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Abstract

An often used mass formula for Nambu-Goldstone (NG) bosons in QCD,

such as the pions, involves the condensate < qq >, fπ and the quark

current masses. We show that this expression is wrong. Analysis of

the interplay between the Dyson-Schwinger equation for the constituent

quark effect and the Bethe-Salpeter equation for the NG boson results

in a new mass formula.
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The computation of the low energy properties of QCD is a difficult non-perturbative

problem in quantum field theory. However one species of hadron, the (almost) Nambu-

Goldstone (NG) bosons, such as the pions, have always played a key role. Because they

are directly associated with the dynamical breaking of chiral symmetry their properties
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are strong indicators of the nature of the underlying quark-gluon dynamics in QCD.

However the small current masses of the u and d quarks means that the pions are not

strictly massless, as for true NG bosons, but acquire small masses. They are therefore

also significant as low mass hadronic excitations.

One expects that there should be some perturbative expression for the pion mass in

terms of the quark current masses which is built upon the underlying non-perturbative

chiral-limit quark-gluon dynamics. While the relation of the low pion mass to the

breaking of chiral symmetry dates back to the current algebra era and PCAC [1], the

often used implementation in QCD has the form (see for example [2, 3]), where m is

the average current mass of the quark and antiquark, (with s = q2),

M2
π =

48m

f2
π

∫
d4q

(2π)4
σs(q

2) =
48m

f2
π

.
π2

(2π)4

∫ ∞
0

sdsσs(s) =
2mρ

f2
π

(1)

Here the integral ρ =< qq > is the so called condensate parameter,

ρ = 24

∫
d4q

(2π)4
σs(q

2), (2)

and fπ is the usual pion decay constant. In (2) σs(s) is the chiral limit (m→ 0) scalar

part of the constituent quark propagator

G(q) = (iA(s;m)q.γ+B(s;m) +m)−1 = −iq.γσv(s;m) + σs(s;m). (3)

We note that the expression for ρ in (2) is slowly convergent in QCD, because for

large s→∞ B(s) decreases like 1/sln[s/Λ2]1−λ where λ = 12/(33− 2Nf) and Λ is the

QCD scale parameter. Nevertheless some integration cutoff is usually introduced. In

NJL type models [3] this cutoff is mandatory because forms for σs are used for which

ρ is divergent. In either case the values of m and < qq > are then usually quoted as

being relative to some cutoff energy, often 1GeV . An alternative approach [4] is to use

finite energy sum rules and Laplace sum rules.

Here we present a new analysis of the chiral symmetry breaking in QCD. We extract

a new expression for the pion mass, which essentially replaces (1). Nevertheless the new

result, see equation (14) below, is very similar to (1) except that it contains a naturally

arising cutoff function c(s), and also a dynamical enhancement function εs(s) for the

quark current mass m. This means that the pion mass is dominated by IR processes,

and not UV prcesses as in (1).
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The analysis will be done in the context of the Global Colour Model (GCM) of

QCD [5, 6]. This model is basically a truncation of QCD. From the GCM various

other models and phenomenologies may be derived by further approximation. These

include NJL, CPT and various mean-field soliton models. Importantly the GCM does

not introduce any new divergences that were not already in QCD.

For the purpose of the NG mass formula we consider here only the essential equa-

tions. A more general insight may be obtained within the context of the functional

integral formulation of the GCM [6]. The first equation is the Dyson-Schwinger (DSE)

equation for the constituent quark propagator,

B(p2;m) =
16

3

∫
d4q

(2π)4
D(p− q).

B(q2;m) +m

q2A(q2;m)2 + (B(q2;m) +m)2
, (4)

[A(p2;m)− 1]p2 =
8

3

∫
d4q

(2π)4
q.pD(p− q).

A(q2;m)

q2A(q2;m)2 + (B(q2;m) +m)2
, (5)

using a Feynman-like gauge and the perturbative quark-gluon vertex function. Here

D(q) is an effective gluon propagator which may be extracted from meson data [7].

