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ABSTRACT

The emissivity for the neutrino pair synchrotron radiation in strong magnetic

fields has been calculated both analytically and numerically for high densities

and moderate temperatures, as can be found in neutron stars. Under these

conditions, the electrons are relativistic and degenerate. We give here our

results in terms of an universal function of a single variable. For two different

regimes of the electron gas we present a simplified calculation and compare our

results to those of Kaminker et al. Agreement is found for the classical region,

where many Landau levels contribute to the emissivity , but some differences

arise in the quantum regime. One finds that the emissivity for neutrino pair

synchrotron radiation is competitive, and can be dominant, with other neutrino

processes for magnetic fields of the order B ∼ 1014 − 1015G. This indicates the

relevance of this process for some astrophysical scenarios, such as neutron stars

and supernovae.

Subject headings : Stars : Magnetic Fields—Stars: Neutron.
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1. INTRODUCTION

Estimates of the magnetic field strength at the surface of neutron stars are obtained

from several different scenarios: theoretical models of pulsar emission (Ruderman 1972), the

accretion flow in binary X-ray sources (Ghosh and Lamb 1978) and observation of features

in the spectra of pulsating X-ray sources which have been interpreted as cyclotron lines

(Trümper et al. 1978, Wheaton et al. 1979, Gruber et al. 1980, Mihara et al. 1990). For

a recent review of all these topics the interested reader is addressed to the book by Michel

(Michel 1991). In a sample of more than 300 pulsars the range of values of the surface

magnetic field strength runs into the interval: 10.36 ≤ logB (Gauss) ≤ 13.33 (Manchester

and Taylor 1981).

Very recently, several authors (Duncan and Thomson 1992, Thomson and Duncan

1993, Bisnovatyi-Kogan and Mosheenko 1992, Bisnovatyi-Kogan 1993) have proposed two

different physical mechanisms leading to an amplification of some initial magnetic field in a

collapsing star. Fields as strong as B ∼ 1014 − 1016G, or even more, might be generated in

new-born neutron stars.

According to (Bisnovatyi-Kogan and Mosheenko 1992, Bisnovatyi-Kogan 1993), a

mirror-asymmetric magnetic field distribution might arise in a rapidly and differentially

rotating proto-neutron star having, originally, both a toroidal and a poloidal component.

The field amplification due to differential rotation leads to the formation of an additional

toroidal field from the poloidal one by twisting of the field lines. After the first 20 seconds

of the life of a new-born neutron star (basically, its Kelvin-Helmholtz epoch) the induced

toroidal magnetic field could be as huge as B ∼ 1015 − 1017G.

In a second scenario (Duncan and Thomson 1992, Thomson and Duncan 1993), a

dynamo action in a differentially rotating and convective young neutron star is responsible
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for the strengthening of some initial dipole field up to values of B ∼ 1012 − 3 × 1013G if

the convective episodes arose during the main-sequence stage or to B ∼ 1014 − 1015G if the

dipole field is generated after collapse.

In presence of a strong magnetic field the so-called neutrino-pair synchrotron radiation

process becomes allowed :

[e−]
~B
→ [e−] + ν + ν̄ (1)

This reaction has been studied by a few groups (Landstreet 1967, Canuto et al.

1970, Yakovlev and Tschaepe 1981, Vidaurre 1990, Kaminker et al. 1991, Kaminker et

al. 1992, Kaminker and Yakovlev 1993) for different regimes of the electron plasma. The

calculation of the corresponding emissivity, both analytically or numerically, is far from

obvious. In fact, this calculation appears as a multiple integral and summation over the

variables and quantum numbers involving the wave functions of the initial and final electron

and the corresponding statistical weights. The wave function integrals lead to Laguerre or

Bessel functions with a complicated behaviour, so that approximations in order to simplify

the expressions are sometimes delicate. This in fact has lead to errors in the past literature.

In a recent paper, Kaminker et al. (Kaminker et al. 1991) have studied the neutrino

emissivity of the above process (1) for moderately high magnetic fields B ∼ 1012 − 1014G

and high densities, in the degenerate-relativistic regime for the electrons. They claim that,

within these conditions, the emissivity is independent of the electron density. So far, to our

knowledge, there are no numerical tests which confirm these results.

