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Abstract

The S-duality invariance of equations of motion of four dimensional string

effective action with cosmological constant, Λ, is studied. It is demonstrated

that the S-duality symmetry of the field equations are broken for nonzero Λ.

The naturalness hypothesis is invoked to argue that Λ should remain small

since exact S-duality symmetry will force the cosmological constant to vanish

in the string effective action.
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It is recognized that S-duality is an important symmetry of string theory which relates

the strong and weak coupling domains. The consequences of this symmetry [1] are inter-

esting and surprising. In the recent past, a variety of novel results have been derived for

supersymmetric gauge theories [2] in sequel to these new developments in string theory.

The purpose of this article is to explore further the consequences of S-duality. It is well

known that the equations of motion derived from the effective action are invariant under

S-duality, although the action is not. However, these results are derived in the absence of

the cosmological constant term in the action. We show that in presence of the cosmolog-

ical constant, Λ, equations of motion associated with a four dimensional effective action,

obtained through dimensional reduction, are not invariant under S-duality transformations.

Nevertheless, the invariance of the equations of motion is recovered once we set Λ = 0. This

leads us to conjecture that exact S-duality symmetry will force the cosmological constant to

vanish. At this stage, we are tempted to invoke the hypothesis of naturalness [3] expounded

by ’t Hooft which says that a parameter in any theory remains small, if the symmetry is

enhanced by setting that parameter to zero. For example, in electrodynamics setting the

electron mass me = 0 enhances the symmetry of the action and the chiral symmetry is

restored. Therefore, it is guaranteed that me remains small and the corrections are pro-

portional to me itself. We recall that according to ’t Hooft, the vanishingly small value of

cosmological constant is unnatural [3]; putting it equal to zero does not seem to increase the

symmetry of Einstein-Hilbert action. Consequently, he concluded that gravitational effects

do not obey naturalness in conventional theory. However in the framework of string theory,

Λ obeys the naturalness criterion, i.e. putting Λ = 0 enhances the stringy symmetry. We are

aware that S-duality is not a symmetry of the action and hence may not satisfy the strict

criterion of naturalness.

The cosmological constant is a parameter measured very close to zero and it is a vintage

theoretical problem to explain the smallness of Λ which has eluded physicists for a long time

[4]. Several attempts have already been made to explain the vanishing cosmological constant

in the framework of string theory [5]. Recently, Witten [6] has argued that the vanishing of
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cosmological constant and the absence of massless dilaton might be explained by a duality

between supersymmetric string vacuum in three dimensions and a non-supersymmetric string

vacuum in four-dimensions. The issue has also been addressed in a more concrete model by

Becker, Becker and Strominger [7].

In this investigation, we study four-dimensional string effective action in the presence of

cosmological constant term. First, we consider an effective action which is derived by toroidal

compactification of a higher dimensional action. The massless field content of the resulting

four dimensional superstring action in the bosonic sector is: graviton, antisymmetric tensor,

dilaton, gauge fields and the moduli. In four dimensions, the antisymmetric tensor field

can be traded for a pseudoscalar axion, χ. The dilaton, axion and gauge fields transform

nontrivially under S-duality, whereas the metric and moduli remain invariant. The Einstein

equation and matter field equations are derived and it is shown that these equations are

not invariant under S-duality transformations. Next, we consider an effective action which

admits charged black hole solutions. It is well known that, near the horizon, the underlying

conformal field theory is described by tensor product of two WZW models: one corresponds

to an SL(2, R) whereas the other is identified with an SU(2) with WZW lavel constants

KSL and KSU respectively. The corresponding four dimensional string effective action is

recognized as an action obtained from the compactification of a six dimensional one with

a cosmological constant term. We present yet another way to obtain the four dimensional

black hole solution by axial gauging of the SL(2, R) WZW Lagrangian. The four dimensional

effective action is derived and explicit solutions of the background field equations are given.

Now, consider a string effective action in D spacetime dimensions with massless fields

such as graviton, ĜMN , antisymmetric tensor, B̂MN , (M,N = 0, 1, · · · , D − 1), dilaton, Φ̂

and n Abelian gauge fields, ÂI
M . If we compactify coordinates on a d = D− 4 dimensional

torus and assume that the backgrounds are independent of these d compact coordinates, the

resulting four dimensional reduced effective action takes the following form [8],
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S =
∫
d4x
√
−g e−Φ(R+ gµν∂µΦ∂νΦ +

1

8
Tr∂µM

−1∂µM

−
1

4
F iµν (M−1)i j F

j µν −
1

12
Hµνλ H

µνλ − 2Λ), (1)

where

ĜMN =

 gµν +A(1)
µαA

(1)α
ν A

(1)
µβ

A(1)
ν α Gαβ



M =


G−1 −G−1C −G−1AT

−CTG−1 G+ CTG−1C +ATA CTG−1AT +AT

−AG−1 AG−1C +A 1 +AG−1AT



Cαβ =
1

2
AI
αA

I
β +Bαβ, (2)

and Φ = Φ̂ − 1
2
ln detGαβ is shifted dilaton, with the spacetime dependent background

fields (Gαβ , A
I
α ≡ ÂI

α , Bαβ ≡ B̂αβ) defining a generic point in moduli-space in the toroidal

compactification of string theory. The moduli M is a (2d+n)×(2d+n) matrix valued scalar

field and satisfies the condition MLML = 1, where L is the O(d, d + n) metric,

L =


0 Id 0

Id 0 0

0 0 In

 , ΩTLΩ = L . (3)

Here Id is d-dimensional identity matrix and Ω is an element of the group O(d, d + n). The

field strengths appearing in (1) are

Hµνλ = ∂µBνλ −
1

2
AiLi jF

j
νλ + cyclic perm.

