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Abstract

Going beyond the theta function approximation we discuss supersymmetric

unification of gauge couplings with exact decoupling of light and heavy par-

ticles at energy scales below their masses. We find that the Minimal SUSY

model is strongly disfavored while the Missing Doublet Model survives with

GUT scale masses rising into the 1018 GeV region.
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Although there are tantalizing indications that the elementary forces become approx-

imately supersymmetric in the TeV region and grand unified at a scale above 1016 GeV,

there remain two possible problems that have recently received some attention. Problem

number one is the following. The strong coupling constant at the Z scale, α3(MZ), predicted

in supersymmetric (SUSY) grand unified theory (GUT), while agreeing with the apparent

value at the Z resonance, disagrees markedly with the value expected from low energy mea-

surements which lies 12% to 20% lower (3 to 5 σ). The difference between the apparent

value at the Z and the actual value is one of the possible indications of a light gluino [1]

and can be correlated with the excess in Z → bb [2–4]. Problem number two lies in the fact

that the scale at which the three gauge couplings appear to unify, ∼ 2 · 1016 GeV, lies about

two orders of magnitude below what would be expected in a more fundamental picture such

as string theory. It is possible that the solution to both problems lies in physics at energy

scales far above that of present accelerators. GUT scale effects are at present highly model

dependent. One approach has been to assume that, at the scale at which the U(1) and

SU(2) couplings meet, the SU(3) coupling deviates from these by a fractional amount ε as

a parametrization of gravitational or mass-splitting effects among the GUT scale particles.

In such an approach the three couplings would not be seen to meet. A five percent effect

at the GUT scale can lead to a ten percent difference in the predicted α3(MZ) [5–7]. A

suggested approach to the second problem [8–10], is to seek an intermediate scale at which

new particles lie which could redirect the gauge couplings to a unification nearer the Planck

scale.

In order to explore alternative solutions to the above problems, we have, in a recent

paper [11], proposed the following point of view. We assume that gravitational effects can be

neglected. With this assumption of negligible gravitational effects, the model dependence of

GUT scale effects lies in the unknown degeneracy splitting among GUT scale particles as well

as the possibility of higher GUT scale Higgs representations. In the minimal supersymmetric

model (MSSM), the GUT scale masses areMV for the GUT scale gauge boson supermultiplet

and MΣ and MD for the GUT scale Higgs supermultiplets. If the theory is unified far above
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these masses, it will remain unified (in the theta function approximation) down to the

maximum GUT scale mass below which calculable deviations from unification will occur

depending on the three GUT scale masses. The full range of possible GUT scale effects

in this model is then determined by running over all possible values for MV , MΣ, and MD

consistent with proton decay and other experimental constraints. In the Missing Doublet

Model (MDM) [12] which has a richer GUT scale Higgs spectrum, there are four masses

to be varied, MV , MΣ, MD, and MΦ. Above the highest GUT scale particle, the MSSM

is asymptotically free while the unified coupling constant in the MDM grows with energy.

This leads to a possible new constraint in the MDM, namely that the gauge coupling not

become grossly non-perturbative as one approaches the Planck scale. It might be considered

an appealing feature of the MDM that the coupling constant grows above the GUT scale

becoming strong near the Planck scale where unification with gravity might then be natural.

The result of this exercise [11] was that GUT scale degeneracy splitting in the MSSM does

not solve either of the two problems mentioned above. On the other hand the MDM does

lead to a value of α3(MZ) in good agreement with expectations from low energy data. This

latter result is suggested in the earlier work of [13] and is also noted in [7]. For definiteness

we adopt a low energy value for α3(MZ) spanning the range between two recent low energy

analyses [14,15]. Thus we take

α3(MZ) =


.104± .005 (heavy gluino case)

.119± .005 (light gluino case)
(1)

The lower extremes of this range correspond to the analysis of [14] while the upper extremes

correspond to that of [15]. Many other low energy analyses are consistent with these ranges

and virtually all (except for some from τ decay) lie within two σ which is sufficient for our

present considerations. Another result in the MDM was that the GUT scale, defined as the

maximum mass of GUT scale particles, can in fact increase into the 1017 GeV region [11].

