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Abstract

We have calculated the short distance QCD coefficient η3 of the effective

|∆S|=2-hamiltonian in the next-to-leading order of renormalization group im-

proved perturbation theory. Since now all coefficients η1, η2 and η3 are known

beyond the leading log approximation, one can achieve a much higher preci-

sion in the theoretical analysis of εK , the parameter of indirect CP-violation

in K0−K0 -mixing. The measured value for εK yields a lower bound on each

of |Vcb|, |Vub/Vcb|, the top quark mass mt and the non-perturbative parameter

BK as a function of the remaining three quantities. E.g. mpole
t = 176 GeV,

|Vcb| = 0.040 and BK = 0.75 implies |Vub/Vcb| ≥ 0.0778, if the measured

value for εK is attributed solely to Standard Model physics. We further dis-

cuss the implications on the CKM phase δ, |Vtd| and the key quantity for

all CP-violating processes, Imλt = Im [V ∗tsVtd]. These quantities and the im-

proved Wolfenstein parameters ρ̄ and η̄ are tabulated and the shape of the

unitarity triangle is discussed. We compare the range for |Vtd| with the one

obtained from the analysis of B0
d−B0

d -mixing. For 0.037 ≤ |Vcb| ≤ 0.043,

0.06 ≤ |Vub/Vcb| ≤ 0.10 and 0.65 ≤ BK ≤ 0.85 we find from a combined anal-

ysis of εK and the B0
d−B0

d -mixing paramater xd: 49◦ ≤ δ ≤ 146◦, 7.4 ·10−3 ≤

|Vtd| ≤ 12.4 · 10−3, 0.85 · 10−4 ≤ Imλt ≤ 1.60 · 10−4, −0.36 ≤ ρ̄ ≤ 0.28 and

0.21 ≤ η̄ ≤ 0.44. We predict the mass difference of the B0
s system to lie in
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the range 6.5 ps−1 ≤ ∆mBs ≤ 28 ps−1. Finally we have a 1995 look at the

KL−KS -mass difference.
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I. INTRODUCTION

Since its discovery in the year 1964 [1] the study of CP-violation is of continuous interest
to both experimentalists and theoreticians. The Standard Model mechanism of CP-violation
involves only a single parameter, the phase δ in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. Hence first the investigation of CP-violating processes is a useful tool in the de-
termination of the CKM elements, some of which are poorly known at present. Second it
may be the key to find physics beyond the Standard Model, once one will not be able to fit
different observables with the single parameter δ.

Yet at present CP-violation is only precisely and unambiguously measured in |∆S|=2-
transitions. It manifests itself in the fact that the neutral Kaon mass eigenstates |KL〉 and
|KS〉 are no CP eigenstates. This indirect CP-violation is characterized by the parameter

εK =
〈(ππ)I=0|H |∆S|=1|KL〉

〈(ππ)I=0|H |∆S|=1|KS〉
. (1)

Its relation to the low-energy |∆S|=2-hamiltonian H |∆S|=2 is given (in the CKM phase
convention for |K0〉) by

εK =
eiπ/4
√

2

(
Im 〈K0|H |∆S|=2|K0〉

∆mK

+ ξ

)
. (2)

Here mK is the neutral Kaon mass, ∆mK is the KL−KS -mass difference and ξ is a small
quantity related to CP violation in the |∆S|= 1 amplitudes, it contributes roughly 3% to
|εK| (see [2] for details).

The theorist’s challenge is the proper inclusion of the strong interaction, which binds
the quarks into hadrons and screens or enhances the CP-violating weak amplitude. Here
the short distance QCD effects can be reliably calculated in renormalization group (RG) im-
proved perturbation theory. With our new calculation they are now completely known in the
next-to-leading order (NLO). Its phenomenological implications are the subject of this paper,
which is organized as follows: In the following section we present the |∆S|=2-hamiltonian in
the NLO. The further ingredients of the phenomenological analysis are discussed in sect. III.
In sect. IV we analyze which region of the Standard Model parameters is compatible with the
observed value for εK . In sect. V we first determine the CKM phase δ from εK . Then we ob-
tain |Vtd|, which is a key quantity for B0

d−B0
d -mixing, and discuss the additional constraints

obtained from the measured B0
d−B0

d -mixing mixing parameter xd. Further we determine
the improved Wolfenstein parameters ρ̄ and η̄ and further Imλt, which is proportional to
the Jarlskog measure of CP-violation and therefore enters all CP-violating quantities in the
Standard Model. Finally we discuss the short distance contributions to the KL−KS -mass
difference.

II. THE |∆S|=2-HAMILTONIAN IN THE NEXT-TO-LEADING ORDER

The low-energy hamiltonian inducing K0−K0 -mixing reads:

H |∆S|=2 =
G2
F

16π2
M2

W

[
λ2
cη1xc+λ

2
tη2S(xt)+2λcλtη3S(xc, xt)

]
b(µ)QS2(µ) + h.c. (3)
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Here GF is the Fermi constant, MW is the W boson mass and xi = m2
i /M

2
W .

λj = VjdV
∗
js (4)

comprises the CKM-factors and QS2 is the local four-quark operator

QS2 = (sjγµ(1− γ5)dj)(skγ
µ(1− γ5)dk) = (sd)V −A(sd)V −A (5)

with j and k being colour indices. The Inami-Lim functions [3]

S(xt) = xt

[
1

4
+

9

4

1

1− xt
−

3

2

1

(1− xt)2

]
−

3

2

[
xt

1− xt

]3

lnxt

S(xc, xt) = −xc lnxc + xc

[
x2
t − 8xt + 4

4(1− xt)2
lnxt +

3

4

xt

xt − 1

]
(6)

depend on the masses of the charm- and top-quark and describe the |∆S|=2-transition
amplitude in the absence of strong interaction.

The short distance QCD corrections are comprised in the coefficients η1, η2 and η3 with
a common factor b(µ) split off. They are functions of the charm and top quark masses
and of the QCD scale parameter ΛQCD. Further they depend on various renormalization
scales. This dependence, however, is artificial, as it originates from the truncation of the
perturbation series, and diminishes order-by-order in αs. The ηi’s have been calculated in
the leading-logarithmic approximation by Gilman and Wise [4] for the case of a light top
quark. The corresponding results for a heavy top quark have been derived in [5]. We briefly
recall the motivation for the calculation in the NLO:

i) To make use of the fundamental QCD scale parameter ΛMS one must calculate beyond
the leading order (LO).

ii) The quark mass dependence of the ηi’s is not accurately reproduced by the LO ex-
pressions. Especially the mt-dependent terms in η3 · S(xc, xt) belong to the NLO.

iii) The LO results for η1 and η3 show a large dependence on the renormalization scales, at
which one integrates out heavy particles. In the NLO these uncertainties are reduced.

iv) One must go to the NLO to judge whether perturbation theory works, i.e. whether
the radiative corrections are small. After all the corrections can be sizeable.

In the NLO one has to take care of the proper definition of the quark masses. It is most
useful to define the ηi’s with respect to running masses in the MS scheme normalized as
m?
i = mi(mi). I.e. we use x?i = [mi(mi)]

2 /M2
W in (3) and mark the corresponding ηi’s with

a star. The NLO calculation here requires the use of the one-loop relation between the pole
mass and the running mass:

mpole = m?

(
1 +

αs(m?)

π

4

3

)
.

The top quark running mass m?
t is smaller than mpole

t by 8 GeV.
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η?2 and η?3 depend very weakly on the charm and top quark mass and on ΛNLO
MS

, so that

they can be treated as constants. In contrast η?1 is a steep function of m?
c and ΛNLO

MS
.

Now the NLO values read:

η?1 = 1.32
+0.21

−0.23
, η?2 = 0.57

+0.00

−0.01
, η?3 = 0.47

+0.03

−0.04
, (7)

where m?
c = 1.3 GeV and ΛNLO

MS
= 0.310 GeV has been used. The quoted theoretical errors

are estimated in two ways: First the renormalization scales have been varied and second the
calculated O(αs)–corrections have been squared.

The calculation for η?1 has been performed by us [6] and η?2 has been obtained by Buras,
Jamin and Weisz [7]. The NLO value for η?3 in (7) is new. We will present details of the
calculation in [8].

