding energies of a few
GeV/A, where nucleon cascading with inelastic nucleon excitations should be
dominant, i.e. the imaginary part of the hadron selfenergies.
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Fig. 11. Nucleon selfenergies US, U0 and the Schroedinger equivalent potential USEP
as a function of the nucleon kinetic energy Ekin at normal nuclear matter density

�0.

4 Elastic and inelastic hadron scattering

Whereas in a fully selfconsistent relativistic transport theory the real part and
the imaginary part of hadron selfenergies are related by means of dispersion
relations [1,3,13], it is not justi�ed to employ the model selfenergies (deter-
mined in Section 3) in dispersion integrals for the imaginary part because the
inelastic scattering rate of nucleons and mesons turns out to be wrong in the
limit of vanishing baryon density. We thus write the coupled set of transport
equations for the hadron phase-space distributions fh(x; p) in the more famil-
iar form with interaction rates [1] instead of the imaginary part of the hadron
selfenergy

n�
�� ���@

p
�U

�
h

�
@�x �M�

h@
p
�U

S
h@

�
x +��

�
@x�U

�
h +M�

h@
x
�U

S
h

�
@�p

o
fh(x; p)

=
X

h2h3h4:::

Z
d2d3d4 : : : [GyG]12!34:::�

4
�(� + �2 ��3 ��4 : : :)

20



�
n
fh3(x; p3)fh4(x; p4) �fh(x; p) �fh2(x; p2)

� fh(x; p)fh2(x; p2) �fh3(x; p3) �fh4(x; p4)
o
: : : (27)

In eq. (27) US
h and U

�
h denote the real part of the scalar and vector hadron

selfenergies, respectively, while [G+G]12!34:::�
4
�(� + �2 � �3 � �4 : : :) is the

transition rate for the process 1+2 ! 3+4+ : : : which is taken to be on-shell
in the semiclassical limit adopted 4 . The quasi-particle properties are de�ned
via the mass-shell constraint [7],

�(���
� �M�2

h ); (28)

with e�ective masses and momenta given by

M�
h(x; p)=Mh + US

h

��(x; p)= p� � U
�
h (x; p): (29)

The phase-space factors

�fh(x; p) = 1� fh(x; p) (30)

are responsible for fermion Pauli-blocking or Bose enhancement, respectively,
depending on the type of hadron in the �nal/initial channel. Explicitly propa-
gated in the following are nucleons, �'s, N(1440), N(1535), � and � hyperons
for the baryons and pions, kaons, �'s, K�'s, �'s, !'s and �'s as mesons together
with their respective antiparticles. As a �rst approximation we assume that
all baryons (made out of light (u,d) quarks) have the same scalar selfenergies
as the nucleons (cf. Section 3); the vector selfenergy for antiparticles is intro-
duced with a relative (-) sign according to time reversal 5 while the hyperons
pick up a factor 2/3 according to the light quark content.

For the inelastic channels we restrict to binary hadron-hadron collisions. As
known from transport studies at energies below 2 GeV/A the elementary cross
sections in eq. (27) may be approximated by their values in free space. Thus as
a �rst step we adopt the same strategy and use the explicite cross-sections as
in the BUU model [54] (for

p
s � 2:6 GeV) - that have been successful tested

in the energy regime below 2 GeV/A bombarding energy - and by the LUND
string formation and fragmentation model [41] (for

p
s > 2:6 GeV) in case of

4The index � at the �-function indicates that o�-shell transitions of width � should

also be allowed. In the actual transport simulation, however, we use the on-shell limit

� = 0.
5This limit has to be taken with care because Teis et al. found in [3] that a sign

change of the vector potential results in a too strong attraction for antiprotons.
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baryon-baryon collisions. For meson baryon reactions we adopt a transition
energy of

p
s = 1:8 GeV between the known low energy cross sections and

the LUND model. We note that the actual values for the transition energies
in the elementary cross sections are not sensitive to nucleus-nucleus collisions
in the energy regime to be discussed in Section 5.

In order to obtain a rough idea about the inelastic cross sections from the
LUND string fragmentation model, we show in Fig. 12 the rapidity spectra
for baryons, pions, kaons, � and ! mesons from pp collisions at Tlab = 20
GeV in the pp center-of-mass system. Whereas the baryons turn out to be
located in rapidity close to the initial rapidity of the two colliding baryons,
the meson rapidities are dominantly centered around midrapidity with a small
contribution from the deexcitation of the baryonic constituents close to the
incoming baryon rapidities. This general tendency has to be kept in mind
when comparing to nucleus-nucleus collisions later on.