In the current work we wish to explore the further refinement of smooth threshold behav-

ior at the SUSY and GUT scales. Recently these smooth threshold effects have been given
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some renewed attention [7,16]. The first of these considers smooth thresholds at the SUSY

scale only, relying on an arbitrary shift of α3 to parameterize GUT scale effects. The second

does not discuss the solution ranges for the GUT scale masses. In the region of overlap our

results are consistent with theirs and we extend their conclusions.

It is well known that the variation in a gauge coupling α(q) due to the one-loop propagator

correction from a fermion of mass mi in the Euclidean region is given [17] by

4πq
d

dq
α−1(q) = −2binf (q/mi) (2)

where

nf(q/m) = 6
∫ 1

0

dxx2(1− x)2

x(1− x) +m2/q2
= 1−

3

2
(w2 − 1)

[
1−

w2 − 1

2w
ln
(
w + 1

w − 1

)]
(3)

with

w =
√

1 + 4m2/q2. (4)

For a bosonic loop one would have

4πq
d

dq
α−1(q) = −2binb(q/mi) (5)

with

nb(q/m) = 1 + 3(w2 − 1)
[
1−

w

2
ln
(
w + 1

w − 1

)]
. (6)

nf (q/m) and nb(q/m) exhibit the decoupling behavior,

nf,b(q/m)→


1 q � m

0 q � m
(7)

So that, as an approximation, one can write for the contribution from a particle of mass m

as

nf,b(q/m) = θ(q −m) (theta function approximation). (8)

The n’s can be written analytically as perfect derivatives
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nf,b(q/m) = q
d

dq
ff,b(q/m) (9)

with

ff(q/m) =
w2

2

[
1−

w2 − 3

2w
ln
(
w + 1

w − 1

)]
(10)

fb(q/m) =
w2

2

[
−1 + w ln

(
w + 1

w − 1

)]
(11)

Thus if one integrates eq.2 from some q0 to q1 the result is

4πα−1(q0) = 4πα−1(q1)− 2b [ff (q0/m)− ff (q1/m)] (12)

with the corresponding result, changing ff for fb, in the case of a contribution from a boson.

If q0/m� 1� q1/m , this becomes

4πα−1(q0) = 4πα−1(q1)− 2b

[
− ln(q1/m) +

5

6
+

q2
0

10m2
−

5

2

m2

q2
1

+O
(
(q0/m)4, (m/q1)

4 ln(q1/m)
)]

(13)

The theta function approximation is equivalent to keeping only the first term in the square

bracket. The constant term can be taken into account in the theta function approximation

by imposing a discrete shift (matching condition) in the couplings at q = m but in practice

this shift is generally neglected. If there are particles in the vicinity of q0 or q1 the power

series in eq.13 is slowly convergent and the theta function approximation becomes poor. Of

course, the theta function approximation could be defined to be exact if the non-logarithmic

effects were properly incorporated elsewhere as in extracting couplings from data [18] but

in practice this is not done and it seems much more economical to include the threshold

mass effects into the running of the couplings. Further discussion of the theoretical basis for

smooth decoupling (”Mass Dependent Subtraction Procedure”) is given in [16]. Practically

all current grand unification studies including [19–22,11] have relied heavily on the theta

function approximation to the beta function. A notable exception has been the work of

[24] where the full nf (q/m) was used for the top quark and gaugino contributions together
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with the full nb(q/m) for the SUSY scalars. However even in this work the effect of smooth

thresholds at the GUT scale was neglected. In the current work we extend the smooth

threshold behavior to the GUT scale particles and to the low-lying quarks, leptons, and

gauge bosons. Our purpose is to investigate the differential effect on the gauge unification

solutions when one goes from theta function to smooth decoupling. The effect on the b/τ

mass ratio, which is not part of the current study, would be expected to be especially

significant since the b Yukawa which, in the theta function approximation, is rising most

rapidly in the low energy region begins to be strongly suppressed as one approaches the b

scale if one imposes a smooth decoupling. The GUT scale effects are also expected to be

large. Therefore, we do not attempt to fit the top quark mass, tanβ or the b/τ mass ratio.