Given all these circumstances, together with the interest of the problem, both from

the theoretical and astrophysical point of view, we have considered useful to reexamine

the existing results for the above regime. Therefore, we have performed a numerical study

of this process at high densities ρYe ≥ 107g/cm3, where Ye is the electron fraction per

baryon and ρ the matter density in c.g.s. units, and moderate temperatures T < 109K, for



– 5 –

values of the magnetic field strength B ≤ 1016G. Under these conditions, the electrons are

relativistic and degenerate. We have found a result which is in agreement with the one of

Kaminker et al. when the electron gas is in the classical regime. We also obtain agreement

for the corresponding analytical expressions, which we present in a simpler way than these

authors. For the quantum regime, however, we give analytical formulae which show the

correct dependence on B for large magnetic fields, in contrast to those given by Kaminker

et al. This fact would be particularly important if some of the magnetic field amplification

mechanisms described above were physically realizable in nature.

The influence of the neutrino-pair synchrotron radiation in presence of strong magnetic

fields merits to be examined in different astrophysical scenarios, such as the delayed

mechanism of type II Supernovae, neutrino cooling of proto-neutron stars during the Kelvin

epoch or the secular cooling of the neutron star. Furthermore, the neutrinos originated

from the combined effect of one of the proposed mechanisms to enhance the magnetic field

and the neutrino-pair synchrotron radiation process could be envisaged as a signature of

the mechanism itself.

This paper is organized as follows. In section 2 we discuss the calculation of the

emissivity for the synchrotron process and present our main results. These results are

illustrated with more detail in section 3 and 4 for two different regimes of the electron gas.

We end in section 5 with some conclusions and remarks.

2. CALCULATION OF THE EMISSIVITY

The emissivity for the process (1) can be written as

εν = G2eB
3(2π)6

∑∞
n=1

∑n−1
n′=0

∫ +∞
−∞ dpz

∫
~q2≤ω2 d3q ω
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× Af(E) [1 − f(E′)] (2)

where G is the Fermi coupling constant. The initial (final) electron, of mass m, has

an energy E =
√
m2 + p2

⊥ + p2
z (E′ =

√
m2 + p′2⊥ + p′2z ) characterized by the Landau

quantum number n (n′) and momentum pz (p′z) along the B-direction. We have introduced

p2
⊥ = 2eBn and p′2⊥ = 2eBn′, which correspond to the classical transverse momenta of the

electron. In the above equation, q is the four-momentum transfer and ω = E − E′ the

energy which is carried away by the neutrino pair. f(E) is the Fermi-Dirac distribution

function : f(E) =
[
exp(E−µ

T
) + 1

]−1
, where µ is the electron chemical potential. The

integration region over ~q is restricted by :

q2 = ω2 − ~q2 ≥ 0. (3)

The expression for A in the equation of the emissivity can be found in (Vidaurre

1990, Kaminker et al. 1992). In the relativistic limit, the relevant expression for A is :

A =
(C2

V + C2
A)

EE′

{
[−2(EE′ − pzp

′
z)

2

+ (EE′ − pzp
′
z)(p

2
t − 2q2

⊥)−
q2
⊥

2
(q2
⊥ − p

2
t )

]
Ψ(u)

+ p2
t [(EE′ − pzp

′
z) −

1

2
(p2
t − q

2
⊥)
]

Φ(u)
}

(4)

where

Ψ =
n′!

n!
use−u[

u

n′
(Ls+1

n′−1)2 +
n

u
(Ls−1

n′ )2]

Φ =
n′!

n!
use−u[

n

n′
(Lsn′−1)2 + (Lsn′)

2] (5)
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Ln2
n1

are Laguerre functions with argument u =
q2
⊥

2eB
(q⊥ is the component of ~q orthogonal

to the magnetic field) and s = n− n′. CV (CA) is the effective vector (axial) coupling of the

neutrino pair to the electron current, coming from both the Fierz reordered charged current

(for electron neutrinos) and neutral current (for all neutrino species) weak interactions.

