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Abstract

We explore some of the constraints imposed by positivity of the QCD measure (Weingarten’s
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some higher order parameters.
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1 QCD inequalitites

The long-distance realization of QCD is presently assumed to be described by chiral perturbation
theory [1]. This idea is solidly based on the way QCD symmetries are implemented at low ener-
gies. In this letter we shall explore further quantitative first principle constraints on any-distance
realization of QCD through some basic inequalities inherent to vector-like gauge theories.

To set up our approach we first briefly review Weingarten’s original idea [2]. Let us consider
an euclidean vector current, V a

µ (x) = iψ̄(x)γµ
λa

2 ψ(x), where λa carries SU(nf) flavor indices. The
euclidean two-current correlator is

〈V aµ (x) V bν (0)〉 =
∫
dµ Tr

(
Sx,0γµ

λa

2
S0,xγν

λb

2

)
, (1)

where Sx,0 corresponds to the exact fermionic propagator and dµ stands for the gluonic mea-
sure, including the fermionic determinant, which we now assume positive and postpone its discus-

sion. Weingarten made the observation that the Cauchy-Schwarz matrix inequality,
∣∣∣Tr(UV †)

∣∣∣2 ≤
Tr(UU †)Tr(V V †), is applicable to the spinor trace. Thus, given a positive measure, the following
chain of reasoning holds :∣∣∣〈V aµ (x) V aν (0)〉

∣∣∣ ≤ ∫ dµ

∣∣∣∣Tr

(
Sx,0γµ

λa

2
S0,xγν

λa

2

)∣∣∣∣ ≤ ∫ dµ Tr

(
Sx,0γ5

λa

2
S0,xγ5

λa

2

)
, (2)

where we have used the euclidean properties γ†µ = γµ and S†x,0 = γ5S0,xγ5. Note that no summation
on a is implied and that the inequality holds no matter what space indices are taken. The last
expression is manifestly positive as it is the square of the absolute value of a complex matrix.
Noticing that this corresponds to the correlator of two pseudoscalar currents (P a(x) = iψ̄γ5

λa

2 ψ),
it follows that ∣∣∣〈V aµ (x) V aν (0)〉

∣∣∣ ≤ 〈P a(x)P a(0)〉 . (3)

Weingarten showed that this result, when combined with a narrow resonance approximation, leads
to

a(x)e−mρ|x| ≤ b(x)e−mπ|x| , (4)

where a(x) and b(x) are polynomials in x. Thus, an elegant inequality between masses follows

mρ ≥ mπ, (5)

since no power law can beat the exponential decay as |x| → ∞.
The very same inequality may be applied to QED, yielding the result that ortopositronium is

heavier than parapositronium. Furthermore, whatever quantum numbers are used at the outset,
the inequality is always bounded by the pseudoscalar correlator, if just the correaltor can be written
as a single trace of two propagators closing a fermion loop. This shows that the pion is the lowest
lying resonance of the QCD spectrum.

Let us now come back to the discussion of the assumed positivity of the measure. Formally, the
gluonic measure which includes the integration over fermionic variables is

dµ ≡
[
dAaµ(x)

]
e−

1
4

∫
FaµνF

a
µν (det(D/+m))nf , (6)
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where nf corresponds to the number of flavors. This expression needs regularization. Weingarten
[2] argued that the lattice provides a regularization which corresponds to a product of Haar positive
measures on each link. Positivity would then hold uniformly in the continuum, infinite volume and
zero quark mass limits.

Later, Vafa and Witten [3] used the fact that non-zero eigenvalues of the gauged Dirac operator
are paired via multiplication by γ5

iD/ φ = λφ −→ iD/ γ5φ = −λγ5φ . (7)

As a consequence,
det(D/ +m) =

∏
λ>0

(λ2 +m2)
∏
λ=0

m , (8)

which is formally positive definite. The need for a non-perturbative gauge-invariant parity-preserving
regularization is likely to be supplied by higher-derivative proposals as in ref. [4].

Most remarkably, no violation of any of the inequalities derived from positivity of the measure
is known. This includes a large number of different applications analyzed in the literature.