In [11] we considered, in the theta function approximation, the effect of non-degeneracy

among the GUT scale particles in both the minimal supersymmetric model and the missing

doublet model. In such a treatment the GUT scale is considered to be the mass of the

heaviest of the GUT scale particles since if the couplings are unified there they remain

unified at higher energies. With smooth decoupling the couplings can be assumed to be

unified far above the GUT scale masses but will begin to diverge as one approaches the

GUT scale. We somewhat arbitrarily take unified couplings at the Planck mass assuming

that all GUT scale particles have much smaller masses and that perturbation theory is

still at least qualitatively valid there. Gravitational effects, which are beyond the scope of

the present paper, are supplementary to the effects studied here but should not void our

qualitative conclusions. In this paper we restrict our interest to gauge coupling unification.

We integrate the one-loop contributions exactly and analytically including the full threshold

behavior while treating the two loop (including Yukawa) contributions, δ2L
i , numerically

with a crude (but fully adequate) approximation to smooth decoupling ignoring the two

loop contributions of the GUT scale particles. The two loop contribution, δ2L
3 is found to be

only 5 to 7 percent of the analytic one loop contribution in the MDM and 9 to 17 percent

in the MSSM and roughly linearly related to α3(MZ) in each case. The b coefficients are as

given in [13,11] except that we separate the GUT scale Higgs supermultiplet contributions
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into separate contributions from bosons and fermions in the ratio of 1:2. Similarly the

contribution of the GUT scale gauge supermultiplet separates into bosons and fermions in

the ratio 11:(-2). The top Yukawa, αt(MP ), at the gauge unification point is taken to be

between 0.1 and 0.9. Due to the fixed point behavior large values of the top Yukawa rapidly

evolve down to values of order α3 so that the gauge couplings are relatively insensitive to

the GUT scale behavior and values of the Yukawa couplings. Then

4πα−1
i (MZ) = 4πα−1

i (MP )− 2
∑
j

bi(j) [fj(MZ ,mj)− fj(MP ,mj)] + δ2L
i . (14)

At the Planck mass, 1.22 · 1019 GeV, we take the unification condition

4πα−1
3 (MP )− 1 = 4πα−1

2 (MP )−
2

3
= 4πα−1

1 (MP ) ≡ 4πα−1
0 . (15)

We choose the Planck scale gauge coupling, α0, and the Planck scale top Yukawa, αt(MP ), at

random as we do for the various GUT scale masses, MV ,MD,MΣ,MΦ, and the SUSY scales,

m0, and m1/2. For perturbative consistency, however, we require that α0 < 1/4, αt(MP ) < 1,

and mj/MP < 1/5. The SUSY masses are chosen with 100 GeV < m0 < 1 TeV and 50

GeV < m1/2 < 330 GeV. Splitting between partners of left and right handed fermions is

neglected. The squark and slepton masses are defined in terms of m0 and m1/2 as in [16].

That is: m2
q̃ = m2

0 + 7m2
1/2 , m2

l,L = m2
0 + 0.5m2

1/2, and m2
l,R = m2

0 + 0.15m2
1/2. We discard

as non-solutions values of these parameters inconsistent with the renormalization group

running and the experimental values α−1(MZ) = 127.9 ± .2 and sin2 θW = .2320 ± .0008.

Further technical details on our “top-down” approach may be found in [11]. By such Monte

Carlo methods it is possible to completely determine the multidimensional solution space.