In Eq. (4) we have dropped a term proportional to (C2
V − C

2
A), which disappears in the

extreme relativistic limit, and the interference term proportional to CVCA, which does not

contribute to the integrated emissivity in Eq. (2). The argument goes as follows. The

corresponding integrand, for CVCA, is odd under the simultaneous change of sign of the

longitudinal momenta of the initial and final electrons, so that a symmetric integration of

both pz and qz in Eq.(2) cancels this asymmetric term. We have defined p2
t = p2

⊥ + p′2⊥. If

one takes for the electroweak mixing angle sin2θW = 0.23, then C2
V + C2

A = 1.6748.

One has the relationship

ω2 − q2
z = 2m2 + p2

t − 2(EE′ − pzp
′
z) ≈ p

2
t − 2(EE′ − pzp

′
z) (6)

where the latter approximation corresponds to considering relativistic electrons.

By substituting in Eq. (4) we obtain

A =
(C2

V + C2
A)

2EE′
(ω2 − q2

z − q
2
⊥)[p2

t (Ψ− Φ)− (ω2 − q2
z − q

2
⊥)Ψ] (7)

As mentioned above, for the range of temperatures and densities we are interested in,

the electrons are degenerate. The product of distribution functions appearing in (2) will

then restrict the energies to E,E′ ∼ µ. Moreover, one can write the following identity :

f(E) [1 − f(E′)] = B(ω) [f(E′)− f(E)] (8)
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where B(ω) = [exp(ω/T )− 1]−1 is a Bose-Einstein distribution function with zero chemical

potential. From the last equation, it is apparent that the energy difference ω will be

restricted to a few times T and will be much lower than the relevant values of E and

E′, if the electrons are degenerate. Similarly, one can easily estimate that qz and q⊥ will

contribute as ∼ T , whereas pt, pz and p′z contribute as ∼ µ. This allows us to neglect the

last term in Eq. (7). In this case one gets

A =
(C2

V + C2
A)

2EE′
p2
t (ω

2 − q2
z − q

2
⊥)Θ (9)

with Θ = Ψ − Φ. We have tested numerically that the complete expression Eq.(4) or

Eq.(7) gives approximately the same result as Eq.(9) for the physical conditions we are

considering here.

We can also perform the following approximations, in agreement with the above

discussion :

n + n′ =
p2
t

2eB
=

(E + E′)2 + ω2 − 2(p2
z + p′2z )

4eB
≈

(E + E′)2 − 4p2
z

4eB

ω =
2seB + p2

z − p
′2
z

E + E′
≈

2seB + 2pzqz
E + E′

(10)

Due to the Pauli principle, the quantity f(E)[1− f(E′)] will be nonzero only when E

and E′ are within a narrow interval around µ of width ω ∼ T . With this in mind, we have

replaced all the slowly varying functions in (2) by their value around E,E′ ∼ µ.

The latter equation, together with the phase space restriction (3), requires that qz and

q⊥ must lie inside the elliptical domain (Kaminker et al. 1991)

q2
⊥ +

p2
⊥

µ2
(qz − χz)

2 ≤ χ2
⊥ (11)
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where χz = seBpz
p2
⊥

and χ⊥ = seB
p⊥

.

We have numerically calculated the emissivity of the synchrotron process (1) for values

of the electron density ρYe ≥ 107g/cm3, moderate temperatures T < 109K, and magnetic

fields B ≤ 1016G. The results, for this range of values, can be expressed in a compact way

as :

εν = 1.47 1014 B2
13 T

5
9 f(x) erg/cm3/s (12)

where B13 is the magnetic field in units of 1013G, T9 is the temperature in units of 109K,

and x = µT
eB

is a dimensionless variable. This result is useful in order to perform analytical

calculations. We have plotted in Fig. 1 the function f(x). As can be seen from this figure,

f(x) first increases as x grows, and is almost constant for large values of x. This behaviour

corresponds to different physical regimes of the electron plasma, and will be explained in

the next sections.