A second set of basic inequalities was put forward by Witten [5] using the property that E, the
piece of the propagator that commutes with γ5,

E ≡ S + γ5 S γ5 =
2m

−D/ 2 +m2
, S =

1

D/+m
, (9)

is a positive operator. Witten used this fact to explain the positivity of m+
π

2 −m0
π

2.
We shall try to exploit both kind of inequalities to put constraints on long-distance realizations

of QCD.

2 Weingarten’s inequalities in chiral perturbation theory

As a first exercise we consider the inequality given in Eq. (3) in the framework of SU(2) chiral
perturbation theory, with mq = mu = md. We need to recall that to lowest order

V aµ (x) = ifabcπb(x)∂µπ
c(x) + . . . , P a(x) = −iB0fππ

a(x) + . . . (10)

An immediate coordinate space computation for the euclidean vector-vector correlator gives to first
order (no sum over a)

〈V a
µ (x) V aν (0)〉 =

1

8π4

(
−4xµxν + 2δµνx

2

x6
m2
πK

2
1 +

δµν
x3
m3
πK1K0 +

xµxν
x4

m4
π

(
K2

0 −K
2
1

)
+ . . .

)
(11)

and, for the pseudoscalar-pseudoscalar one,

〈P a(x)P a(0)〉 =
1

4π2
f2
πB

2
0

mπ

x
K1 + . . . (12)

where Kn ≡ Kn(mπ|x|) are Bessel functions and the dots stand for contact terms and higher order
contributions. We are now free to check Weingarten’s inequality choosing at our best convenience
any particular direction of xµ or, if prefered, summing over µ = 1, .., 4. In all cases, we obtain

α(x)e−2mπ|x| ≤ β(x)e−mπ|x|, (13)
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where α(x) and β(x) are polynomials in x. The inequality holds at x → ∞ due to the correct
description of the pion content of each current. The exponential decay associated to the two-pion
threshold is bounded by the one-pion exchange observed in the pseudoscalar channel. It is also
arguable that the r.h.s. of the inequality is order f2

π whereas the l.h.s. is order 1, thus subleading.
The massless limit of the above analysis yields

1

4π4

1

x6
≤

1

4π2
f2
πB

2
0

1

x2
(14)

which is correctly obeyed as x → ∞ due to the faster decay of the product of two propagators as
compared to one. Nevertheless, neither the massive nor the massless inequalities are valid for any
x. Both are violated at a distance of the order of the inverse of the pion mass, which is a hint at
the need of higher order corrections when x is decreased.

A word is needed about subtractions. The process of renormalization can be synthesized saying
that bare amplitudes are transformed into distributions by correcting just its singular points. In our
case, the pseudoscalar channel produces right away a bona fide distribution whereas the vector one
does not. The product of two propagators is not a distribution, due to the x = 0 singularity. Any
regularization takes care of this problem by adding the subtraction of a contact term. Subtractions
are thus of the form, e.g. in dimensional regularization,

1

ε
2δ4(x) ,

m2
π

ε
δ4(x) , ... (15)

Therefore, our discussion on the long-distance exponential decay of two-point correlators is clean
and free of subtraction ambiguities. We are discussing the physics of the non-local part of the
amplitude which remains unchanged along the renormalization process at this order.

For the sake of completeness, let us note that the analog of a standard momentum space
renormalized amplitude§

λ+ λ2 log
p2

ν2
+ . . . (16)

takes the following shape in coordinate space [6]

λδ4(x) + λ2
2

log x2ν2

x2
+ . . . (17)

Changes of renormalization scheme, ν → ν′, are absorbed by redefinition of the coupling constant.
A massless amplitude issuing from a non-renormalizable perturbation theory will read an expression
of the kind

δ4(x) +
1

f2
π

2δ4(x) + 2
logx2ν2

x2
+

1

f2
π

22
logx2ν2

x2
+ . . . (18)

Only away from contact, boxes are allowed to act on the logs and the expansion parameter takes the
form of 1

x2f2
π

. In chiral perturbation theory, contact terms associated with L’s do appear. Again,

those are cleanly decoupled of our discussion above.
We now return to our exploitation of Weingarten’s inequalities. As seen in our first example,

the long-distance two-pion decay gives the clue to understand the fulfillment of the V V < PP