For comparison we give the old leading-order central values [4]:

η?LO
1 = 0.80 , η?LO

2 = 0.62 , η?LO
3 = 0.36 . (8)

The common factor of the short distance QCD corrections split off in (3) equals

b(µ) = [αs(µ)]−2/9

(
1 +

307

162

αs(µ)

4π

)
(9)

in the NLO. Here µ is the scale at which the perturbative short distance calculation is
matched to the non-perturbative evaluation of the hadronic matrix element. The latter
must compensate the µ–dependence in (9) and is parametrized by BK as

〈K0|QS2(µ)|K0〉 =
8

3
f2
Km

2
KBK/b(µ). (10)

Here mK and fK are the mass and decay constant of the neutral Kaon.

III. MISCELLANEOUS

A. CKM Matrix and Unitarity Triangle

For all numerical analyses we will use the exact standard parametrization of the CKM
matrix [9]:

V =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (11)

where cij = cos θij and sij = sin θij.
The unitarity of V provides us with many relations among its elements. The most useful

one is

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (12)

With
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ρ+iη 1−ρ−iη

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

FIG. 1. The unitarity triangle of (13).

ρ = −Re
VudV

∗
ub

VcdV ∗cb
, η = −Im

VudV
∗
ub

VcdV ∗cb
(13)

(12) describes an unitarity triangle in the complex ρ–η–plane, whose edges are located at
the points (0, 0), (0, 1) and (ρ, η) (see fig. 1).

To illustrate the size of the contributions from the different CKM elements we will also
use the improved Wolfenstein parametrization [10], which is obtained from (11) by defining
the parameters λ,A, ρ and η by

s12 = λ = 0.22, s23 = Aλ2, s13e
−iδ = Aλ3 (ρ− iη) ,

and expanding the cosines in (11) to any desired order in λ = 0.22. The expansion to order
λ3 yields the conventional Wolfenstein parametrization [11]. Yet it is well-known that the
proper treatment of CP-violating effects requires a higher accuracy:

V =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ− iA2λ5η 1− λ2

2
Aλ2

Aλ3(1− ρ − iη) −Aλ2 − iAλ4η 1

 (14)

is exact to order λ3 and contains the phenomenologically important terms up to the order
λ5 [10]. Here ρ and η defined in (13) are expanded as

ρ = ρ

(
1−

λ2

2
+O(λ4)

)
, η = η

(
1−

λ2

2
+O(λ4)

)
.

B. CKM Elements from εK

The experimental value for |εK| [9],

|εK| = (2.266 ± 0.023) · 10−3, (15)

constrains the CKM elements with (2), (3) and (10) via

1.21 · 10−7 = BK

[
−Imλ2

c η
?
1 S(x?c)− Imλ2

t η
?
2 S(x?t )− 2 Im (λcλt) η

?
3 S(x?c, x

?
t )
]
. (16)
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Here the number on the LHS originates from

1.21 · 10−7 =
12
√

2 π2 ∆mK

G2
F F

2
K mKM2

W

(
|εK| −

ξ
√

2

)

with the numerical values for these physical quantities listed in sect. III C. Further λj has
been defined in (4) and the small term ξ in (2) has been estimated with the help of [12] to
contribute roughly −3% to εK . The uncertainty in the LHS due to experimental errors is
about 1% and therefore negligible compared to the uncertainties to be discussed in sect. III C.

The relative importance of the three terms in the square bracket in (16) can be demon-
strated with the help of the improved Wolfenstein parametrization (14) turning (16) into

5.3 · 10−4 = BKA
2η
[
(1− ρ)A2λ4η?2S(x?t ) + η?3S(x?c, x

?
t )− η

?
1x

?
c

]
(17)

after dividing both sides by 2λ6.
In (17) one sees that the top-top contribution is CKM suppressed by four powers of λ,

but this suppression is over-compensated because the top quark is so heavy:

η?2S(x?t ) ≈ 1.3 · 103 · η?3S(x?c, x
?
t ) ≈ 4 · 103 · η?1x

?
c.

Hence η?2 is the most important short distance coefficient, η?3 is second relevant and η?1
contributes least. Their contributions to the RHS of (17) are roughly 75%, 37% and −12%.
Yet if we look at the changes in the η?i ’s due to the NLO calculations (cf. (7) and (8)) one
realizes that the NLO correction to η?3 is the most important one, because it is enhanced by
30%, while η?2 has decreased by only 8%.

C. Ranges for the Input Parameters

In this section we will discuss the actual ranges of the input parameters needed for
our analysis. To determine δ from (16) one must first fix the three angles in (11) from
the magnitudes of three CKM elements. While |Vus| = 0.2205 ± 0.0018 is well-known
[9], the determination of Vcb and especially Vub from tree-level b-decays is still plagued
by sizeable experimental and theoretical uncertainties. Since these parameters are two main
contributors to our final error bars, we will now consider them in more detail:

The theoretical understanding of the determination of Vcb from exclusive and inclusive
B-decays has recently made significant progress [13]. In [13] presumably large perturbative
corrections proportional to αn+1

s βn0 have been summed to all orders in the decay rate resolving
both the previous discrepancy between the results of inclusive and exclusive analyses and the
large scheme dependence of the inclusive analysis found in [15]. With τB0

d
= (1.59± 0.07)ps

[16] the result of [13] reads

Vcb = 0.040± 0.003 (18)

coinciding with the result presented in [14]. b→ u decays are harder to treat both theoret-
ically and experimentally. We will use [9]∣∣∣∣VubVcb

∣∣∣∣ = 0.08± 0.02. (19)
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A further ingredient of our analysis is the top quark mass, which has been determined
in the CDF experiment [17] to equal

mpole
t = (176± 13) GeV.

In NLO analyses one has to take into account the proper definition of the mass: The
corresponding value for the running mass in the MS-scheme is

m?
t = mt(mt) = (168± 13) GeV. (20)

The fit of the top mass from the LEP data yields the same central value with an error bar
of roughly the double size [18]. The D0 group finds mpole

t = (199 ± 30) GeV [19]. Yet the
analysis in [20] extracting the top mass by partly fitting the cross sections finds a lower value
mpole
t = (170 ± 9) GeV from the combined analysis of CDF and D0. Therefore the range

given in (20) well represents the possible values for m?
t and will be used in the following

sections.
Next we have to discuss the non-perturbative parameter BK defined in (10): The size of

BK has been the subject of a controversal discussion during the last decade. The 1/Nc result
BK = 0.7± 0.1 [21] was in contradiction with lower values estimated with chiral symmetry
[22] or the QCD hadron duality approach [23]. Yet a recent analysis [24] has vindicated the
result of [21] and seems to have explained the difference to the estimates in [22,23]. Further
recent quenched QCD lattice calculations have yielded values around BK = 0.78 (see [25]
and references therein). The effect of dynamical fermions has been found to be small in [26].
We will therefore use the following range in our calculation:

BK = 0.75± 0.10. (21)

In fact we will see in sect. IV that the inclusion of values lower than BK = 0.65 can only very
hardly be brought into agreement with the measured value of εK . We remark that the NLO
short distance calculation also affects BK because of the factor of 1/b(µ) on the RHS of (10).
Non-perturbative calculations determine the matrix element on the LHS of (10) and usually

the quoted results for BK are obtained with the leading order factor bLO(µ) =
[
αLO(µ)

]−2/9

instead of the NLO value given in (9). Hence in a consistent NLO analysis one should correct
for this by multiplying the cited values with b(µ)/bLO(µ). Yet numerically this amounts to
a change of about 3% for µ = O (0.7 GeV) and can be neglected in view of the larger
uncertainty in (21). But once the lattice results will achieve an accuracy in the percentage
region they should be quoted with the NLO factor given in (9).

At this point it is instructive to investigate the impact of our NLO calculation for η?3:
With (16) one can easily verify that the shift from η?LO

3 = 0.36 in (8) to η?3 = 0.47 in (7)
has the same influence on |εK| as a shift from BK = 0.82 to BK = 0.75. In the same way
one can estimate the uncertainty caused by the error bar in the NLO values in (7): The
remaining uncertainties in the NLO η?i ’s correspond to a change in BK by ±0.02.