Using Fourier transforms (4) may be written in the form

D(x) =
3

16

B(x)

σs(x)
, (6)

which implies that knowledge of the quark propagator determines the effective gluon

propagator. Multiplying (6) by B(x)/D(x), and using Parseval’s identity for the RHS,

we obtain the identity ∫
d4x

B(x)2

D(x)
=

16

3

∫
d4q

(2π)4
B(q)σs(q). (7)

The second basic equation is the Bethe-Salpeter equation (BSE) for the pion mass-

shell state at the level of approximation that matches (4) and (5) in the GCM analysis[8]

Γf (p, P ) =
8

3

∫
d4q

(2π)4
D(p− q)trSF (G+T

gG−T
f)Γg(q, P ) (8)

where G± = G(±q− P
2 ). This BSE is for isovector NG bosons, and only the dominant

Γ = ΓfT f iγ5 amplitude is retained; the spin trace arises from projecting onto this

dominant amplitude. Here {T b, b = 1, .., N2
F − 1} are the generators of SU(NF ), with
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tr(T fT g = 1
2δfg). The BSE (8) is an implicit equation for the mass shell P 2 = −M2.

It has solutions only in the time-like region P 2 ≤ 0. Fundamentally this is ensured

by (4) and (5) being the specification of an absolute minima of an effective action

[6]. Nevertheless the loop momentum is kept in the space-like region q2 ≥ 0; this

mixed metric device ensures that the quark and gluon propagators remain close to

the real space-like region where they have been most thoroughly studied. Very little

is known about these propagators in the time-like region q2 < 0. The GCM gives a

detailed description of the pion properties, including its coupling to other states, in the

language of effective non-local actions [6].

The non-perturbative quark-gluon dynamics is expressed here in (4) and (5). Even

when m = 0 eqn. (4) can have non-perturbative solutions with B 6= 0. This is the

dynamical breaking of chiral symmetry. When m = 0 eqn.(8) has a solution for P 2 = 0;

the Goldstone theorem effect. For the at-rest state {P0 = 0, ~P = ~0} it is easily seen that

eqn.(8) reduces to eqn.(4) with Γf (q, 0) = B(q2). When ~P 6= ~0 then Γf (q, P ) 6= B(q),

and (8) must be solved for Γf (q, P ).

We shall now determine an accurate expression for the mass of the pion when m 6=

0. This amounts to finding an analytic solution to the BSE (8), when the constituent

quark propagators are determined by (4) and (5). The result will be accurate to order

m. For small m 6= 0 eqns.(4) and (5) have solutions of the form

B(s;m) +m = B(s) +m.εs(s) + O(m2),

A(s,m) = A(s) +m.εv(s) + O(m2)

For large space-like s we find that εs → 1, but for small s we find that εs(s) can be

significantly larger than 1 (see Fig.1). This is a dynamical enhancement of the quark

current mass by gluon dressing in the infrared region. Even in the chiral limit the quark

running mass M(s) = B(s)/A(s) is essential for understanding any non-perturbative

QCD quark effects. At s = 0.3GeV 2 we find [7] that M(s) ≈ 270MeV .

Because the pion mass Mπ is small when m is small, we can perform an expansion

of the Pµ dependence in the kernel of (8). Since the analysis is Lorentz covariant we

can, without loss of validity, choose to work in the rest frame with P = (~0, iMπ), giving,
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for equal mass quarks for simplicity,

Γ(p) =
2

9
M2
π

∫
d4q

(2π)4
D(p−q)I(s)Γ(q)+

+
16

3

∫
d4q

(2π)4
D(p− q)

1

s(A(s) + εv(s).m)2 + (B(s) +m.εs(s))2
Γ(q) + ...., (9)

where

I(s) = (σ2
v − 2(σsσ

′
s + sσvσ

′
v)− s(σsσ

′′
s − (σ′s)

2)− s2(σvσ
′′
v − (σ′v)

2). (10)

By using Fourier transforms the integral equation (9), now with explicit dependence

on Mπ, can be expressed in the form of a variational mass functional,

Mπ[Γ]2 = −
24

fπ[Γ]2

∫
d4q

(2π)4

Γ(q)2

s(A(s) + εv(s).m)2 + (B(s) +m.ε(s))2
+

9

2fπ[Γ]2

∫
d4x

Γ(x)2

D(x)
(11)

in which

fπ[Γ]2 = 6

∫
d4q

(2π)4
I(s)Γ(q)2. (12)

The functional derivative δMπ[Γ]2/δΓ(q) = 0 reproduces (9). The mass functional

(11) and its minimisation is equivalent to the pion BSE in the near chiral limit. To

find an estimate for the minimum we need only note that the change in M2
π from its

chiral limit value of zero will be of 1st order in m, while the change in the rest-frame

Γ(q) from its chiral limit value B(q2) will be of 2nd order in m.