§Note that log p2 is to be understood as p2 log p2

p2 in the sense of distributions, the first p2 acting by parts when

necessary.
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inequality. It is clear that a more constraining result can only emerge from an inequality involving
two channels which are mediated by only one pion. This is the case of∣∣∣〈Aaµ(x)Aaν(x)〉

∣∣∣ ≤ 〈P a(x)P a(0)〉 , (19)

(a narrow resonance approximation would tell us that the A1 meson is heavier than the pion). In
chiral perturbation theory we obtain (Aaµ(x) = fπ∂µπ

a(x))∣∣∣∣f2
π∂µ∂ν

(
mπ

x
K1(mπx)

)∣∣∣∣ ≤ f2
πB

2
0

mπ

x
K1(mπx) . (20)

Taking µ = ν = 1 and x2 = x3 = x4 = 0, x1 = y, we observe that both channels decay at the same
exponential and leading power rate, differing only in the way dimensions are given. The constraint
we obtain is, thus, an inequality between

m2
π ≤ B

2
0 . (21)

Before entering the phylosophical discussion of the result, let us note that the inequality (20) is
again violated when y approaches 1/mπ, a consistent sign of the need for higher order corrections
at shorter distances. The massless limit is also verified since the axial channel is then reduced to
a contact term. At variance with the V V < PP case, both sides of the inequality are of the same
order in fπ.

How should Eq. (21), and alike, be interpreted?
If the chiral expansion reproduces, order by order, a good approximation to the QCD correlators

at large distances, the inequalities become constraints among the parameters in the effective theory,
which, in principle, are calculable in QCD (e.g. on the lattice). Observables such as m2

π are
expressed as functions of these parameters. In general, the inequalities we found are not among
observables ¶.

In Eq. (21), m2
π is not a parameter of the chiral lagrangian. If one asumes that the order

parameter B0 gives the main contribution to m2
π = 2mqB0 + O(m2

q), it sets mq = O(m2
π), hence

second order in chiral power counting. Therefore, Eq. (21) reads

2mq ≤ B0 . (22)

This is a constraint of QCD on the relative strength of the explicit breaking of chiral symmetry,
driven by the quark mass mq, versus the spontaneous breaking. It is no longer an assumption as it
is imposed by the vector-like structure of the theory.

Other scenarios are possible in which a different chiral-counting for mq is required. In the
framework of Generalized Chiral Perturbation Theory[7][8] one could have assumed that the main
contribution to m2

π comes from terms up to quadratic order in mq. In the limit of isospin symmetry

m2
π = 2mqB0 + 4m2

q(A0 + 2Zs0) + O(m3
q) (23)

(see refs. [7][8] for definitions of A0 and Zs0) and, here, mq does not count as m2
π. If B0 were

small enough, then mq = O(mπ), what amounts to a re-shuffling of chiral orders in the standard
expansion in the explicit breaking sector. The axial-axial correlator is also modified and Eq. (22)
reads ∣∣∣∣∣ B0

2mq
+A0 + 2Zs0

∣∣∣∣∣ ≥ 1 (24)

¶We thank A. Manohar for an observation which triggered this discussion.
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The constraint is nontrivial. If B0 is small, it still relates the allowed values of A0 and Zs0 in a way
independent of mq.

We wish to emphasize that the relative importance of the order parameters B0, A0, Zs0 and
possibly others has a unique answer in QCD, and it should be properly incorporated in order to
have a meaningful expansion. It is QCD what sets the chiral power counting of mq, which, if
not properly taken into acount, may result in a violation of the inequality, order by order in the
expansion. A re-sumation to all orders is required to verify the inequality again.

Similarly, if mq is very big, e.g. as the charm quark mass, a chiral symmetric theory incorpo-
rating the charmed flavor is not expected to be a good approximation. The violation of Eq. (22) is
apparent. Consider, however, a situation where mq is reasonably small so that a chiral expansion
is expected to work. If B0 turns out to be even smaller, a violation of Eq. (22) is a sign from
QCD that the usual expansion is not the appropriate one. Yet, on physical grounds, a generalized
expansion is expected to exist. Then Eq. (24) may not be violated and should be regarded as a
rigorous constraint.