Let us now look at the other input parameters: The dominant QCD factors η?2 and η?3
depend very weakly on the QCD scale parameter ΛNLO

MS
, which therefore hardly affects our

results for εK . Yet of course the determination of the input parameters Vcb and |Vub/Vcb|
depends on ΛNLO

MS
; this uncertainty is included in the error bar in (18) and (19) [13]. Con-

versely the KL−KS -mass difference discussed in sect. VI is dominated by η?1 which is a steep
function of ΛNLO

MS
. We will consider [27]
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ΛNLO
MS

= (310± 100) MeV (22)

corresponding to

α (MZ) = 0.117 ± 0.006. (23)

The situation is the same with respect to the dependence on m?
c : The RHS of (16)

depends only weakly on m?
c. Varying [13]

m?
c = (1.29± 0.07) GeV (24)

within the quoted range affects the RHS of (16) by 3%, i.e. it is negligible compared to the
uncertainty in BK . Yet the KL−KS -mass difference depends on m?

c sizeably.
For completeness we list the remaining parameters entering the analysis of εK [9]:

GF = 1.17 · 10−5 GeV−2, FK = 161 MeV, mK = 498 MeV,

∆mK = 3.52 · 10−15 GeV, MW = 80.22 GeV, m?
b = 4.2 GeV

and the measured value for |εK| has been given in (15). The uncertainties of these quantities
are irrelevant for the analysis.

Finally we list the additional input parameters needed for the B0−B0 -mixing: The
B0
d−B0

d -mixing parameter xd = 0.78± 0.05 enters the calculation in the combination

∆mBd = xd/τBd = (0.496 ± 0.032) ps−1 , (25)

which is the world average presented in [16]. Yet the largest uncertainty is due to the
hadronic parameters FBd and BBd appearing in the form

FBd

√
BBd = (195 ± 45) MeV. (26)

This result has been obtained with lattice methods [28] and QCD sum rules [29]. The ratio
FBs/FBd has been well determined from the lattice [28]:

FBs
FBd

= 1.22± 0.04. (27)

Further we will need the meson masses mBd = 5.28 GeV and mBs = 5.38 GeV and the Bs

lifetime τBs = (1.53± 0.10) ps [16].

IV. BOUNDS ON STANDARD MODEL PARAMETERS

As explained in the previous section the final error bar of the CKM phase δ determined
from εK is due to the uncertainties in Vcb, |Vub/Vcb|, BK and m?

t . Yet it is well-known that
the unitarity of the CKM Matrix constrains the allowed range for these four quantities: If
one fixes three of them, a lower bound for the fourth one can be obtained, because otherwise
(16) yields no real solutions for cos δ. In terms of the improved Wolfenstein parameters
(14) these solutions appear as the intersection points of a hyperbola with a circle. The lower
bound solution corresponds to a set of parameters for which the hyperbola touches the circle
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in one point (see [10] for details). Prior to the discovery of the top quark this method was
used to find a lower bound on the top quark mass (see e.g. [10,30]). Now in the top era it is
more useful to determine the allowed region for the other two fundamental Standard Model
parameters in the game, Vcb and |Vub/Vcb|. This is shown in fig. 2. The ranges (18) and (19)
correspond to a rectangle in fig. 2. For each pair (m?

t , BK) the constraint from εK defines a
curve in fig. 2 such that only the region above this curve is allowed.

0.036 0.037 0.038 0.039 0.040 0.041 0.042 0.043 0.044
|Vcb|

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

|Vub/Vcb|min

BK=0.75, mt(mt)=155 GeV
BK=0.75, mt(mt)=168 GeV
BK=0.75, mt(mt)=181 GeV
BK=0.65, mt(mt)=168 GeV
BK=0.85, mt(mt)=168 GeV

FIG. 2. New physics borderlines for various values of m?
t and BK . Each pair (m?

t , BK) defines

a curve. If the Standard Model is the only source of indirect CP violation in the neutral Kaon

system, the points below the curve are excluded. The solid line in the middle corresponds to the

central values for m?
t and BK given in sect. III C. The rectangle limits the allowed range for Vcb

and |Vub/Vcb| obtained from tree-level b-decays according to (18) and (19). The point in the middle

of the rectangle corresponds to the central values in (18) and (19).

We emphasize that the central values for the input parameters given in (18) to (21) are
close to the borderline curve depicted in fig. 2. With the old LO value for η3 the central
values would even seem to contradict the measured value for εK . The minimal value for
|Vub/Vcb| equals 0.0778, if the central values in (18), (20) and (21) are chosen for the other
parameters. Conversely the minimal values for the other parameters read Vcb,min = 0.397,
m?
t,min = 164 GeV and BK,min = 0.729, if the remaining three ones equal the central values

chosen in sect. III C. Of course varying these parameters to higher values relaxes the lower
bound on the fourth one. Altogether the constraint from εK rules out almost one half of the
parameter space of sect. III C.

From these remarks it is clear that εK strongly constrains those extensions of the Stan-
dard Model, in which extra CP-violating interactions diminish |εK|, because then the Stan-
dard Model contribution |εSM

K | must be larger to accommodate for the measured value of
|εK|. The lower bound can be summarized in the following approximate formula

Vcb

0.0397

(
|Vub/Vcb|

0.080

)0.27 (
m?
t

168 GeV

)0.31 ( BK

0.75

)0.27
(

2.27 · 10−3

|εSM
K |

)0.27

≥ 1. (28)
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|Vub/Vcb|min determined from (28) concides with the exact solution to 4% accuracy in the
parameter range of sect. III C. For 0.039 ≤ Vcb ≤ 0.041 the agreement is better than 2%.

(28) displays the sensitivity of our analysis on Vcb. Although Vcb is known to a much
higher accuracy than |Vub/Vcb|, its uncertainty contributes roughly as much to the final error
as the one of |Vub/Vcb|. The situation is similar in the analysis of sect. V.

Finally we remark that in the vicinity of the lower bound values the determination of the
CKM elements is very sensitive to the input parameters. Because of the required precision
one should use the exact parametrization (11) of the CKM matrix here.

V. CKM MATRIX PHENOMENOLOGY

In this section we determine various CKM parameters using |εK| and the unitarity of
the CKM matrix and discuss the constraints following from B0−B0 -mixing.

A. The CKM phase δ

By solving eqn. (16) for cos δ we calculate the two solutions for the phase δ of the CKM
matrix. For the input parameters defined in sect. III C the resulting δ’s have been compiled
into table I, where the dependence on the key parameters m?

t , BK , Vcb and |Vub/Vcb| is made
explicit. A dash means that there exists no solution for these parameters, lines which do not
contain a solution at all have been omitted from the table. This happens for small values of
the abovementioned input parameters and served to derive the bounds on these parameters
in sect. IV.

For our central values we observe the two solutions being very close to the limits derived
in sect. IV. This leads to very asymmetric error bars. Therefore we first give the central
values and the variation of it for all relevant parameters separately.

δlow = 89◦
+13◦ +13◦ +13◦ +13◦

−28◦ −23◦ −14◦ −17◦

δhigh = 116◦
+24◦ +24◦ +12◦ +15◦

−13◦ −13◦ −13◦ −13◦
(29)

The variations in (29) are meant as follows: The first number in the lower line for δlow and
the first number in the upper line for δhigh are the two solutions obtained by pushing Vcb to
its maximal value Vcb = 0.043 while keeping the other three parameters fixed to their central
values given in sect. III C. Conversely the other three numbers in these lines represent the
variation when the same is done for |Vub/Vcb|, m?

t and BK . In contrast moving the key
parameters to lower values makes the two solutions for δ approach until they merge, when
the varied parameter reaches its “lower bound value” discussed in the preceding section. The
variations on the upper line for δlow and the lower line for δhigh correspond to these values,
which are Vcb,min = 0.0397, |Vub/Vcb|min = 0.0778, m?

t,min = 164 GeV and BK,min = 0.729.
We combine the individual variations in (29) to

δlow = 89◦
+13◦

−43◦
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δhigh = 116◦
+39◦

−13◦
(30)

The error in the lines stemming from the lower bounds is motivated by the observation
that the value δ = 103◦ for which the two solutions merge is essentially independent of
the input parameters. The error in the lines emerging from pushing the input parameters
to their maximally allowed values is obtained by adding the four individual variations of
(29) in quadrature. This seems questionable, because the theoretical errors of the input
parameters may be correlated. Hence we have also determined the error by finding simply
the maximal value for δhigh and the minimal value for δlow when all input quantities are
varied within the ranges given in sect. III C. These extremal values correspond to the
point (Vcb = 0.043, |Vub/Vcb| = 0.10,m?

t = 181 GeV, BK = 0.85), because δhigh and δlow are
monotonous functions of all four arguments. This results in an error which is only slightly
larger than the one cited in (30), −48◦ instead of −43◦ in δlow and +42◦ instead of +39◦

in δhigh. This is caused by the fact that δ varies only very slowly in the parameter region
far away from the central values. |Vtd| discussed in the following section shows the same
behaviour, which is evident from the plots in fig. 3 and fig. 4. Hence the error bars in (30)
are clearly not too small.