In [11] it was found that the MSSM, with or without GUT scale degeneracy breaking, was

inconsistent with the low energy data on α3 if proton decay constraints and a theoretically

desirable SUSY scale below 1 TeV were imposed. This was also noted in the degenerate

case by [25] and has been emphasized more recently by [4]. The lower limits on α3(MZ) in

the MSSM with theta function decoupling are consistent with those found by other authors

[26,23]. If one requires only agreement with the LEP values of α3 the inconsistency is
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not apparent. One of the conclusions of [11] was that this inconsistency disappears if the

MSSM is replaced by the missing doublet model. This result was also noted in [7]. These

considerations are independent of whether or not the gluino is light (in the GeV region) as

is still not experimentally ruled out. In table 1 we compare the smooth threshold results

for α3(MZ) and the GUT scale masses with the results of [11] where GUT scale degeneracy

was broken but sharp (theta function) decoupling was used. Slight differences between our

current requirements and those of [11] with regard to sin2 θW and the b/τ mass ratio do not

affect the clear, qualitative conclusions that can be drawn from the comparison in table 1.

The numbers in table 1 are shown in the heavy gluino scenario but are not sensitive to this

choice. For example, with smooth decoupling, if one puts m1/2 = 0 (light gluino option)

the minimum α3(MZ) drops only to 0.113 in the MDM and only to 0.169 in the MSSM.

On the other hand Ref. [7] finds some preference in the MSSM for m1/2 � m0 implying at

least a relatively light gluino. However, our results indicate that with smooth decoupling

at the GUT scale the MSSM cannot be saved by this mechanism. In the MDM we discard

solutions with α3(MZ) above 0.135 since these seem of no phenomenological interest. The

same requirement in the MSSM would eliminate all solutions leading to our conclusion that

the MSSM is no longer viable when smooth decoupling is taken into account.

To summarize the conclusions of this study we may say the following. In [11] we noted

that the MSSM with theta function threshold behavior predicted an α3(MZ) inconsistent

with extrapolations from low energy data. Our current results strongly reinforce this con-

clusion and disfavor the MSSM even if the higher LEP values of α3(MZ) are used. Because

of the very large values of α3 predicted in the MSSM with smooth thresholds, current esti-

mates of gravitational effects cannot salvage the situation without calling into question the

successful prediction of sin2 θW . For this reason it is our opinion that the MSSM is highly

unlikely to be realized in nature. The low energy measurements of α3 and sin2 θW , therefore,

strongly suggest a richer GUT scale Higgs structure such as that given in the MDM. The

phenomenological superiority with respect to grand unification of the MDM over the MSSM

was first pointed out in [11]. This model, when smooth threshold behavior is taken into
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account, also contains unification solutions with the heaviest GUT scale particles in the 1018

GeV region as suggested by string theory. If we require α3(MZ) < 0.12 we find, in fact,

that all the solutions in the MDM have MΦ > 5 · 1017 GeV. All the MDM solutions have

the leptoquark gauge boson supermultiplet in the 1016 GeV region or below suggesting that

proton decay could be dominated by the ep decay modes expected in non-supersymmetric

SU(5). If we compare the unification lower limits on α3(MZ) from table 1 with the results

from low energy analyses given in eq.1 we see that the light gluino option is somewhat fa-

vored. However, if there are 10% effects from gravity or other sources this preference might

be eliminated.
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TABLES

TABLE I. Minimum and maximum values of α3(MZ) and the GUT scale masses in the unifi-

cation solution space of the MSSM and MDM with either sharp or smooth decoupling. Underlined

values are upper or lower limits imposed for phenomenological reasons discussed in the text.

MSSM MSSM MDM MDM
sharp smooth sharp smooth

α3(MZ) (.117, .133) (.174, .24) (.095, .114) (.116, .135)

MV (GeV) (0.7, 82)1015 (1.8, 130)1015 (2.3, 21)1015 (1.0, 6.4)1015

MD (GeV) (1.0, 24)1016 (.01, 2.4)1018 (1.0, 18)1016 (1.0, 24)1016

MΣ (GeV) (0.3, 15)1016 (.01, 2.4)1018 (1.2, 6.7)1016 (.021, 2.4)1018

MΦ (GeV) - - (1.0, 7.8)1016 (0.21, 2.4)1018
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