We consider now the renormalization of our inequality to one loop. At this point, we have
to understand that the mass of the pion we have been using so far is bare, mπ = m0, and that
the inequality we were discussing is m2

0 ≤ B2
0 . The one-loop renormalization turns out to be

particularly simple as all one-loop graphs come from three different sources: i) tadpoles associated
to the composite operator structure of the currents, ii) tadpoles coming through the expansion of
the L2 term in the chiral lagrangian to next order and iii) insertions of L’s, coming form L4. None
of these renormalizations change the spatial behavior of the correlators but only its parameters.
All contributions are finite due to the non-renormalization associated to the partial conservation
of the axial current. When finite parts are gathered we get

m2
π ≤ B

2
0Zm (25)

where (for SU(2))

Zm =
m2
π

m2
0

= 1−
8m2

π

f2
π

(
2Lr4 + Lr5 − 4Lr6 − 2Lr8 +

m2
π

32π2f2
π

log
m2
π

µ2

)
(26)

and, therefore, the bare inequality remains unaltered.
At two-loop order, we do encounter a change of the behavior of the correlators leading to the

first appearance of three-pion thresholds. All other diagrams are combinations of tadpoles that
again will only renormalize the parameters of the inequality.

Nothing prevents us to play at will with non-diagonal correlators in Weingarten’s setting. We
have done so for 〈AP 〉 ≤ 〈PP 〉 and obtained identical results to the above ones. Full consistency
of Ward Identities demanded so. We have also performed a number of checks involving three-point
amplitudes. Using a combination of Cauchy-Schwarz and Hölder inequalities we have proven e.g.∣∣∣〈V aµ,xP byP cz 〉∣∣∣ ≤ √2

∣∣∣εabc∣∣∣ (〈P az P ax 〉〈P az P ay 〉〈P ay P ax 〉)1
2 , (27)

where we have used a shorter but obvious notation. This inequality demands that the amplitude
must decay exponentially at least as half of the mass of the pion in each pair of points. Although
non-trivially, this is automatically fulfilled in chiral perturbation theory as we have checked. Col-
inear configuration of the three space points do saturate the inequality between exponential decays
but the power laws manage to keep the result safe.
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3 Weingarten’s inequalitites in momentum space

The inequalities we have found among chiral lagrangian parameters are independent on the tech-
nique used to derived them. We here digressed momentarily to reobtain our results in momentum
space so as to make an easiest contact with the way results are often presented in the literature.

The proof of Weingarten’s inequalities, as sketched in the introduction, does not go through
in momentum space for a good reason: unlike in coordinate space, the two fermion propagators
Sk and Sq+k differ in their arguments by a momentum insertion q, and are thus unrelated. Naive
manipulation of Cauchy-Schwarz inequality will not reconstruct physical traces.

There exists, however, an inequality in momentum space at any value of euclidean Q2 for each
inequality in coordinate space. Let us start from the observation [10] that for a given operator B∫

d3x〈0|B(−iτ, ~x)B(0,~0)|0〉 =

∫ ∞
0

dEe−Eτρ(E2) , (28)

which holds for any value of euclidean time τ > 0 and where ρ is the spectral function defined (in
minkowski space) as

ρ(q2) =
∑
Γ

(2π)3δ4(q − pΓ)〈0|B(0,~0)|Γ〉〈Γ|B(0,~0)|0〉 , (29)

where the sum is extended to all possible intermediate states with suitable quantum numbers.
Since the integral in ~x has positive measure, Weingarten’s inequalities in euclidean coordinate

space translate into inequalities between transforms of spectral functions if the spatial integral
exists. The generic Weingarten’s inequality forB bilinear in quark fields |〈B(x)B(0)〉| ≤ 〈P (x)P (0)〉
becomes

|Φ(τ)| ≤ ΦP (τ) , (30)

where Φ(τ) is the laplace transform of the spectral function ρ(E2), as in Eq. (28).
The momentum (minkowski) space correlator

Π(q2) = i

∫
d4x eiqx〈0|TB(x)B(0)|0〉 , (31)

verifies a dispersion relation which may need subtractions. For instance, a twice subtracted disper-
sion relation is of the form (q2 = −Q2 < 0)

Π(Q2) = Π(0) + Π′(0)Q2 + (Q2)2
∫ ∞

0
dE2 ρ(E2)