Let us now remark that in table I the error resulting from the variation of the other
parameters entering the calculation is not shown. It amounts to roughly 3–4 degrees.

The discussion of δ is especially instructive in conjunction with the unitarity triangle. We
will therefore return to δ in sect. V E, where we will also see that the additional incorporation
of B0

d−B0
d -mixing yields a tighter upper bound on δ than the one in (30).

Once we have in this way obtained the phase δ from the three angles s12, s23 and s13

or equivalently Vus, Vcb and |Vub/Vcb|, we are by use of (11) able to derive combinations of
CKM elements, which are of special phenomenological interest.

B. |Vtd|

|Vtd| plays an important role for the parameter xd of B0
d−B0

d -mixing. Especially once the
B0
s−B0

s -mixing mixing parameter xs is measured a theoretically clean determination of |Vtd|
from the ratio xs/xd will be possible. The comparison of the result with the determination
of |Vtd| from εK presented in the following will be a viable experimental test of the quark
mixing sector.

Table II shows the value of |Vtd| as derived from δ in table I. As usual we give both
solutions, the smaller one always corresponds to the smaller value of δ and vice versa. As in
the case of δ a dash means that there exists no solution for the specific set of parameters.
We find for the central values and the individual variations

|Vtd|
low · 103 = 9.3

+0.6 +0.6 +0.6 +0.6
−0.9 −1.3 −0.7 −0.9

|Vtd|
high · 103 = 10.6

+1.7 +1.5 +0.5 +0.6
−0.6 −0.6 −0.5 −0.5

(31)

The upper line of |Vtd|
low and the lower line of |Vtd|

high corresponds to Vcb,min, |Vub/Vcb|min,

m?
t,min and BK,min (see the values in the paragraph below (29)), the lower line of |Vtd|

low and
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the upper line of |Vtd|
high result from putting the input parameters to their highest allowed

value.
In the same way as in the case of δ in the last section, we obtained as combined errors

|Vtd|
low · 103 = 9.3

+0.6

−1.9

|Vtd|
high · 103 = 10.6

+2.4

−0.6
(32)

Again the scanning for the extremal values yields an error which is not much larger than
the addition in quadrature: −2.4 instead of −1.9 and +2.9 instead of +2.4 in (32). The
extremal values again correspond to the largest values for all input parameters. We remark
here that we have also used a third way to estimate the error of |Vtd|: We have scanned
the extremal values for |Vtd| for those parameters which lie in a 1σ ellipsoid (38) around the
central values. This has yielded the same error bar as in (32). Yet for the determination of
the quantities to be discussed in the following sections this method is most useful.

Let us discuss the dependence of |Vtd| on the most important input parameters in more
detail. In fig. 3 we plot the dependence of |Vtd| on Vcb for |Vub/Vcb| = 0.07, 0.08, 0.09, 0.10
and the other parameters being fixed at their central values. For |Vub/Vcb| = 0.06 we cannot
find a solution. The curves drawn with thick lines represent the actual solution for |Vtd|, the
thin lines display the value of |Vtd|, if the phase δ would be equal to zero.

Let us further compare this to the bound on |Vtd| which we get from B0
d−B0

d -mixing.
The experimentally measured quantities ∆mBd and xd are given by

∆mBd = xd/τBd = |Vtd|
2 |Vtb|

2 G2
F

6π2
ηQCDmBBBdF

2
Bd
M2

WS (xt) . (33)

Using m?
t = 168 GeV and ηQCD = 0.55 one obtains with the values of sect. III C

0.0069 ≤ |Vtd| ≤ 0.0124. (34)

This is represented by the shaded band in fig. 3. One immediately notices, that higher values
of |Vub/Vcb| and Vcb favor the lower branch of the solution, i.e. the smaller solution for δ.
While for the central values of our analysis B0

d−B0
d -mixing implies no additional constraint

on |Vtd|, we still get a tighter upper bound for |Vtd| compared to the range (32) implying only
|Vtd| ≤ 0.0130. From fig. 4 one can easily verify that varying m?

t does not yield a bound on
|Vtd| different from (34) for the combined analysis of εK and B0

d−B0
d -mixing. Further note

that the band derived from xd clearly shows δ being different from zero in the whole range of
values for |Vcb|. This is remarkable, because in the Standard Model the phase δ is responsible
for the CP violation and xd is a quantity having nothing to do with the breakdown of this
discrete symmetry.

Let us now explore the m?
t dependence of |Vtd|, which is plotted in fig. 4. The solid curve

is identical for (a)–(c) and corresponds to the central values of sect. III C, we additionally
varied in (a) BK = 0.65, 0.75, 0.85, in (b) Vcb = 0.038, 0.040, 0.043 and in (c) |Vub/Vcb| =
0.07, 0.08, 0.10. No solution was obtained for (b) Vcb = 0.037 and (c) |Vub/Vcb| = 0.06. The
band displayed in grey again shows the values allowed for |Vtd| from xd. Clearly, for larger
values of m?

t , Vcb and |Vub/Vcb| the constraint from xd favors the lower branch of the solution
for |Vtd|.
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Fig. 4(d) shows the variation of |Vtd| vs. m?
t with the value of the strong coupling nor-

malized at MZ , αs (MZ). One notices, that the influence of αs (MZ) far off the point, where
the two solutions merge is quite small. As one expects, the variation of the value mt at the
point, where the branches meet is quite large, it amounts to about 6 GeV. This fact was
already discussed at the end of sect. IV.

C. Prediction for xs

It is well-known (see e.g. [31]) that an analysis using both xd and the B0
s−B0

s -mixing
parameter xs allows for a much more precise determination of |Vtd| than the investigation
of xd alone. The main reason for this is the fact that the hadronic uncertainties in the ratio
xd/xs are reduced to SU(3) breaking effects and are thereby much smaller than in xd or xs
alone. Further |Vts| is known very well, because it is related to Vcb via the unitarity of the
CKM matrix. The present experimental bound on xs does not constrain the ranges (32)
and (34) for |Vtd| further. Therefore we will instead predict a range for ∆mBs and xs from
our result (32).

We will the mass difference ∆mBq = xq/τBq with q = d, s in our formulas. From (33)
and the analogous formula for xs one finds

∆mBs = ∆mBd

|Vts|2

|Vtd|2
1

R̃ds

(35)

with

R̃ds =
mBdF

2
Bd
BBd

mBsF
2
BsBBs

. (36)

R̃ds equals 1 in the SU(3) limit. The SU(3) breaking in the decay constants is encoded in
(27). Setting

R̃ds = 0.66± 0.08

one gets from (35)

∆mBs = (0.76± 0.11) ps−1 ·
|Vts|2

|Vtd|2
. (37)

Now for |Vtd| = 9.3·10−3 one finds ∆mBs = (13.4±1.9) ps−1 corresponding to xs = (20.5±3.2)
for τBs = 1.53± 0.10 [16]. Equivalently |Vtd| = 10.6 · 10−3 yields ∆mBs = (10.2± 1.5) ps−1

and xs = (15.6±2.4). These values are well above the present lower bound ∆mBs > 6.0 ps−1

from the ALEPH collaboration [32]. In order to find the range for ∆mBs consistent with εK
and xd in the parameter range of sect. III C we use two different methods: First we scan the
full range yielding

6.3 ps−1 ≤ ∆mBs ≤ 33 ps−1 ,

where the error in (37) has been included. Second we restrict the input parameters to the
1σ-ellipsoid
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(
|Vub/Vcb| − 0.08

0.02

)2

+
(
Vcb − 0.040

0.003

)2

+
(
m?
t − 168 GeV

13 GeV

)2

+
(
BK − 0.75

0.10

)2

≤ 1, (38)

which would be the natural range, if all errors were statistical. Here we find

6.8 ps−1 ≤ ∆mBs ≤ 24 ps−1

showing that only the upper bound is sensitive to the border region of the parameter space.
For our final prediction we use the arithmetic mean of both estimates:

6.5 ps−1 ≤ ∆mBs ≤ 28 ps−1 (39)

This corresponds to

9.3 ≤ xs ≤ 46. (40)

Future stronger bounds on ∆mBs may be used to rule out the higher solution for |Vtd| in a
part of the parameter space: Since to 1% accuracy |Vts| = 0.98Vcb, the relation (37) defines
a straight line in fig. 3 excluding the values for |Vtd| above this line.

