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ABSTRACT

We investigate how the Fritzsch ansatz for the quark mass matrices can be

modified in the least possible way to accommodate the observed large top quark

mass and the measured values of the CKM elements. As one of the solutions,

we find that the {23} and the {32} elements of the up quark mass matrix are

unequal. The rest of the assumptions are same as in Fritzsch ansatz. In this

formalism we have an extra parameter i.e. the ratio of the {23} and the {32}

element, which gets fixed by the large top quark mass. The predicted values for
Vub
Vcb

, Vtd
Vts

from this new ansatz are in the correct experimental range even for

the smaller values of tanβ. In the end, we write down the SO(10) motivated

superpotential for these new mass matrices
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A simple approach for including the observed hierarchy of quark masses and mix-

ing angles was suggested by Fritzsch[1]. It prescribes a form for the mass matrices

which has certain amount of predictive power. It can predict the top mass based on

the Vcb element of the CKM matrix as input. The top mass according to this ansatz

can not be more than 90 GeV. The recent CDF data[2] however shows that the top

mass (pole mass) is above 160 GeV (mt = 176 ± 8 (stat) ± 10 (syst)GeV). So, the

simplest version is clearly excluded.

This situation improves if one realizes these mass matrices at the GUT scale[3].

The effect of the running from the weak scale upto GUT scale is utilized to incor-

porate a somewhat heavier top in the theory. But the improvement is not enough

to incorporate the recently discovered heavy top quark. If we try to use this top

mass as input in this GUT scenario, the predicted value of Vcb is far off from the

experimentally predicted range which is Vcb = 0.0400 ± 0.0025 ± 0.0020[4]. In Fig.1

we show the range of Vcb values for the range of the top mass mt from 155 to 185 GeV

, where mt stands for the running mass. The relation between the running mass and

the pole mass is given by

mt = mt (mt)
[
1 +

4

3

α3

π

]
(1)

Increasing the value of tanβ improves the situation a little better as shown in

Fig.1. However, to get the correct prediction for Vcb, one has to go beyond tanβ ≈ 65,

where the theory loses the perturbative nature [5].

In this letter we propose a modification of this Fritzsch ansatz in the least possible

sense. We make the {23} and the {32} element asymmetrical in the up quark mass

matrix. It then looks like:

Mu = PuUQu (2)

where

U =


0 au 0

au 0 bu

0 b
′

u cu


The zeros are described later in the superpotential. The expressions a, b, b

′
, c are

real numbers while P and Q are diagonal phase matrices. Among the quark phases

contained in P and Q, only two are relevant for quark mixing, we denote them by ψ

and φ .The down matrix is kept the same as in ref.[1], i.e.

Md = PdDQd (3)

where

D =


0 ad 0

ad 0 bd

0 bd cd
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We also observe the same hierarchical form as has been exercised in the Fritzsch

ansatz, i.e. c� b ∼ b
′
� a. We realize these matrices at the GUT scale.

The real matrix U is diagonalized by the bi-orthogonal transformationRuUR
′−1
u =

Udiag producing the eigenvalues {mu,−mc,mt}.Using the hierarchy of masses mu �

mc � mt we obtain

Ru =


1 su1 − χ

u
1s
u
2 su1s

u
2 + χu1

−su1 1 su2
−χu1 −su2 1



R
′

u =


1 su1 − χ

u
2s
′u
2 s1s

′u
2 + χu2

−su1 1 s
′u
2

−χu2 −s
′u
2 1


where su1 ≡ sinϕu1 =

√
mu
mc

and su2 ≡ sinϕu2 = −
√

mc
mt

and we have set cosϕui ≈ 1.

Similarly χu1 ≡
mcsu1 s

u
2

rmt
, χu2 = χu1r , s

′u
2 =

su2
r
, and r ≡ b

b
′ .

The down quark mass matrix D is diagonalized by the orthogonal transformation

RdDR
−1
d = Ddiag producing the eigenvalues {md,−ms,mb}. Using the heirarchy of

masses md� ms � mb , we obtain

Rd =


1 sd1 − χ

d
1s
d
2 sd1s

d
2 + χd1

−sd1 1 sd2
−χd1 −sd2 1


sd1 ≡ sinϕd1 =

√
md
ms

and sd2 ≡ sinϕd2 = −
√

ms
mb

and χd1 =
mssd1s

d
2

mb
. VCKM at the

unification scale in terms of the mass ratios is given by:

Ru


1

eiσ

eiτ

R−1
d (4)

We find the expressions for V 0
cb, V

0
ub, V

0
td , V

0
ts as :