(E2)2(E2 +Q2)
. (32)

Our aim is to establish inequalities among the functions Π(Q2) at euclidean momenta. The strategy
is to convolute inequality (30) with positive functions F (τ) > 0. It turns out that the functions
F0 = 1 + cosQτ , Fq = 1− cosQτ , F2 = (Qτ2 )2 − sin2(Qτ2 ) and F3 = 1

3(Qτ2 )4 − (Qτ2 )2 + sin2(Qτ2 ) are
positive and lead to ∣∣Π(Q2) + Π(0)

∣∣ ≤ ΠP (0) + ΠP (Q2) ,∣∣Π(0)−Π(Q2)
∣∣ ≤ ΠP (0)− ΠP (Q2) ,∣∣Π(Q2)−Π(0)−Q2Π′(0)
∣∣ ≤ ΠP (Q2)−ΠP (0)−Q2Π′P (0) ,∣∣∣12(Q2)2Π′′(0) +Q2Π′(0) + Π(0)−Π(Q2)
∣∣∣ ≤ 1

2(Q2)2Π′′P (0) +Q2Π′P (0) + ΠP (0)−ΠP (Q2) ,

(33)
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which are inequalities that apply when zero, one, two and three subtractions are required. The
generalization to any number of subtractions is immediate. In the cases where 〈B(x)B(0)〉 is
positive for all x, the inequalities hold without the need for absolute values in the l.h.s. of (33).

Notice that these inequalities involved subtracted correlators. Mathematically, this is due to
the fact that the inverse laplace transform of 1

Q2+E2 is 2 cosQτ , which is not a positive function.

Remarkably enough, there exist positive functions (F0, ..., Fn) that enable the extraction of the
desired inequalities by taking proper care of the subtractions needed to end up with a convergent
integral of ρ(E2).

Convolutions with even powers of τ also furnish inequalities among derivatives of Π(Q2) at
Q2 = 0. Again, care must be taken of the subtractions: the more subtractions needed, the higher
the derivative of Π is to be considered.

Let us consider the example of the vector correlator. In minkowski space one has, in the limit
of exact isospin symmetry,

i

∫
d4x eiqx〈0|TV aµ (x)V aν |0〉 =

(
qµqν − q

2gµν
)

ΠV (q2) . (34)

We proceed defining the standard spectral function(
qµqν − q

2gµν
)
ρV (q2) =

∑
Γ

(2π)3δ4(q − pΓ)〈0|Vµ(0,~0)|Γ〉〈Γ|Vν(0,~0)|0〉 . (35)

Similar dispersion relations to that in Eq. (32) relate ΠV to ρV . In QCD, ΠV requires one
subtraction [9]. Working out all inequalities is now straightforward,

Q2
∣∣∣Π′A(1)(Q2)−Π′A

(1)(0)
∣∣∣ ≤ ΠP (Q2)−ΠP (0)−Q2Π′P (0) . (36)

Moreover, the application of an even-power convolution is even simpler, yielding the result

∣∣Π′V (0)
∣∣ ≤ 1

2
Π′′P (0) . (37)

Let us note that the proof of Eq. (33) also involves the analiticity properties of the two-point
functions in momentum space. Notice that this procedure removes contact terms related to sub-
tractions. This reminds us that in coordinate space the same was automatically done by just
analyzing correlators at non-zero distances.

Using a similar result to Eq. (37) for the non-transverse part of the axial correlator, the
inequality m2

π ≤ B
2
0 emerges again.

Once chiral perturbation theory is set up, the inequalities we get for the parameters of the
lagrangian cannot depend on which space the inequalities are treated. It is a technicality to pass
from one space to the other, the physical content remaining the same. Coordinate space allows a
far simpler analysis due to the trivial decoupling of subtractions at large distances.