D. Imλt

In the discussion of CP violation Imλt is of utmost importance. It is proportional to the
Jarlskog parameter,

2JCP = VudVus · Imλt = λ6A2η̄ +O
(
λ8
)
, (41)

and encodes the same experimental information, because the value of VudVus is precisely
known. For example ε′K/εK is proportional to Imλt. We tabulate Imλt in table III. Here
the lower solution for δ corresponds to the higher value of Imλt and vice versa. For our
standard choice of parameters from sect. III C we find

104 · Imλlow
t = 1.15

+0.07 +0.06 +0.09 +0.09
−0.20 −0.12 −0.15 −0.19

104 · Imλhigh
t = 1.28

+0.03 +0.19 +0.00 +0.00
−0.05 −0.07 −0.03 −0.03

(42)

The upper line of Imλlow
t and the lower line of Imλhigh

t corresponds to Vcb,min, |Vub/Vcb|min,
m?
t,min and BK,min (see the values in the paragraph below (29)), the lower line of Imλlow

t and

the upper line of Imλhigh
t result from putting the input parameters to their highest allowed

value. Note that Imλhigh
t is not a monotonous function of the input parameters, for our

central values of m?
t and BK we are already close to the maximum.

From the analysis of εK alone we find for a scan of the whole parameter range the result

0.71 · 10−4 ≤ Imλt ≤ 1.68 · 10−4. (43)

Next we include the constraint from xd: We now find the lower bound in the full parameter
range in (43) shifted from 0.71 to 0.81. For the parameter range (38) we find
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0.89 · 10−4 ≤ Imλt ≤ 1.51 · 10−4. (44)

We combine the two estimates to our final result

0.85 · 10−4 ≤ Imλt ≤ 1.60 · 10−4. (45)

The m?
t dependence of Imλt may be looked at in fig. 5. Plot (a) shows this dependence

for three values of |Vcb|, plot (b) uses four values for |Vub/Vcb|. Note that the result for Imλt
on the upper branch is essentially independent of Vcb, whereas the lower branch varies quite
strongly with Vcb.

E. ρ̄, η̄ and the unitarity triangle

Our knowledge about the CKM parameters related to CP violation is usually expressed
by the unitarity triangle introduced in sect. III A.

Using δ from tab. I, one obtains the allowed pairs of (ρ̄, η̄) listed in the tables IV, V.
Note that this table is constructed solely from the unitarity of the CKM matrix and the
constraint from |εK|. The additional constraint from xd can be included by recalling from
(13) that

(1− ρ̄)2 + η̄2 =
∣∣∣∣VtdVtbVcdVcb

∣∣∣∣2 . (46)

Since to 0.2% accuracy |Vcd| = Vus = 0.22 and |Vtb| = 1 the determination of |Vtd| from (33)
yields a circle in the ρ̄-η̄-plane around (1, 0) for each pair (m?

t , Vcb).
In fig. 6 we display the allowed region for the pair (ρ̄, η̄) including the constraint from xd

(33) described in sect. V B. Applying this constraint results in cutting the allowed region of
(ρ̄, η̄) on the left side of the figure. To obtain a reasonable estimate of the error present in
the analysis, we have again used two methods. The area displayed in dark grey results from
varying the input parameters BK , m?

t , Vcb, |Vub/Vcb| in the full parameter range described
in sect. III C, the area displayed in light grey is obtained by requiring the used parameters
to lie within the four dimensional 1σ-ellipsoid described in (38).

From fig. 6 we read off the following allowed regions for (ρ̄, η̄) and the angles α, β, γ in
fig. 1:

−0.37≤ ρ̄ ≤ 0.33 −0.34≤ ρ̄ ≤ 0.23
0.19≤ η̄ ≤ 0.44 0.22≤ η̄ ≤ 0.43

22.3◦≤α≤ 114.3◦ 26.2◦≤α≤ 102.1◦

9.1◦≤ β≤ 26.2◦ 14.9◦≤ β≤ 26.2◦

42.0◦≤ γ ≤ 148.2◦ 55.5◦≤ γ ≤ 143.3◦

(47)

The ranges quoted in the first column correspond to the error estimate by the box-scan, the
second column to the 1σ-ellipsoid method. Again we quote as our final range the arithmetic
mean of both estimates:

−0.36≤ ρ̄ ≤ 0.28
0.21≤ η̄ ≤ 0.44
24◦≤α≤ 108◦

12◦≤ β≤ 26◦

49◦≤ γ ≤ 146◦

(48)
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CP asymmetries in the B system are proportional to the sines of 2α, 2β or 2γ. We can only
reliably predict sin 2β:

0.41 ≤ sin 2β ≤ 0.79,

where the upper bound stems solely from |Vub/Vcb| ≤ 0.10 (see [10]).
Since to 0.1% accuracy δ = γ we can now improve the range (30) by the inclusion of the

constraint from xd:

49◦ ≤ δ ≤ 146◦.

Vcb 0.037 0.038 0.039 0.040 0.041 0.042 0.043

m∗t BK
∣∣Vub
Vcb

∣∣ δ

155 0.65 0.08 — — — — — — 86 120
155 0.65 0.09 — — — — 98 110 81 126 72 133
155 0.65 0.10 — — — 92 118 79 129 71 136 65 141
155 0.75 0.07 — — — — — — 83 119
155 0.75 0.08 — — — — 90 115 77 127 69 134
155 0.75 0.09 — — — 85 122 75 131 67 137 61 142
155 0.75 0.10 — — 83 126 74 134 67 140 61 144 56 148

155 0.85 0.06 — — — — — — 89 111
155 0.85 0.07 — — — — 93 110 77 124 68 132
155 0.85 0.08 — — — 83 121 73 130 65 137 59 141
155 0.85 0.09 — 96 111 80 126 71 134 64 140 58 144 53 148
155 0.85 0.10 92 117 79 129 70 136 64 142 58 146 53 149 49 152

168 0.65 0.07 — — — — — — 95 109
168 0.65 0.08 — — — — — 84 121 74 130
168 0.65 0.09 — — — 96 113 80 127 72 134 65 140
168 0.65 0.10 — — 91 119 79 130 71 137 65 142 59 146
168 0.75 0.07 — — — — — 82 121 72 130
168 0.75 0.08 — — — 89 116 76 128 68 135 62 140
168 0.75 0.09 — — 85 123 74 132 67 138 61 143 56 147
168 0.75 0.10 — 83 126 73 134 66 140 61 144 56 148 51 151

168 0.85 0.06 — — — — — 86 114 74 126
168 0.85 0.07 — — — 91 112 76 125 68 133 61 138
168 0.85 0.08 — — 83 122 72 131 65 137 59 142 54 146
168 0.85 0.09 97 111 80 127 71 134 64 140 58 144 53 148 49 151
168 0.85 0.10 79 129 70 136 64 142 58 146 53 150 49 153 45 155

181 0.65 0.07 — — — — — 94 111 78 125
181 0.65 0.08 — — — — 84 122 74 131 66 137
181 0.65 0.09 — — 97 112 81 127 72 135 65 140 59 144
181 0.65 0.10 — 93 118 80 130 71 137 65 142 59 146 54 150
181 0.75 0.06 — — — — — — 78 122
181 0.75 0.07 — — — — 82 121 71 130 64 136
181 0.75 0.08 — — 90 116 77 128 68 135 62 140 56 145
181 0.75 0.09 — 86 122 75 132 67 138 61 143 55 147 51 150
181 0.75 0.10 84 125 74 134 67 140 61 145 56 148 51 151 47 154
181 0.85 0.06 — — — — 86 115 73 126 65 133
181 0.85 0.07 — — 92 111 77 126 68 133 61 139 55 143
181 0.85 0.08 — 84 121 73 131 65 137 59 142 54 146 49 150
181 0.85 0.09 81 126 71 134 64 140 58 145 53 148 49 151 45 154
181 0.85 0.10 71 136 64 142 58 146 53 150 49 153 45 155 42 158