3. Large x Regime

Let us discuss the behaviour of the emissivity corresponding to large values of the

parameter x defined above. This situation corresponds, for example, to sufficiently high

electron densities for a fixed magnetic field and temperature. The number of Landau levels

which are involved in Eq. (2) is nmax = µ2

2eB
. On the other hand, the maximum of s = n−n′

can be estimated from Eq. (10) as smax ∼
µT
eB

= x. We then have nmax >> smax >> 1

for µ
T
>> 1. According to this idea, we have used the following approximations for the

Laguerre polynomials in Eq. (5) :

Ψ → J2
s−1 + J2

s+1
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Φ → 2J2
s (13)

with Js(a) a Bessel function and a =
√

2(n + n′)u. One can prove that a ≤ s always. The

approximation shown by Eq. (13) can be used if n >> 1 and s << n. Because it is time

saving and more suitable numerically than Eq. (5), we made use of it in our numerical

computation of the emissivity, whenever large values of n (and s << n) were encountered.

By changing the sum over n and n′ to a sum over n′ and s, and integrating the angle of ~q

around the ~B direction, one arrives to the following expression :

εν = G2eB
3(2π)5 (C2

V + C2
A)
∑∞
n′=0

∑∞
s=1

∫ +∞
−∞ dpz

∫
q2≤ω2 dqzdq⊥q⊥ ω

× (1− p2
z

µ2 )(ω2 − q2
z − q

2
⊥) B(ω) [f(E′)− f(E)] Θ(a) (14)

The argument of Θ can be written as a = p⊥q⊥/(eB), with p⊥ =
√
µ2 − p2

z, and ω = seB+pzqz
µ

.

Further approximations can be made in the above equation for degenerate electrons, if one

considers the distribution functions f(E) and f(E′) as step functions in the energy. Within

this assumption, the sum over n′ can be done explicitly. One gets

∞∑
n′=0

[f(E′)− f(E)] =
ω

2eB
(E + E′) '

µω

eB
(15)

In deriving Eq.(15), we have used the fact that s is lower than nmax. By inserting the

latter expression into Eq. (14) we obtain

εν = G2µ
3(2π)5 (C2

V + C2
A)
∑∞
s=1

∫ +∞
−∞ dpz

∫
q2≤ω2 dqzdq⊥q⊥ ω

2

× (1− p2
z

µ2 )(ω2 − q2
z − q

2
⊥) B(ω)Θ(a) (16)
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Next we make use of recurrence relationships for the Bessel functions and obtain the

formula :

Θ(a) = 2(J ′s)
2 + 2(s2/a2 − 1)J2

s (17)

For the large values of s involved here, one can use the following approximation to the

Bessel functions (Gradshteyn and Ryzhik 1980):

Js(a) ≈
1

π

√
2(s− a)

3a
K1/3(z) (18)

where z = [2(s−a)]3/2

3
√
x

and K1/3 is the modified Bessel function, which can be further

approximated as :

K1/3(z) ≈
√
π

2z
exp (−z) (19)

In this way one obtains, after some algebra,

Θ(a) ≈
2

π
s−4/3(2z)1/3 exp (−2z) (20)

As can be seen from Fig. 2, the latter equation provides a reasonable approximation

to Eq.(17). In this figure, we have plotted Θ(a) as obtained from Eq.(20) (dotted line) and

from Eq.(17) (solid line) for s = 200. Another important feature is that only values of the

argument a close to s will contribute. This can be understood from Eq.(20), due to the

exponential behaviour, which effectively limits z. In fact, if we define σ as the ’width’ of

the exponential, one has (1− a/s) < (σ
s
)2/3. By substituting into Eq.(11) one obtains that

important values of qz and q⊥ are restricted to
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(1−
q⊥

χ⊥
) ≤ (

σ

s
)2/3

|qz − χz| ≤ ∆(q⊥) ≤
√

2
µχz

pz
(
σ

s
)1/3 (21)

We have defined ∆(q⊥) = µχ⊥
p⊥

√
1−

q2
⊥
χ2
⊥

. Thus qz is restricted to a narrow interval of

width ∆(q⊥) around χz. This allows us to perform the integral over qz approximately. To

the first order in ∆(q⊥) one can write

∫ χz+∆(q⊥)