4 Witten’s inequalities in chiral perturbation theory

As an initial remark we note that the positivity of the operator E is formally related to the sign of
the condensate, 〈q̄q〉 = − 1

V

∫
dµ TrE, where V is the volume of space. This observation is further

related to the infrared limit of the spectral density of the quark propagator (see ref. [11]).
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Let us now concentrate again on two-point correlators. We follow Witten’s argument [5] and
define the matrix Ex,0 ≡ Sx,0 + γ5Sx,0γ5 which commutes with γ5 and corresponds to the matrix
element of the positive operator E in Eq. (9). Then,∫

dµ Tr
(
EAEA†

)
≥ 0 . (38)

In particular, for A = γµe
ikx̂ and A = eikx̂ we get respectively (Sa(x) = ψ̄(x)λ

a

2 ψ(x))

〈V a
µ (Q)V aµ (−Q)〉 − 〈Aaµ(Q)Aaµ(−Q)〉 ≥ 0 (39)

〈Pa(Q)P a(−Q)〉 − 〈Sa(Q)Sa(−Q)〉 ≥ 0 (40)

The first inequality was analyzed in ref. [5] whereas the second one (which could have been deduced
from Weingarten’s setting) has not been explored in the way we shall use it.

We consider now the evaluation of the above inequalities in chiral perturbation theory in the
chiral limit and in leading 1

Nc
, when chiral logarithms are suppressed [1, 12]. One gets

f2
π + 4L10Q

2 + O(Q4) ≥ 0 , (41)

B2
0

(
f2
π

Q2
− 16L8 +O(Q2)

)
≥ 0 . (42)

It is noteworthy that all contact terms which are related to external sources (H1 and H2) are
cancelling in the VV-AA and PP-SS combinations. The magnituds of L8 and L10 are such that
the inequalities, computed to second order, are indeed obeyed for Q2 up to m2

ρ. To get more
constraining information, we would need to obtain an inequality involving the derivatives of the
momentum correlators. So far, we have not found such a property.

Playing around with small variations of Witten’s inequalities, it is easy to prove

〈P a(Q)P a(−Q)〉 − 〈Sa(Q)Sa(−Q)〉 ≤ 〈P a(0)P a(0)〉 − 〈Sa(0)Sa(0)〉 (43)

which is trivially verified due to the presence of the pion pole (also valid in the massive case). It is
also simple to obtain the coordinate space inequality (where no sum over i is implied here)

〈V ai (x)V ai (0)〉 − 〈Aai (x)Aai (0)〉 ≤ 〈P a(x)P a(0)〉 − 〈Sa(x)Sa(0)〉 , (44)

which magically transforms into Weingarten’s inequality at long distances.
In general, the exploitation of Witten’s inequalities is more subtle. Their information stems

from unitarity constraints of the particular E operator. Physically they mingle oposite sign contri-
butions from many resonances. It is reasonable to expect that they may lead to more constraining
inequalities for the physical parameters of the chiral perturbation expansion, when corrections are
considered.

Let us finish this section with a comment on Kaplan-Manohar symmetry. Both Eq. (22) and
(42) do break the hidden symmetry of the order p4 chiral lagrangian discussed in ref. [13]. This
reflects that the inequalities stem from QCD and, thus, tell apart different values of, e.g., L8.

5 Some extra results

The exploitation of QCD inequalities remains bounded to variations of Weingarten’s and Witten’s
ideas. We here proposed a few new avenues for research.
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Amplitudes involving path ordered Wilson lines are easily amenable to inequality analysis. By
using a combination of Cauchy-Schwarz and Hölder inequalities we have found that∣∣〈ψ̄xΓUx,0ψ0〉

∣∣ ≤ |〈P a(x)P a(0)〉|
1
2 , (45)

where Ux,0 = Pe
∫ x

0
dzµAµ and Γ stands for any combination of Dirac gamma matrices. At long

distances hadronization will make the (gauge invariant) l.h.s. decay faster than any meson. Never-
theless, we find interesting that a sort of gauge invariant constituent mass associated to the quark
line must be heavier than half of the pion mass.

A second example of new inequality can be obtained from arguing that the correlator of the
trace of the fermionic stress tensor is bounded by the trace of the total stress tensor. This leads to

〈θfermions(x)θfermions(0)〉 ≤ 〈θtotal(x)θtotal(0)〉 . (46)

If we use chiral perturbation theory we obtain

mqB0 ≤ m
2
π , (47)

which is indeed obeyed at leading order.
Let us finish by stating that QCD inequalities constraint the values of the chiral perturbation

theory parameters. All standard numerical values fall in the right place. More ingenuity is necessary
to produce more severe constraints.
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