TABLE I. The two solutions for the phase δ of the CKM matrix in degrees as a function of

m?
t , BK , |Vub/Vcb| and |Vcb|. A dash means no solution. Lines with no solutions at all have been

omitted. Values for other input parameters may be calculated by linear interpolation.
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Vcb 0.037 0.038 0.039 0.040 0.041 0.042 0.043

m∗t BK
∣∣Vub
Vcb

∣∣ |Vtd| · 103

155 0.65 0.08 — — — — — — 9.8 11.5
155 0.65 0.09 — — — — 10.2 10.9 9.5 11.8 9.1 12.4
155 0.65 0.10 — — — 9.8 11.2 9.2 12.0 8.9 12.6 8.6 13.0
155 0.75 0.07 — — — — — — 9.6 11.2
155 0.75 0.08 — — — — 9.6 10.8 9.1 11.5 8.9 12.1
155 0.75 0.09 — — — 9.2 11.1 8.8 11.7 8.6 12.2 8.4 12.7
155 0.75 0.10 — — 9.0 11.3 8.6 11.9 8.3 12.4 8.1 12.8 8.0 13.2
155 0.85 0.06 — — — — — — 9.8 10.7
155 0.85 0.07 — — — — 9.6 10.4 9.1 11.2 8.9 11.7
155 0.85 0.08 — — — 9.0 10.8 8.7 11.4 8.5 11.9 8.3 12.3
155 0.85 0.09 — 9.4 10.1 8.7 11.0 8.4 11.6 8.1 12.0 8.0 12.5 7.9 12.8
155 0.85 0.10 9.0 10.3 8.5 11.1 8.2 11.7 7.9 12.1 7.7 12.6 7.6 13.0 7.5 13.4

168 0.65 0.07 — — — — — — 10.2 10.8
168 0.65 0.08 — — — — — 9.5 11.3 9.2 12.0
168 0.65 0.09 — — — 9.8 10.7 9.2 11.6 8.8 12.1 8.6 12.6
168 0.65 0.10 — — 9.5 11.0 9.0 11.7 8.6 12.3 8.4 12.8 8.2 13.2
168 0.75 0.07 — — — — — 9.3 11.0 9.0 11.6
168 0.75 0.08 — — — 9.3 10.6 8.9 11.3 8.6 11.8 8.5 12.3
168 0.75 0.09 — — 9.0 10.9 8.6 11.5 8.3 12.0 8.1 12.4 8.0 12.8
168 0.75 0.10 — 8.8 11.0 8.4 11.6 8.1 12.1 7.9 12.5 7.7 12.9 7.6 13.3
168 0.85 0.06 — — — — — 9.4 10.5 9.1 11.2
168 0.85 0.07 — — — 9.3 10.2 8.8 10.9 8.6 11.4 8.5 11.9
168 0.85 0.08 — — 8.8 10.6 8.4 11.1 8.2 11.6 8.1 12.0 8.0 12.4
168 0.85 0.09 9.2 9.8 8.5 10.7 8.1 11.3 7.9 11.7 7.8 12.2 7.7 12.6 7.6 12.9
168 0.85 0.10 8.3 10.8 8.0 11.4 7.7 11.8 7.5 12.3 7.4 12.7 7.3 13.1 7.2 13.4

181 0.65 0.07 — — — — — 9.9 10.6 9.3 11.4
181 0.65 0.08 — — — — 9.3 11.1 8.9 11.7 8.7 12.2
181 0.65 0.09 — — 9.6 10.4 9.0 11.3 8.6 11.9 8.4 12.3 8.2 12.8
181 0.65 0.10 — 9.3 10.7 8.8 11.4 8.4 12.0 8.2 12.5 8.0 12.9 7.8 13.3
181 0.75 0.06 — — — — — — 9.3 11.0
181 0.75 0.07 — — — — 9.1 10.8 8.8 11.3 8.6 11.8
181 0.75 0.08 — — 9.1 10.3 8.7 11.0 8.4 11.5 8.2 12.0 8.1 12.4
181 0.75 0.09 — 8.8 10.6 8.4 11.2 8.1 11.7 7.9 12.1 7.8 12.5 7.7 12.9
181 0.75 0.10 8.6 10.7 8.2 11.3 7.9 11.8 7.7 12.2 7.6 12.6 7.4 13.0 7.3 13.4
181 0.85 0.06 — — — — 9.2 10.3 8.9 10.9 8.7 11.4
181 0.85 0.07 — — 9.1 9.9 8.6 10.7 8.4 11.2 8.3 11.6 8.2 12.0
181 0.85 0.08 — 8.6 10.3 8.2 10.9 8.0 11.3 7.9 11.8 7.8 12.1 7.7 12.5
181 0.85 0.09 8.3 10.4 8.0 11.0 7.8 11.5 7.6 11.9 7.5 12.3 7.4 12.6 7.3 13.0
181 0.85 0.10 7.8 11.1 7.6 11.5 7.4 12.0 7.2 12.4 7.1 12.7 7.0 13.1 7.0 13.5

TABLE II. The values of |Vtd| corresponding to the two values of δ in table I.

VI. A 1995 LOOK AT THE KL−KS -MASS DIFFERENCE

In this section we will have a look at the status of the KL−KS -mass difference ∆mK .
The short distance part of ∆mK, denoted by (∆mK)SD, reads

(∆mK)SD

mK

=
G2
F

6π2
f2
KBKM

2
W (49)

·
[
(Reλc)

2 x?cη
?
1 + 2 (Reλc) (Reλt)S (x?c , x

?
t ) η

?
3 + (Reλt)

2 S (x?t ) η
?
2

]
,

where the small imaginary parts of λc and λt have been neglected. The three terms in the
brackets contribute roughly in the ratio 100:10:1, therefore the term containing η?1 is most
important, the one with η?2 is least.

Because η?1 strongly depends on its input parameters, especially on m?
c and ΛNLO

MS
, it does

not make sense to use the constant defined in (7). We therefore calculate η?1 for each set
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Vcb 0.037 0.038 0.039 0.040 0.041 0.042 0.043

m∗t BK
∣∣Vub
Vcb

∣∣ Imλt · 104

155 0.65 0.08 — — — — — — 1.47 1.28
155 0.65 0.09 — — — — 1.50 1.42 1.57 1.29 1.59 1.21
155 0.65 0.10 — — — 1.60 1.41 1.65 1.30 1.67 1.22 1.68 1.16
155 0.75 0.07 — — — — — — 1.28 1.13
155 0.75 0.08 — — — — 1.34 1.22 1.38 1.13 1.38 1.07
155 0.75 0.09 — — — 1.43 1.22 1.46 1.14 1.46 1.08 1.46 1.02
155 0.75 0.10 — — 1.51 1.23 1.53 1.15 1.54 1.09 1.54 1.04 1.53 0.99
155 0.85 0.06 — — — — — — 1.11 1.03
155 0.85 0.07 — — — — 1.17 1.10 1.20 1.02 1.20 0.96
155 0.85 0.08 — — — 1.27 1.09 1.28 1.02 1.28 0.97 1.27 0.92
155 0.85 0.09 — 1.29 1.21 1.35 1.10 1.36 1.03 1.36 0.98 1.35 0.93 1.34 0.89
155 0.85 0.10 1.37 1.22 1.41 1.12 1.43 1.05 1.43 0.99 1.43 0.95 1.42 0.90 1.40 0.86

168 0.65 0.07 — — — — — — 1.29 1.22
168 0.65 0.08 — — — — — 1.40 1.20 1.42 1.13
168 0.65 0.09 — — — 1.43 1.32 1.49 1.21 1.51 1.14 1.51 1.08
168 0.65 0.10 — — 1.52 1.33 1.57 1.22 1.59 1.15 1.59 1.09 1.59 1.04
168 0.75 0.07 — — — — — 1.22 1.06 1.23 0.99
168 0.75 0.08 — — — 1.28 1.15 1.31 1.06 1.31 1.00 1.30 0.95
168 0.75 0.09 — — 1.36 1.15 1.38 1.07 1.39 1.01 1.38 0.96 1.37 0.92
168 0.75 0.10 — 1.43 1.17 1.46 1.09 1.46 1.03 1.46 0.98 1.45 0.93 1.44 0.89
168 0.85 0.06 — — — — — 1.06 0.97 1.06 0.90
168 0.85 0.07 — — — 1.12 1.04 1.14 0.96 1.14 0.90 1.13 0.86
168 0.85 0.08 — — 1.21 1.03 1.22 0.96 1.22 0.91 1.21 0.87 1.19 0.83
168 0.85 0.09 1.22 1.15 1.28 1.04 1.29 0.98 1.29 0.92 1.28 0.88 1.27 0.84 1.25 0.80
168 0.85 0.10 1.34 1.06 1.36 0.99 1.36 0.94 1.36 0.89 1.35 0.85 1.33 0.81 1.31 0.78