The implementation of the LUND string formation and fragmentation model
[41] - which describes the free transition probabilities - in a covariant transport
theory implies to use a time scale to transform the cross-sections to collision
rates and particle production rates. An appropriate time scale is given by a
string formation time �for which denotes the time between the formation and
fragmentation of the string in the individual hadron-hadron center-of-mass
system for a particle of rapidity ycm = 0. Due to covariance this time should
be also related to the spatial extension of the interacting hadrons which on
average gives �for � 0:8 fm/c. Changing this formation time by � 20% does
not substantially alter the results to be presented in Section 5; we note, that
similar values are also adopted in the RQMD approach [55].

In view of the 'chiral dynamics' addressed in this work, however, especially
the productions rates of mesons should change at high baryon density [56]
due to the reduced masses involved. Unfortunately, the actual meson scalar
and vector selfenergies are quite a matter of debate and depend on the model
parameters of the Lagrangians employed. Whereas the Lagrangian (2) does
not provide a coupling between u,d and s quarks on the mean-�eld level,
alternative models [57] do include such couplings. The average mass of a K+

K� pair e.g. according to ref. [57] is expected to follow

m�
K+K� � m�

V(1� 0:16�N=�0): (31)

Independently, also QCD sum rules provide a scaling of mesons in the medium,
e.g. Hatsuda and Lee obtain for � and � mesons [58]

m�(�N) � mV(1� ��N=�0) (32)
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Fig. 12. Rapidity distributions for baryons, pions, kaons, �; ! and � mesons from

the LUND string fragmentation model for pp collisions at Tlab = 20 GeV.

with � � 0.18 for � and � 0.025 for � mesons. The weak dependence of the �
meson mass here is a consequence of the weak coupling of the strange quark
to the light (u,d) quarks which dominantly make up the baryon density.

In view of the substantial uncertainties of the meson selfenergies especially
at high density we here propose a pragmatic model which does not claim
fundamental evidence 6 . Whereas the pion as a Goldstone boson is assumed
not to change substantially with baryon density and temperature in the energy
regime addressed, the kaons, �'s, K�'s, �'s, !'s and �'s are assumed to change
their masses as displayed in Fig. 13 roughly in line with ref. [57,58] as pointed
out above. The �nal values achieved at high baryon density are determined
by the bare quark mass content of the mesons.

6These assumptions about meson properties at high baryon density can only be

controlled in confrontation with sensitive experimental data.
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The relativistic coupled channel transport approach described above will be
denoted by Hadron-String-Dynamics (HSD) furtheron.
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Fig. 13. Parametrization of the e�ective meson masses versus the baryon density

used in the extended string fragmentation model (HSD).

As an example for the e�ects to be expected at high baryon density we show in
Fig. 14 the rapidity spectra of kaons and �'s for pp collisions at Tlab =20 GeV
from the string fragmentation model that incorporates the density dependent
meson masses from Fig. 13. It is clearly seen that a dropping of the meson
masses leads to a substantial enhancement of the K+K� and � yields and to a
widening of their rapidity distribution in the individual center-of-mass system.
If such phenomena can be seen in comparison to experimental data will be
investigated in the next Section.

5 Heavy-ion-collisions

The relativistic transport approach (HSD) outlined above now is applied to
nucleus-nucleus collisions from the SIS to the SPS energy regime with par-
ticular emphasis on rapidity distributions and particle spectra to control the
stopping achieved in these reactions. The explicit numerical implementation of
the selfenergies and collisions rates is performed in close analogy to [9,54,59,60]
and does not have to be repeated here. We note that the total conservation of
energy and momentum throughout the time evolution is conserved on the 2
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% level for central Au + Au collisions and even better for peripheral or light
ion induced reactions.

As a �rst example we show in Fig. 15 the transverse �0-spectra from Ar + Ca
collisions at 1.5 GeV/A in comparison to the data of [61] as a characteristic
system at SIS energies. Since at these energies the present approach is close to
the results achieved with the former BUU model [62], the reproduction of the
data is of similar quality. We thus conclude that the 'low energy dynamics'
involving essentially nucleons, �'s and pions is reasonably well included in our
transport calculations.

5.1 Stopping in high-energy nucleus-nucleus collisions

The next system addressed is Si + Al at 14.6 GeV/A, i.e. the AGS energy
regime. The computed rapidity distribution of protons and �+-mesons for
b = 1.5 fm is compared in Fig. 16 to the data from ref. [63]. Whereas the
proton rapidity distribution turns out to be quite at in rapidity y due to
proton rescattering, the pion rapidity distribution is essentially of gaussian
shape which reects the pion rapidity spectrum from the string fragmentation
model outlined in Section 4 (cf. Fig. 12). The at proton rapidity spectrum
might lead to the interpretation that there is a substantial amount of stopping
in the light system Si + Al. This, however, has to be taken with care because
the actual snapshots of the baryon density distribution from our computations
shown in Fig. 17 (l.h.s.) as well the phase-space distribution (r.h.s.)

f(z; pz; t) = (2�)�2
X
b

Z
dr?dp?fb(r?; z; p?; pz; t); (33)
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Fig. 15. Calculated transverse �0-spectra for Ar + Ca at 1.5 GeV/A (full line) in

comparison to the experimental data from ref. [61].

where
P

b denotes a sum over all baryon species, indicate a dominant trans-
parency for the light system. This is essentially due to the large surface of the
two light nuclei with a nucleon-nucleon collision probability less than 1.