∣∣∣V 0
cb

∣∣∣ =

∣∣∣∣∣
√
ms

mb

− eiφ
√
mcr

mt

∣∣∣∣∣ (5)

where φ = τ − σ,∣∣∣V 0
ub

∣∣∣ =

∣∣∣∣∣ms

mb

√
md

mb

+ eiψ
(√

ms

mb

√
mu

mc

− eiφ
(√

mur

mt

−
mc

mt

√
mu

mtr

))∣∣∣∣∣ (6)

where ψ = σ,

∣∣∣V 0
td

∣∣∣ =

∣∣∣∣∣−mc

mt

√
mu

mtr
− eiψ

√
md

ms

(√
ms

mb

− eiφ
√
mcr

mt

+
(
ms

mb

) 3
2

)∣∣∣∣∣ (7)
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∣∣∣V 0
ts

∣∣∣ =

∣∣∣∣∣
√
mcr

mt

− eiφ
√
ms

mb

∣∣∣∣∣ (8)

The zeros in the superscript indicates the GUT value. All the masses are at the GUT

scale (∼ 1016). We run them to the top scale (∼ 170GeV ), and also assume that the

MSUSY = mt.

To accomplish the running, we write down the Yukawa sector which has the generic

form

LY = q̄LHuφuuR + q̄LHdφddR + ¯̀
LH`φdeR + h.c. (9)

where Hu, Hd, H` denote the 3 × 3 Yukawa coupling matrices for the up quarks,

down quarks and charged leptons. The one loop evolution equations for the Yukawa

matrices take the form (t ≡ `n(µ/MG))[6]:

16π2dHu

dt
=

[
Tr(3HuH

†
u + 3aHdH

†
d + aH`H

†
` )

+
3

2
(bHuH

†
u + cHdH

†
d)−GU

]
Hu

16π2dHd

dt
=

[
Tr(3aHuH

†
u + 3HdH

†
d +H`H

†
` )

+
3

2
(bHdH

†
d + cHuH

†
u)−GD

]
Hd (10)

16π2dH`

dt
=

[
Tr(3aHuH

†
u + 3HdH

†
d +H`H

†
` )

+
3

2
bH`H

†
` −GE

]
H` .

For the minimal supersymmetric standard model (MSSM) under consideration the

coefficients a, b, c are given by

(a, b, c) = (0, 2, 2
3
) (11)

and the quantities GU , GD and GE are given by:

GU = 13
15
g2

1 + 3g2
2 + 16

3
g2

3

GD = 7
15
g2

1 + 3g2
2 + 16

3
g2

3

GE = 9
5
g2

1 + 3g2
2 ;

(12)

The gauge couplings gi (above) obey the standard one loop renormalization group

equations:
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8π2dg
2
i

dt
= big

4
i , i = 1, 2, 3 (13)

where

(b1, b2, b3) = (33
5
, 1,−3) forMSSM (14)

From eqn.(9), one can compute the evolution equations for the eigenvalues of the

Yukawa coupling matrices[7][8]:

16π2dfi

dt
= fi

3
∑

j=u,c,t

f2
j + 3a

∑
β=d,s,b

f2
β + a

∑
b=e,µ,τ

f2
b −GU

+
3

2
bg2
i +

3

2
c
∑

β=d,s,b

f2
β | Viβ |

2


16π2dfα

dt
= fα

3a
∑

j=u,c,t

f2
j + 3

∑
β=d,s,b

f2
β +

∑
b=e,µ,τ

f2
b −GD

+
3

2
bf2
α +

3

2
c
∑

j=u,c,t

f2
j | Vjα |

2


16π2dfa

dt
= fa

3a
∑

j=u,c,t

f2
j + 3

∑
β=d,s,b

f2
β +

∑
b=e,µ,τ

f2
b −GE

+
3

2
bf2
a

]
(15)

where i = (u, c, t), α = (d, s, b), a = (e, µ, τ).

We will also need the evolution equations for the elements of the CKM matrix[7][8]:

16π2 d

dt
| Viα |

2 = 3c

∑
j 6=i

∑
β=d,s,b

f2
i + f2

j

f2
i − f

2
j

f2
βRe

(
ViβV

∗
jβVjαV

∗
iα

)

+
∑
β 6=α

∑
j=u,c,t

f2
α + f2

β

f2
α − f

2
β

f2
jRe

(
V ∗jβVjαViβV

∗
iα

) . (16)

The above expressions would simplify considerably if we exploit the hierarchy in

the Yukawa couplings (fb � fs � fd, etc) and in the CKM matrix elements. If only

the leading terms are kept, one obtains the following approximate expressions for the

evolution of the various mass ratios and the mixing angles:

16π2 d

dt

(
mα

mb

)
= −

3

2

(
mα

mb

) (
bf2
b + cf2

t ), α = d, s

16π2 d

dt

(
mi

mt

)
= −

3

2

(
mi

mt

)
(bf2

t + cf2
b ), i = u, c
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16π2 d

dt

(
md

ms

)
= −

3

2

(
md

ms

) (
bf2
s + cf2

c + cf2
t | Vts |

2
)

16π2 d

dt

(
mu

mc

)
= −

3

2

(
mu

mc

) (
bf2
c + cf2

s + cf2
b | Vcb |

2
)

16π2 d

dt
| Viα | = −

3

2
c | Viα |

(
f2
t + f2

b

)
(iα) = (ub), (cb), (td), (ts)

16π2 d

dt
| Vus | = −

3

2
c | Vus |

(
f2
c + f2

s + f2
t

| Vtd |2 − | Vub |2

| Vus |2

)

16π2 d

dt
| Vcd | = −

3

2
c | Vcd |

(
f2
c + f2

s + f2
b

| Vub |2 − | Vtd |2

| Vcd |2

)
. (17)

One comment is necessary here:
|Vub|
|Vcb|

and |Vtd|
|Vts|

do not run in one loop.