181 0.65 0.07 — — — — — 1.23 1.16 1.26 1.06
181 0.65 0.08 — — — — 1.34 1.14 1.35 1.07 1.35 1.01
181 0.65 0.09 — — 1.36 1.27 1.42 1.15 1.43 1.08 1.44 1.02 1.43 0.97
181 0.65 0.10 — 1.44 1.27 1.49 1.17 1.51 1.09 1.52 1.03 1.51 0.98 1.50 0.94
181 0.75 0.06 — — — — — — 1.09 0.94
181 0.75 0.07 — — — — 1.16 1.00 1.17 0.94 1.16 0.89
181 0.75 0.08 — — 1.22 1.09 1.24 1.01 1.25 0.95 1.24 0.90 1.23 0.86
181 0.75 0.09 — 1.29 1.10 1.32 1.02 1.32 0.96 1.32 0.91 1.31 0.87 1.29 0.83
181 0.75 0.10 1.36 1.12 1.39 1.04 1.40 0.98 1.39 0.93 1.39 0.88 1.37 0.84 1.36 0.80
181 0.85 0.06 — — — — 1.01 0.92 1.01 0.85 1.00 0.81
181 0.85 0.07 — — 1.06 0.99 1.09 0.91 1.09 0.86 1.08 0.81 1.06 0.77
181 0.85 0.08 — 1.15 0.99 1.16 0.92 1.16 0.87 1.15 0.82 1.14 0.78 1.12 0.75
181 0.85 0.09 1.22 1.00 1.23 0.93 1.23 0.88 1.22 0.83 1.21 0.79 1.19 0.76 1.17 0.73
181 0.85 0.10 1.30 0.95 1.30 0.90 1.29 0.85 1.28 0.81 1.27 0.77 1.25 0.74 1.23 0.71

TABLE III. The values for Imλt corresponding to the two values of δ in table I.

of parameters in our numerical evaluation. Inserting our standard set of values defined in
sect. III C, we obtain

(∆mK)SD

(∆mK)exp

=


0.52 +0.17

−0.11
for ΛNLO

MS
= 0.210 GeV

0.67 +0.25
−0.14

for ΛNLO
MS

= 0.310 GeV

0.91 +0.39
−0.20

for ΛNLO
MS

= 0.410 GeV

(50)

The errors are estimated by a scan through the allowed parameter space and includes the
error stemming from scale variations in the η?i ’s.

The strong ΛNLO
MS

dependence of (∆mK)SD / (∆mK)exp has been visualized in fig. 7. The
central line is obtained by using the central values defined in sect. III C, the band shaded in
grey displays the error.

For large values of ΛNLO
MS

the uncertainties in η?1 due to scale variations become large
indicating the breakdown of perturbation theory. Therefore the error bar on ∆mK which is
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Vcb 0.037 0.038 0.039 0.040 0.041 0.042 0.043

m∗t BK
∣∣Vub
Vcb

∣∣ ρ̄

155 0.65 0.08 — — — — — — 0.026 -0.175
155 0.65 0.09 — — — — -0.055 -0.139 0.060 -0.232 0.120 -0.273
155 0.65 0.10 — — — -0.015 -0.208 0.081 -0.279 0.141 -0.318 0.186 -0.344
155 0.75 0.07 — — — — — — 0.035 -0.151
155 0.75 0.08 — — — — -0.002 -0.149 0.078 -0.212 0.127 -0.245
155 0.75 0.09 — — — 0.036 -0.211 0.106 -0.262 0.155 -0.292 0.192 -0.313
155 0.75 0.10 — — 0.055 -0.258 0.125 -0.306 0.176 -0.336 0.215 -0.357 0.247 -0.373
155 0.85 0.06 — — — — — — 0.006 -0.097
155 0.85 0.07 — — — — -0.014 -0.107 0.068 -0.175 0.113 -0.207
155 0.85 0.08 — — — 0.043 -0.184 0.105 -0.229 0.148 -0.257 0.180 -0.276
155 0.85 0.09 — -0.041 -0.145 0.072 -0.236 0.132 -0.276 0.175 -0.303 0.209 -0.322 0.237 -0.336
155 0.85 0.10 -0.014 -0.202 0.088 -0.279 0.151 -0.319 0.197 -0.346 0.233 -0.365 0.263 -0.379 0.288 -0.391

168 0.65 0.07 — — — — — — -0.028 -0.099
168 0.65 0.08 — — — — — 0.036 -0.184 0.098 -0.229
168 0.65 0.09 — — — -0.039 -0.155 0.067 -0.239 0.125 -0.278 0.168 -0.303
168 0.65 0.10 — — -0.011 -0.214 0.084 -0.284 0.145 -0.322 0.190 -0.347 0.226 -0.366
168 0.75 0.07 — — — — — 0.044 -0.159 0.097 -0.198
168 0.75 0.08 — — — 0.005 -0.157 0.083 -0.217 0.131 -0.249 0.167 -0.271
168 0.75 0.09 — — 0.038 -0.215 0.109 -0.265 0.158 -0.295 0.195 -0.316 0.225 -0.332
168 0.75 0.10 — 0.054 -0.260 0.126 -0.308 0.177 -0.338 0.217 -0.360 0.250 -0.375 0.277 -0.388
168 0.85 0.06 — — — — — 0.018 -0.108 0.075 -0.154
168 0.85 0.07 — — — -0.005 -0.116 0.073 -0.179 0.118 -0.211 0.150 -0.231
168 0.85 0.08 — — 0.045 -0.187 0.108 -0.232 0.151 -0.260 0.183 -0.279 0.209 -0.293
168 0.85 0.09 -0.049 -0.141 0.071 -0.237 0.132 -0.278 0.177 -0.305 0.211 -0.324 0.239 -0.338 0.262 -0.349
168 0.85 0.10 0.085 -0.279 0.149 -0.320 0.197 -0.347 0.234 -0.367 0.265 -0.381 0.290 -0.392 0.311 -0.401

181 0.65 0.07 — — — — — -0.019 -0.109 0.064 -0.177
181 0.65 0.08 — — — — 0.038 -0.187 0.100 -0.231 0.143 -0.259
181 0.65 0.09 — — -0.047 -0.150 0.065 -0.239 0.126 -0.279 0.169 -0.305 0.204 -0.323
181 0.65 0.10 — -0.021 -0.208 0.081 -0.283 0.143 -0.322 0.190 -0.348 0.227 -0.367 0.257 -0.381
181 0.75 0.06 — — — — — — 0.053 -0.139
181 0.75 0.07 — — — — 0.045 -0.161 0.099 -0.200 0.136 -0.224
181 0.75 0.08 — — 0.000 -0.155 0.082 -0.217 0.131 -0.250 0.168 -0.272 0.197 -0.288
181 0.75 0.09 — 0.031 -0.212 0.106 -0.264 0.156 -0.296 0.195 -0.317 0.225 -0.333 0.250 -0.345
181 0.75 0.10 0.043 -0.255 0.120 -0.306 0.174 -0.338 0.216 -0.360 0.249 -0.376 0.277 -0.388 0.300 -0.398
181 0.85 0.06 — — — — 0.019 -0.110 0.077 -0.156 0.112 -0.181
181 0.85 0.07 — — -0.011 -0.113 0.072 -0.180 0.118 -0.212 0.151 -0.232 0.176 -0.248
181 0.85 0.08 — 0.038 -0.184 0.105 -0.232 0.149 -0.260 0.183 -0.279 0.210 -0.294 0.231 -0.305
181 0.85 0.09 0.062 -0.233 0.128 -0.277 0.174 -0.304 0.210 -0.324 0.239 -0.338 0.262 -0.349 0.282 -0.358
181 0.85 0.10 0.142 -0.318 0.193 -0.346 0.232 -0.366 0.263 -0.381 0.289 -0.393 0.311 -0.402 0.329 -0.409