The amount of stopping at AGS energies is more clearly pronounced for central
Au + Au reactions as displayed in Fig. 18 for the proton and �+ rapidity
distributions.

Though the pion rapidity spectrum does not di�er very much in shape from
that of the Si + Al system in Fig. 16 at �rst sight, the time evolution of the
baryon distribution in coordinate space, momentum space and phase space
(Fig. 19) for Au+Au at 14.6 GeV/A shows a clear approach versus equilibra-
tion. However, the coordinate space evolution indicates a dominant longitu-
dinal expansion which is also reected in the baryon momentum distribution
that does not show full isotropy. Detailed experimental data and related com-
parisons, however, will become available soon at the energy of 10.8 GeV/A
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14.6 GeV/A Si+Al collision in comparison to the data from [63] (full dots).

[64]. We note that the proton rapidity spectrum for central Au + Au collisions
at this energy shows a similar amount of stopping as the RQMD approach [55].

We continue our comparison to experimental data with the system S + S at
200 GeV/A, i.e. the SPS regime (Fig. 20). Though the experimental proton
and pion rapidity spectra (from [65]) are approximately reproduced, we cannot
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conclude on the general applicability of our approach at SPS energies because
also more simple models like HIJING or VENUS - with a less amount of
rescattering - can reproduce the data in a similar way [66]. A way out of
this problem is to analyze the system Pb + Pb at 153 GeV/A (Fig. 21) that
has recently been studied experimentally at the SPS. Our computed proton
rapidity spectrum for central collisions shows no dip at midrapidity as in
HIJING or VENUS simulations [66] but a at spectrum similar to RQMD
simulations [55]. On the other hand, the pion rapidity distributions are very
similar to the S + S case, however, enhanced by about a factor of 7.

5.2 Probing chiral symmetry restoration

The problem of chiral symmetry restoration can be addressed e.g. via the
K+=�+ ratio as addressed in [56]. For this purpose we show in Table 5.2 the
calculated K+=�+ yields for the systems p + P, Si + Al, Si + Au and Au +
Au at 14.6 GeV/A in comparison with the experimental data for two di�erent
szenarios. The �rst column represents the results of a simulation where only
the bare masses of the mesons have been considered in the string fragmentation
approach (HSD) whereas the second column results from density-dependent
mesons masses as described in Section 4. It is clearly seen that for density-
dependent K+ masses the ratio is strongly enhanced for the heavier systems as

29



-10

-5

0

5

10 0 fm/c

x [
fm

]

-10

-5

0

5

10 0 fm/c

p z [G
eV

/c]

-10

-5

0

5

10 0 fm/c

p z [G
eV

/c]

-10

-5

0

5

10 4 fm/c

x [
fm

]

-10

-5

0

5

10 4 fm/c

p z [G
eV

/c]

-10

-5

0

5

10 4 fm/c

p z [G
eV

/c]
-10

-5

0

5

10 10 fm/c

x [
fm

]

-10

-5

0

5

10 10 fm/c

p z [G
eV

/c]

-10

-5

0

5

10 10 fm/c

p z [G
eV

/c]

-10

-5

0

5

10 14 fm/c

x [
fm

]

-10

-5

0

5

10 14 fm/c

p z [G
eV

/c]

-10

-5

0

5

10 14 fm/c
p z [G

eV
/c]

-10 -5 0 5 10

-10

-5

0

5

10

z [fm]

18 fm/c

x [
fm

]

-10 -5 0 5 10

-10

-5

0

5

10

px [GeV/c]

18 fm/c

p z [G
eV

/c]

-10 -5 0 5 10

-10

-5

0

5

10

z [fm]

18 fm/c

p z [G
eV

/c]