χz−∆(q⊥)
dqz −→ 2∆(q⊥) (22)

with the replacement qz → χz in the integrand of Eq. (16). This means that ω2 will be

replaced by χ2
z +χ2

⊥. The integral over q⊥ is then immediate. Since the total number of level

differences s is large, one can substitute the sum over s by an integral over the continuous

variable t = s/x. Thus by changing
∑
s −→ x

∫∞
0 dt and performing the remaining integrals

one finally obtains

εν =
G2

π6
(C2

V + C2
A)ζ(5)(eB)2T 5 = 1.16 1015 B13 T

5
9 erg/cm

3/s (23)

This equation implies that the emissivity does not depend on the electron density in

this regime, in agreement with the result previously found in Ref. (Kaminker et al. 1991).

In fact, our Eq. (23) is close to the one obtained in this reference. It is also in good

agreement with the values of f(x) obtained numerically (and plotted in Fig. 1), as can be

seen by comparing Eq.(23) with Eq.(12).

A numerical fit which reproduces the behaviour of f(x) for x > 2 to better than 4% is

given by

f(x) =
−5.0224− 8.1289x + 9.2892x2

1.0293 + 2.0605x + 1.0727x2
(24)
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4. Low x Regime

We now address the question of whether an increase of the magnetic field will always

give a larger neutrino emission. In Fig. 3 we present the corresponding emissivity (in cgs

units and logarithmic scale) for a fixed temperature T9 = 1 and four values of the electron

density ρYe = 109, 1011, 1013, 1014g/cm3, as a function of B13 (B13 ranging from unity up

to 103), as obtained numerically. For these high magnetic fields, the number of populated

Landau levels (nmax, defined above) can be of order unity, and we enter into the quantum

regime. We have used, in these cases, the expression of A as given by Eqs. (4) and (5)

directly, instead of making the approximations shown in section 3.

As can be seen from Fig. 3, for a given density and temperature, the emissivity first

increases and, after reaching a maximum value, will fall to zero for large values of the

magnetic field. This can be understood since the number of possible n → n′ transitions

decreases as eB
µT
� 1. In fact, a rough analytic expression in this region can be obtained by

putting s = 1 in Eq. (14) and ω = eB
µ

. Therefore one has :

Ψ ' 1

Φ ' 0 (25)

The integrals in Eq. (14) can be done analytically and one obtains the following

expression :

εν = 6.6 1012 B2
13 T

5
9 x
−5e−1/x erg/cm3/s (26)

We have verified that the latter expression gives values which are in agreement with

our numerical results around the maximum of the emissivity. This is shown in Fig. 4,
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where we have compared our results for ρYe = 1011g/cm3 (solid line) with the prediction

of Eq. (26) (dotted line). We have also plotted (dashed line) the corresponding analytical

approximation given by (Kaminker et al. 1991) for this case. As can be seen from this

figure, Eq. (26) provides a reasonable approximation to the emissivity, which works better

than the formula of Kaminker et al.

5. Comparison with other processes

In order to investigate the relevance of the process studied here for neutron star cooling,

we have made the comparison with the emissivities corresponding to other neutrino processes

which are competitive with the synchrotron emission. We have considered pair production

e+e− −→ νν̄ ,plasmon decay Γ −→ νν̄, bremmstrahlung e−(Z,A) −→ e−(Z,A)νν̄ and

photoproduction γe− −→ e−νν̄. For these processes, we have made the assumption that

they do not vary significantly with the magnetic field. The numerical fit to these emissivities

have been taken from Munakata et al. 1985. Although these rather simple formulae are

not the most up-to-date available fits to the above processes, they serve to our purpose as

a first approximation (see, for example, Itoh et al. 1989, for a more elaborated fit). The

bremmstrahlung process is taken from Maxwell 1979. A more complete calculation, as in

Itoh et al. (Itoh et al. 1989), gives the same order of magnitude in the region where this

process dominates.