The low energy i.e. the mt scale values of the Yukawa couplings are :

λb(mt) =

√
2mb(mb)

ηbv cosβ
, λτ (mt) =

√
2mτ (mτ)

ητv cosβ
, λt(mt) =

√
2mt(mt)

v sinβ
(18)

where ηf =mf(mf)/mf (mt) gives the running of the masses below µ = mt, obtained

from 3-loop QCD and 1 loop QED evolution, for heavy flavors f = t, b, c, τ. For light

flavors f = s, d, e, µ we stop at µ =1 GeV and define ηf =mf(1GeV )/mf (mt) . For

α3 = 0.118, ηb ' 1.5, ηc ' 2.1, ηs = ηd = ηu ' 2.4. The running mass values are

mb(mb) = 4.25 ± 0.15GeV,mτ (mτ) = 1.7777GeV,mc(mc) = 1.2GeV,ms(1GeV ) '

0.175GeV,mu(1GeV ) ' 0.006GeV,md(1GeV ) ' 0.008GeV [9].

We solve for r
(
= b

b
′

)
from V 0

cb using eqn.(5) for a range of values of ϕ as shown

in Table 1. The values of ϕ are chosen so that r is real. We use these values of r

to predict V 0
ub(eqn.(6)),V 0

td(eqn.(7)) and V 0
ts(eqn.(8)). We then calculate the values of

Vub, Vcb, Vtd and Vts at the low scale using eqn.(17). In Table 1 , we present the values

of Vub
Vcb

and Vtd
Vts

from our ansatz and compare them with the experimental values. The

dependence of any prediction on ψ is negligible, ψ is kept fixed at π/2. As shown in

the Table 1, the prediction of the model is in excellent agreement with the current

experimental ranges for an wide range of tanβ. The model will be tested further as

the experimental ranges are narrowed down in the future.

Motivated by the supersymmetric SO(10) Grand Unifying group, we can write

down the superpotential for the mass matrices

W = f
(10
′′

)
12 ψ1ψ2ϕ10

′′ + f
(10
′
)

23 ψ2ψ3ϕ10
′ + f

(120)
23 ψ2ψ3ϕ120 + f10

33ψ3ψ3ϕ10 + h.c.

(19)

Here, ϕ120 has the vev only in the up direction. The zeros are produced by the discrete

symmetry. From eqn.(19), we obtain the following form of the mass matrices.
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U =


0 10

′′
0

10
′′

0 10
′
, 120

0 10
′
, 120 10

 , D =


0 10

′′
0

10
′′

0 10
′

0 10
′

10

 (20)

Here, the entries in an element correspond to the Higgs fields contributing to that

element. Since {120} is an antisymmetric representation , the {23} and {32} elements

are asymmetric.

In conclusion we summarize that if {23} and {32} elements of the up quark sector

of the Fritzsch mass matrices are unequal, one can predict Vub
Vcb

and Vtd
Vts

in the correct

experimental range even with a heavy top in the theory. Moreover, for this ansatz,

tan β need not be very high, it can lie anywhere between 0.6 and 65. Also, it is

possible to write a superpotential for this ansatz.

This research was supported in part by the US Department of Energy, Grant Number

DE-FG02-94ER40852.
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TABLE CAPTION

Table 1

The predicted values of Vub
Vcb

Vtd
Vts

from the new ansatz are compared with

their experimental values for different values of tanβ and tanφ

FIGURE CAPTION

Figure 1

The predicted values of Vcb from Fritzsch ansatz is plotted as functions of

mt, for values of tanβ=3 and 60. The experimental range of Vcb is also

shown. To be conservative, we have taken the deviation from the central

value of Vcb to be 0.006 instead of 0.003.
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Table 1:
tan β tan φ predicted Vub

Vcb
predicted Vtd

Vts
Exptal.range of Vub

Vcb
Exptal.range of Vtd

Vts

0 0.069 0.23

3 0.18 0.082 0.23 0.03-0.137 0.11-0.36

0.23 0.084 0.22

0 0.069 0.23

20 0.18 0.080 0.22

0.24 0.084 0.22

0 0.068 0.23

40 0.18 0.078 0.23

0.24 0.082 0.22

0 0.067 0.22

60 0.18 0.072 0.22

0.26 0.075 0.22
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