Fig. 19. Baryon density distribution (left column), momentum space (middle col-

umn) and phase-space distribution (right column) for a 14.6 GeV/A Au + Au

collision at b = 0 fm for various times in fm/c.
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Fig. 20. Proton and �� rapidity distribution for a central 200 GeV/A S + S collision

in comparison to the data of ref. [65].
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Fig. 21. Proton and �� rapidity distribution for a 153 GeV/A Pb + Pb collision at

b = 2 fm.
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exp.ratio without kaon with kaon

selfenergies selfenergies

p + p 0.08 0.08 0.08

Si + Al 0.13 0.09 0.12

Si + Cu 0.16 0.1 0.15

Si + Au 0.19 0.11 0.16

Au + Au 0.22 0.12 0.21

Table 1. The K+=�+ ratio for p + p, Si + Al, Si + Au and Au + Au collisions at

14.6 GeV/A in comparison to the data from ref. [67].

seen experimentally. However, this enhancement could also be attributed to a
closer approach to chemical equilibrium as advocated in ref. [67] which might
be achieved due to enhanced hadronic cross sections in the dense medium.
Whereas in principle the coupled transport equations (27) also describe the
approach towards chemical equilibrium for large systems, it is not yet clear if
the proper reactions rates are presently included in our simulations such that
no �nal evidence on chiral symmetry restoration can be extracted so far.

The mediummodi�cations of the �-meson are most e�ciently probed by dilep-
ton spectroscopy [54,56,62] since due to its short lifetime the �-meson has a
good chance to decay in the dense baryonic environment. According to Fig.
14 we expect a substantial enhancement of dileptons in the invariant mass
range 0.4 GeV � M � 0.7 GeV in nucleus-nucleus collisions as compared
to p + A collsions due to a shift in the �-mass spectrum and an enhanced
�-meson production in the dense medium especially via �+�� annihilation
[68,69]. In fact, �rst computations for dilepton production show that the en-
hancement of dileptons in central S + Au collisions at 200 GeV/A (reported
by the CERES-collaboration [70]) might be explained by the chiral dynamics
proposed in Section 4 [69].

6 Summary

In this work we have presented a relativistic transport approach (denoted by
HSD 7 ) where the underlying (real parts of) nucleon selfenergies have been
determined from an e�ective NJL-type Lagrangian for the quark degrees of
freedom with a chiral invariant interaction density. Starting with a local color
current interaction we have developed a model for spin and isospin averaged

7Hadron-String-Dynamics
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color neutral states on the basis of the experimental electromagnetic formfac-
tor of the proton. The parameters in our model, which are all �xed by physical
quantities are GS and �S for the scalar part, GV and �V for the vector part and
� which describes the swelling of the nucleon in nuclear matter. The physical
quantities, which are su�ciently well met are: The averaged nucleon massMN,
the scalar vacuum condensate h � q qi, the pion-nucleon �-term, the nuclear
equation of state (minimum at � = �0 with -16 MeV binding energy) and the
Schroedinger equivalent potential USEP for nucleons. Due to the scalar-vector
nature of the quark interaction density the nucleon selfenergies computed are
also close to those of the �-! model of Walecka [23] in the low momentum and
low density regime.

Whereas the real part of the nucleon selfenergies have been determined from
a more microscopic approach, the imaginary part has been adopted from the
LUND string fragmentation model [41] where the meson masses (except the
pion) have been scaled in line with chirally invariant interaction densities. This
more pragmatic model, of cause, has less founded reliability and thus one has
to justify its applicability or inadequacy in comparison to experimental data.

As a �rst step in this direction we have applied our relativistic transport ap-
proach to nucleus-nucleus collisions from SIS to SPS energies. Whereas the
proton and pion rapidity distributions look reasonable well for the systems
studied experimentally, a clear signature for the chiral symmetry restoration
could not unambiguously be established so far. This is because the strangeness
enhancement observed experimentally at AGS and SPS energies might also be
due to chemical equilibration or e.g. color-rope formation [55]. A better probe
should be provided by dilepton spectroscopy in the invariant mass regime
from 0.4 - 0.8 GeV [54] since the �-meson predominantly decays in the dense
medium. In fact, �rst computations on e+e� production at SPS energies sug-
gest that the dilepton enhancement seen by the CERES collaboration is due
to partial chiral symmetry restoration [69].

The nuclear equation of state computed within our approach (Fig. 8) shows
no density isomer up to � � 10�0. This prediction is essentially due to the
fact that scalar and vector baryon selfenergies are approximately of the same
order of magnitude, but di�erent sign, up to � � 4�0 and the repulsive vector
interaction takes over at even higher � together with the kinetic energy per
nucleon. A density isomer thus can only occur if the vector coupling itself
decreases at high baryon density or temperature. Some arguments in this di-
rection have recently been proposed by Brown and Rho [71] and investigated
in a model study by Li and Ko [72]. A clari�cation of this problem e.g. should
be achieved by experimental data on the baryon ow as a function of pro-
jectile/target mass and bombarding energy in the energy regime in between
SIS and SPS thus allowing for a closer look at the EOS at 'very high' baryon
density.
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