In Fig. 5 we present the result of comparing all these processes for a temperature

T = 108K as the product ρYe varies from zero up to 1012g/cm3. The bremmstrahlung

energy emission was calculated assuming that the dominant nucleus is 56Fe. The

synchrotron emissivity is plotted (solid lines) for two values of the magnetic field : B13 = 10

and B13 = 100. Other relevant processes are : bremmstrahlung (dashed-dotted line),

plasma (long dash), and photoneutrino emission (short dash). As can be seen from this
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figure, the synchrotron emission is competitive with the above processes within the range

ρYe ∼ 109− 1012. Moreover, as pointed out by Pethick and Thorsson (Pethick and Thorsson

1993), band-structure effects can suppress bremmstrahlung by a factor of 10 or more for

temperatures less than about 109K. In this case, the synchrotron emission would be the

dominant process in the above electron density range, if the magnetic field reaches values

of the order ∼ 1014G.

For higher temperatures, the synchrotron emission corresponding to a given value of

B ’switches on’ at lower electron densities, as can be inferred from Eq. (26). However,

other processes have a faster increase with temperature and, therefore, the dominance

of synchrotron emission reduces to a narrow interval of densities, although it effectively

competes for high densities. This is shown in Fig. 6, where we have made the above

comparison for a temperature T = 109K (pair emission is represented by the dotted line).

6. CONCLUSIONS

We have performed numerical calculations of the synchrotron emissivity from

relativistic degenerate electrons. This calculations allow us to present the results in terms

of an universal function f(x) which can be used in astrophysical codes. For two different

regimes of the electron gas we have derived analytical formulae, in a simpler way than

previous references. These formulae have been tested, and we have found a reasonable

agreement with our numerical calculations. We also have compared our results to the

analytical formulae derived recently by Kaminker et al. Agreement is found for the classical

region, where many Landau levels contribute to the emissivity , but some differences arise

in the quantum regime, for the values of the magnetic field recently suggested in new-born

neutron stars.

We have shown that neutrino-pair synchrotron radiation for moderately high magnetic
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fields B ≥ 1014G is an efficient cooling mechanism for temperatures not larger than 109K,

and can compete effectively (or even dominate) with other processes.

We claim that the influence of the neutrino-pair synchrotron radiation in presence of

strong magnetic fields (∼ 1015G) merits to be examined in different astrophysical scenarios,

such as the delayed mechanism of type II Supernovae, neutrino cooling of proto-neutron

stars during the Kelvin epoch or the secular cooling of the neutron star. Furthermore, these

neutrinos originated from the combined effect of the dynamo action with the neutrino-pair

synchrotron radiation process could be envisaged as a signature of this mechanism. This

will be the subject of future investigations.

Acknowledgments This work has been partially supported by the Spanish DGICYT

(grant PB91-0648) and CICYT (grant AEN 93-0234). Calculations were carried out in a

VAX 6000/410 at the Instituto de F́ısica Corpuscular and in a IBM 30-9021 VF at the
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Figure Captions

Figure 1.- The function f(x) appearing in Eq. (12). See the text for the definition of

the dimensionless variable x and comments about its behaviour.

Figure 2.- The function Θ(a) as obtained from the approximation Eq.(20) (dotted

line) compared to Eq.(17) (solid line) for s = 200.

Figure 3.- Neutrino synchrotron emissivity as a function of the magnetic field B13 for

different values of the electron density. The temperature is the same (T = 109K) in all

cases.

Figure 4.- Comparison of our numerical results for ρYe = 1011g/cm3 (solid line) with

the analytical approximation Eq. (26) (dotted line). We have also plotted (dashed line) the

approximation given by (Kaminker et al. 1991) for this case.

Figure 5.- Competition of synchrotron neutrino emission (solid lines) with other

processes, as a function of the electron density, for a temperature T = 108K. Two

different values of the magnetic field (B13 = 10 and B13 = 100 have been considered. The

bremmstrahlung emissivity (dash-dotted line) has been calculated for 56Fe. Plasma process

is represented by long-dashed line, and photoneutrino by short-dashed line.

Figure 6.- Same as figure 5 for T = 109K. Dotted line corresponds to pair emission.