Hence to lowest order in m we have that the pion mass is given by

M2
π =

48m

fπ[B]2

∫
d4q

(2π)4

εs(s)B(s) + sεv(s)A(s)

sA(s)2 + B(s)2

B(s)2

sA(s)2 +B(s)2

−
24

fπ[B]2

∫
d4q

(2π)4

B(s)2

sA(s)2 + B(s)2
+

9

2fπ[B]2

∫
d4x

B(x)2

D(x)
+O(m2) (13)

However the pion mass has been shown to be zero in the chiral limit. This is confirmed

as the two O(m0) terms in (13) cancel because of the identity (7). Note that it might

appear that fπ would contribute an extram dependence from its kernel in (10). However

because the numerator in (13) is already of order m, this extra contribution must be

of higher order in m.

Hence we finally arrive at the analytic expression, to O(m), for the NG boson

(mass)2 from the solution of the BSE in (8) which includes the non-perturbative gluon
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dressing to give constituent quarks

M2
π =

2mρeff
f2
π

where ρeff = 24
∫

d4q

(2π)4
[εs(s)σs(s) + sεv(s)σv(s)]c(s) (14)

defines an effective condensate parameter ρeff , which replaces the definition in (2).

The ρeff integrand involves a naturally arising function

c(s) =
B(s)2

sA(s)2 + B(s)2
,

which acts as a smooth cutoff function. It is this function which causes the pion mass

to be IR dominated. As well ρeff contains a contribution from the vector part of the

chiral-limit quark propagator.

While (14) is exact to O(m) it is instructive to not expand the quark propagator

in (11) in powers of m. Using the identity (7) in (11) we obtain

M2
π ≈

24

fπ[B]2

∫
d4q

(2π)4
B(s)(σs(s;m)− σs(s; 0)). (15)

which does not include any m dependence from the pion form factor Γ(q, P ). From

this expression we see that it is the change in the condensate, < qq >m − < qq >0,

which is induced by the current mass of the quarks, that determines the NG masses.

This change is in the infrared region.

We now give examples of the functions occuring in (14). In ref. [7] the chiral-limit

quark propagator was obtained by fitting a number of meson observables to meson

data. The forms used for the quark propagator are

σs(s) = c1exp(−d1s) + c2exp(−d2s), σv(s) =
2s− β2(1− exp(−2s/β2))

2s2
. (16)

where the form for σs is only valid in the non-asymptotic region. The parameter values

are shown in Table 1. This determines c(s) in (14). It remains to determine the

enhancement function εs(s). Here we ignore the vector enhancement function εv(s)

which appears to make only a small contribution in eqn.(14). This chiral-limit quark

propagator determines the effective gluon propagator via eqn.(6). In principal we could

imagine Fourier transforming D(x) to obtain D(q), which would then allow (4) and (5)

to be solved, and for εs(s) to be determined fromB(s;m)−B(s) for smallm. In practice

a multi-rank separable expansion of D(p−q) in the kernel of (4) is introduced [7], which

greatly facilitates the computations. The resulting εs(s) is shown in Fig.1. We note
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that its value of approximately εs(s) ≈ 4 implies that in the infrared region, appropriate

to the internal dynamics of hadrons, the quark current mass of ∼ 6MeV is enhanced by

gluon dressing to some 24MeV . Of course the major effect is the chiral-limit constituent

mass of some 270MeV . We compute using (14) that ρeff = (0.233GeV )3, and from

(12) that fπ = 93.0MeV . With m = 6.5MeV (14) gives Mπ = 138.5MeV without

cutoffs or renormalisation procedures.

RTC acknowledges useful conversations with C. J. Burden, C. D. Roberts, P. C.

Tandy and M. Thomson. C. D. Roberts [9] has independently arrived at similar results

to those reported here.

Table 1: Chiral-Limit Quark Propagator Parameters

c1 0.5200GeV−1 c2 1.1794GeV−1

d1 2.0737GeV−2 d2 4.7214GeV−2

β 0.5082GeV

Figure 1 Caption

Shows (a) the scalar enhancement function εs(s), (b) the integrand of the effective

condensate parameter ρeff (in arbitrary units), and (c) the cutoff function c(s).
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