F iµν = ∂µA
i
ν − ∂νA

i
µ ,

where i, j are O(d, d + n) matrix indices. Aiµ ≡ (A(1)α
µ = Ĝµα , A

(2)
µα = B̂µα + B̂αβA

(1)β
µ +

1
2
ÂI
αA

(3) I
µ , A(3)I

µ = ÂI
µ−Â

I
αA

(1)α
µ ) is a (2d+n) component vector field. It is more convenient

for the implementation of S-duality transformation to rescale the σ-model metric to Einstein

metric, gµν → eΦgµν , and introduce the axion ∂σχ = (η2/6)
√
−gεµνλσHµνλ . Then (1) is

reexpressed as
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S =
∫
d4x
√
−g(R −

1

2 η2
gµν∂µΨ∂νΨ̄ +

1

8
Tr(∂µM

−1∂µM)

−
1

4
ηF iµνM

−1
i j F

j µν +
1

4
χF iµν Lij F̃

j µνλ −
2Λ

η
) (4)

where the complex scalar field

Ψ = χ+ i η , η = e−Φ ,

F̃ iµν =
1

2

√
−gεµνρσ F

i ρσ. (5)

We mention in passing that the action (1) is manifestly invariant under global O(d, d + n)

transformations:

M → ΩM ΩT , Ω ∈ O(d, d + n)

Φ→ Φ, gµν → gµν , , Bµν → Bµν , A
i
µ → Ωi

j A
j
µ (6)

The equations of motion derived from the action (4) are

5µ5µ Ψ

η2
+ i
5µΨ5µ Ψ

η3
−
i

4
FM F +

1

4
F L F̃ − i

2Λ

η2
= 0, (7)

Rµν −
5µΨ5ν Ψ̄

2 η2
+

1

8
Tr(∂µM

−1 ∂νM) −
η

2
FµλM

−1F λ
ν + gµν

(
η

8
FM−1 F −

Λ

η

)
= 0, (8)

5µ

(
η (M L)ijF

j µν − χ F̃ iµν
)

= 0, (9)

5µF̃
i µν = 0. (10)

While eqs.(7) and (8) are the dilaton and the Einstein equations of motion respectively,

eq.(9) represents gauge field equation and (10) is the Bianchi identity.

The S-duality transformations correspond to

Ψ→
aΨ + b

cΨ + d
, a d− b c = 1 , a, b, · · · ∈ Z,

F iµν → c η (M L)ij F̃
j
µν + (c χ+ d)F iµν (11)

and the metric and moduli M remain invariant.

5



Explicit calculations show that under S-duality all the terms in eqs.(7) and (8) remain

invariant, except the terms involving the cosmological constant, Λ. In this context, we

mention that it has been observed [9], in specific cases, that S-duality invariance of equations

of motion is broken in presence of Λ. However, note that O(d, d+n) invariance of the action

is unaffected.

Now let us consider an example [10] of six dimensional target space constructed by taking

a tensor product of two WZW theories with the groups SL(2, R) and SU(2) respectively.

Thus the underlying conformal field theory describing the above target space is exact. If we

compactify one coordinate, say ϕ, of SL(2, R) and another, ζ, of SU(2) on torii then the

resulting theory has a metric, with (−+ ++) Minkowski signature. A pair of gauge fields,

A(1)α
µ (α = ϕ, ζ ) appears from the metrics of the two groups and another pair of gauge

fields, A(2)
µ, α , come from the antisymmetric tensor fields. The scalar multiplet consists of a

pair from the moduli and the dilaton. The exact conformal field theory backgrounds that

satisfy equations of motion of four dimensional string effective action (4) are

ds2 = −(
r2

KSL

−M +
J2

4 r2
)dt2 + (

r2

KSL

−M +
J2

4 r2
)−1dr2 +

KSU

4
( dθ2 + sin2 θ dφ2 )

A(1)ϕ
µ = (− J2

2r2 , 0, 0, 0 ) , A(1) ζ
µ = ( 0, 0, 0, m cos θ )

A(2)
µ, ϕ = (− r2

l
, 0, 0, 0 ) , A(2)

µ, ζ = ( 0, 0, 0, ±n
4

cos θ )