TABLE IV. The values for ρ̄ corresponding to the two values of δ in table I.

then dominated by this scale uncertainty grows very large prohibiting a precise prediction for
the mass difference. One will have to see, whether in the future ΛNLO

MS
will continue growing

in the future and thereby bringing the next-to-leading order result for η?1 into troubles.
Let us now discuss the differences between our new result and previous analyses: In

most textbooks ∆mK is termed to be dominated by poorly calculable long-distance physics.
Yet by power counting arguments, long-distance effects should be suppressed by a power
of Λ2

QCD/m
?2
c with respect to the short distance part because the coefficient of the leading

dimension six operator contributing to the η?1-part of the effective Hamiltonian in (3) is
proportional to m?2

c (see e.g. [33]).
A short look at (50) clearly exhibits a short distance dominance. Let us discuss the steps

which have guided us to this result.
Already our 1993 analysis [6], in which we have calculated the coefficient η?1 in the

next-to-leading order approximation, has resulted in a large enhancement of the theoretical
prediction for the K0−K0 -mixing. This fact is true, because
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Vcb 0.037 0.038 0.039 0.040 0.041 0.042 0.043

m∗t BK
∣∣Vub
Vcb

∣∣ η̄

155 0.65 0.08 — — — — — — 0.352 0.307
155 0.65 0.09 — — — — 0.394 0.373 0.393 0.323 0.379 0.290
155 0.65 0.10 — — — 0.441 0.390 0.434 0.342 0.419 0.307 0.400 0.278
155 0.75 0.07 — — — — — — 0.307 0.270
155 0.75 0.08 — — — — 0.353 0.320 0.345 0.283 0.330 0.255
155 0.75 0.09 — — — 0.396 0.337 0.383 0.299 0.366 0.270 0.348 0.245
155 0.75 0.10 — — 0.438 0.358 0.423 0.319 0.405 0.287 0.385 0.260 0.366 0.237
155 0.85 0.06 — — — — — — 0.265 0.247
155 0.85 0.07 — — — — 0.309 0.290 0.301 0.255 0.288 0.230
155 0.85 0.08 — — — 0.351 0.302 0.337 0.269 0.321 0.243 0.304 0.221
155 0.85 0.09 — 0.395 0.370 0.391 0.320 0.375 0.286 0.357 0.258 0.338 0.234 0.319 0.213
155 0.85 0.10 0.441 0.393 0.433 0.342 0.415 0.305 0.395 0.275 0.375 0.249 0.354 0.227 0.335 0.207

168 0.65 0.07 — — — — — — 0.308 0.293
168 0.65 0.08 — — — — — 0.351 0.301 0.339 0.269
168 0.65 0.09 — — — 0.396 0.366 0.392 0.318 0.377 0.285 0.360 0.258
168 0.65 0.10 — — 0.442 0.386 0.433 0.339 0.417 0.303 0.399 0.274 0.379 0.249
168 0.75 0.07 — — — — — 0.306 0.265 0.293 0.238
168 0.75 0.08 — — — 0.353 0.317 0.343 0.279 0.328 0.251 0.311 0.227
168 0.75 0.09 — — 0.396 0.334 0.382 0.296 0.365 0.266 0.346 0.241 0.328 0.219
168 0.75 0.10 — 0.438 0.357 0.423 0.317 0.404 0.284 0.384 0.257 0.364 0.233 0.344 0.213
168 0.85 0.06 — — — — — 0.264 0.242 0.254 0.216
168 0.85 0.07 — — — 0.309 0.287 0.300 0.252 0.286 0.227 0.270 0.205
168 0.85 0.08 — — 0.350 0.300 0.336 0.266 0.320 0.240 0.302 0.217 0.285 0.198
168 0.85 0.09 0.394 0.372 0.391 0.319 0.375 0.284 0.356 0.255 0.337 0.231 0.317 0.210 0.299 0.192
168 0.85 0.10 0.433 0.343 0.416 0.304 0.395 0.273 0.374 0.247 0.353 0.224 0.333 0.204 0.314 0.186

181 0.65 0.07 — — — — — 0.309 0.290 0.302 0.254
181 0.65 0.08 — — — — 0.351 0.300 0.339 0.267 0.323 0.241
181 0.65 0.09 — — 0.395 0.368 0.392 0.318 0.377 0.283 0.359 0.256 0.341 0.232
181 0.65 0.10 — 0.441 0.390 0.434 0.339 0.418 0.302 0.399 0.272 0.379 0.247 0.359 0.224
181 0.75 0.06 — — — — — — 0.260 0.225
181 0.75 0.07 — — — — 0.306 0.264 0.293 0.236 0.278 0.213
181 0.75 0.08 — — 0.353 0.318 0.344 0.279 0.328 0.250 0.311 0.226 0.293 0.205
181 0.75 0.09 — 0.396 0.337 0.383 0.297 0.365 0.266 0.346 0.240 0.327 0.218 0.308 0.198
181 0.75 0.10 0.439 0.361 0.425 0.318 0.406 0.285 0.385 0.256 0.364 0.232 0.344 0.211 0.324 0.193
181 0.85 0.06 — — — — 0.264 0.241 0.254 0.214 0.240 0.193
181 0.85 0.07 — — 0.309 0.288 0.301 0.252 0.286 0.226 0.270 0.204 0.254 0.185
181 0.85 0.08 — 0.351 0.302 0.337 0.267 0.320 0.240 0.302 0.216 0.284 0.197 0.267 0.179
181 0.85 0.09 0.393 0.322 0.376 0.285 0.357 0.256 0.337 0.231 0.318 0.209 0.299 0.190 0.280 0.174
181 0.85 0.10 0.418 0.307 0.397 0.274 0.376 0.247 0.354 0.223 0.334 0.203 0.314 0.185 0.294 0.169

TABLE V. The values for η̄ corresponding to the two values of δ in table I.

• the next-to-leading order correction have largely increased the value of η?1 and

• the experimental value for ΛNLO
MS

has risen in the last decade.

Both findings lead to the drastic increase of η?1 by approximately 65%, which we get by
comparing (8) and (7).

Finally, our new analysis compared to [6] for the first time uses the coefficient η?3 cal-
culated in the next-to-leading approximation. This quantity again enlarges the result for
∆mK. Because ΛNLO

MS
has grown again in the meantime thereby enlarging the theoretical

prediction once more, we are now able to reproduce the experimentally measured value to
50–100% by short distance physics.

Some authors attributed the deficit in ∆mK to new physics. The large scale uncertainties
present in the coefficient η?1 , which obscure a clean determination of the Standard Model
contribution, make the K0−K0 -mixing a poor laboratory to search for the impact of new
physics.
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FIG. 3. The dependence of |Vtd| on Vcb for BK = 0.75, m?
t = 168 GeV and four values of

|Vub/Vcb|. The thin lines correspond to δ = 0, i.e. no CP-violation. The shaded area is consistent

with xd from (34).
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FIG. 4. The dependence of |Vtd| on m?
t for three values of (a) BK , (b) Vcb, (c) |Vub/Vcb| and (d)

α(MZ). All other parameters equal their central values of sect. III C. The shaded area gives the

band (34) of |Vtd|’s allowed by the B0
d−B0

d -mixing parameter xd. For large values of the discussed

parameters xd favors the smaller branch of the solution.
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FIG. 5. The dependence of Imλt on m?
t for (a) three values of |Vcb| and (b) four values of

|Vub/Vcb|. In plot (a) one observes that the higher solution for Imλt is stable with respect to the

variation of |Vcb|, whereas the lower branch depends quite strongly on this parameter.
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FIG. 6. The allowed region for the pair (ρ̄, η̄) consistent with εK and xd. Area (1a) is obtained

from a scan over the full parameter range of sect. III C. Region (2a) corresponds to the parameters

in the 1σ ellipsoid (38). Areas (1b) and (2b) are consistent with εK , but not with xd.
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FIG. 7. The dependence of the ratio of the short distance part of the K0−K0 -mixing to the

experimentally measured value on ΛNLO ≡ ΛNLO
MS

. The curve in the middle is obtained by choosing

the central values of the parameters as given in sect. III C. All values lying in the shaded area

are compatible within the error bands quoted in this section. The increasing height of the band

displaying the error is due to the growing scale uncertainties present in the coefficient η?1.
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