Gαβ =

 r2 0

0 n
4m

 , Bαβ = 0, A(3) I
µ = 0,

Φ = − ln r + const., Hµνσ = 0 (12)

where α, β run over two compactified directions ϕ, ζ. Here Gϕϕ = r2 and Gζζ = n/4m

correspond to the moduli. However, the corresponding six dimensional string effective action

has graviton, antisymmetric tensor and dilaton only.
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We mention in passing that the compactification of the direction ζ gives rise to a U(1)

gauge field with magnetic charge m and modular invariance imposes the constraint mn =

KSU . Notice that large KSU and KSL limits corresponds to Bertotti-Robinson [11] space

time in four dimensions. This solution describes the throat limit of extremal dilaton black

holes with electric and magnetic charge investigated by Kallosh et. al. [12] and also describes

the throat limit of the Reissner-Nordstrom black hole. We recall that large KSU and KSL

can be envisaged as the classical limit since these constants play the role of 1/ h̄ in the WZW

theory. In this limit, the cosmological constant Λ→ 0.

Next, we present another way to obtain the four-dimensional black hole solutions. In

this case, instead of compactifying the coordinate ϕ of the SL(2, R) alluded to above, we

gauge the U(1) subgroup. The gauged SL(2, R) WZW action can be written in light cone

coordinates (z, z̄)

S(U,A) = S(U) +
KSL

2π

∫
d2zT r

[
U−1∂z U Az̄ + ∂z̄UU

−1Az + U−1 Az U Az̄ +AzAz̄

]
, (13)

where U(x) ∈ SL(2, R) 6` x in the manifold M . Integrating out the gauge fields in (13) by

taking care of the Jacobian in the corresponding path-integral, one gets the two dimensional

target space configuration [13]. As a result, the effective theory is a five-dimensional one with

an appropriate cosmological constant term. The corresponding four dimensional effective

action will arise from the compactification of this five-dimensional theory. In this prescription

there are only two gauge fields: one comming from the metric and the other from the

antisymmetric tensor field when ζ coordinate of SU(2) is compactified. The background

field configurations are:

ds2 = −
(
1−

M

r

)
dt2 +

(
1−

M

r

)−1 KSLdr
2

8r2
+
KSU

4

(
dθ2 + sin2 θ dφ2

)
,

A(1)ζ
µ = ( 0, 0, 0, m cos θ ) , A(2)

µ, ζ = ( 0, 0, 0, ±n
4
cos θ ) ,

A(3) I
µ = 0, Gζζ =

n

4m
, Φ = − ln r + const. , Hµνλ = 0. (14)
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This background configuration (14) describes a four dimensional magnetically charged static

black hole solution. In the asymptotic limit, i.e. r → ∞, the topology of the spacetime is

R1 ×R1 × S2.

These solutions (12) and (14) satisfy the background field equations of four dimensional

string effective action with nonvanishing cosmological constant terms given respectively by

2

KSU

−
2

KSL

and
2

KSU

−
4

KSL

,

which indeed break S-duality symmetry of the equations of motion. The scalar curvatures

corresponding to these background configurations are respectively given by

8

KSU

−
2

KSL

−
3J2

2r4
and

8

KSU

+
8M

KSL

1

r
.

In summary, we have explored the consequences of S-duality transformations on equa-

tions of motion with cosmological constant. First we studied a four dimensional action

in a general frame work. The reduced action (1) could have been obtained from toroidal

compactification of a heterotic string effective action in higher dimensions. Although these

actions do not necessarily represent supersymmetric theories, S-duality invariance would

have implied the absence of cosmological constant. Thus, we see that the cosmological con-

stant term breaks S-duality for the exact conformal field theory backgrounds and is also

responsible for nonvanishing of R for asymptotically large r.

In this optics, we propose that vanishing of Λ is closely related with the S-duality sym-

metry of string theory if we adopt the naturalness hypothesis. Λ plays a dual role. From the

macroscopic point of view, its smallness in cosmological observations is intimately related to

the fact that our Universe is big and quite flat and in that sense it tells us about the physics

at very large length scale. On the other hand, when we envisage it from a microscopic point

of view, Λ plays the role of a coupling constant in the string action and it is expected that

quantum gravity considerations will provide us with an answer to its vanishing value. In the

past, there have been several attempts [4,14] to explain the smallness of Λ. If we construct

theories which respect supersymmetry and/or supergravity, then Λ must be zero; however,
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these are not exact symmetries and thus are unable to explain why Λ is so small [4]. Among

other attempts, the recent proposal of Coleman [15] in sequel to works of Hawking [16] and

Baum [17], has been the focus of attention. However, the mechanism proposed by Coleman

to show how the cosmological constant vanishes has received some criticism [18]. It is hoped

that the string theory will be able to provide answers to deep questions in quantum gravity.

Our proposal for resolution of the cosmological constant problem is based on two impor-

tant hypothesis, i.e. S-duality is an exact symmetry of string theory and the naturalness.

We recall that the cosmological constant, although vanishingly small, does not satisfy the

naturalness criterion when treated in the framework of Einstein gravity; however, in the

setting of string theory, we find it exceedingly attractive that Λ does fulfill the criterion of

naturalness when we incorporate S-duality as a symmetry. S-duality as an exact symmetry

of string theory might have far reaching consequences than that meets the eye.
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