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1 Introduction

As the non-Abelian extension of the exactly soluble Schwinger model [1],
Quantum Chromodynamics in 1 + 1 dimensions (QCD2) has received much
attention in the past 25 years. Its equivalent bosonic description was, how-
ever, fully understood only

as late as 1984, with the work of Polyakov-Wiegmann [2] and Witten [3].
The basic idea for arriving at an equivalent bosonic description of QCD2 is

to perform a change of variable which decouples the fermions from the gauge
field (decoupled picture). This idea, explored by [4] in the bosonization of the
Schwinger model [1], has been successfully applied in a number of papers on
QCD2 [5], [6]. For a general review the reader is referred to [7]. Following this
procedure one arrives at an effective action involving a conformally invariant
Wess-Zumino-Witten [WZW] functional plus the Yang-Mills action.

By regarding the Yang-Mills action of QCD2 as a perturbation of a con-
formally invariant WZW theory of positive and negative

level WZW fields, as well as ghosts, in the decoupled picture, Abdalla and
Abdalla [8] obtained an infinite set of conservation laws. In their description
a number of first and second class constraints emerged the significance and
role of which, however, remained unclear.

It is the objective of this note to clarify this and related aspects of their
approach, by performing a detailed BRST analysis of QCD2 following the
path-integral formulation described above.

2 Local, decoupled formulation of QCD2

The partition function of QCD2 is given by

Z =
∫

[DAµ]
∫
DψDψ̄ exp[i(SYM + SF )] (2.1)

where SYM and SF are the Yang-Mills and fermionic action, respectively3

SYM = −
1

4

∫
d2xtr(FµνF

µν) (2.2)

SF =
∫
d2xψ̄(i/∂ + e/A)ψ (2.3)

=
∫
d2x

{
ψ†1(i∂+ + eA+)ψ1 + ψ†2(i∂− + eA−)ψ2

}
3Our conventions are ∂± = ∂0 ± ∂1, A± = A0 ± A1, Fµν = taF aµν , etc., with the

normalization trtatb = δab for the hermitian generators in the fundamental representation,
and the commutation relation [ta, tb] = ifabc tc,
with fabcfabd = CV

2
δcd. We follow in general the notation and conventions of ref. [8].
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and [DAµ] stands for the measure including gauge fixing. It will be convenient
to work in the light cone gauge A+ = (A0 + A1) = 0. We implement this
gauge in terms of a Lautrup-Nakanishi-Lagrange multiplier field B,

Z =
∫
DAµ

∫
DψDψ̄

∫
DB

∫
Db−Dc− exp(iSGF ) (2.4)

with
SGF = SY M + SF + Sgh +

∫
d2xtr(BA+) (2.5)

where Sgh is the ghost action

Sgh =
∫
d2xtr(b−iD+c−) (2.6)

with
D± = ∂± − ie[A±, ] (2.7)

the covariant derivative in the adjoint representation.
The gauge-fixed action (2.5) is invariant under the BRST tranformation

δAµ = ε
1

e
Dµc−

δψα = εc−ψα

δc− = ε
1

2
{c−, c−}

δb− = ε
1

e
B

δB = 0 (2.8)

with ε a Grassman-valued infinitesimal parameter.
Performing the integration over B and A+, we obtain the following par-

tition function

Z =
∫
DA−

∫
Dψ(0)

1 Dψ
†(0)
1

∫
Dψ2Dψ

†
2

∫
Db(0)
− Dc

(0)
− exp (iSGF ) (2.9)

with the corresponding gauge-fixed Lagrangian

LGF = tr
1

8
(∂+A−)2 + ψ

(0)†
1 i∂+ψ

(0)
1

+ψ†2iD−ψ2 + tr
(
b

(0)
− i∂+c

(0)
−

)
. (2.10)

We have denoted the fields obbeying a free-field dynamics by a superscript
“(0)”, and D− is the covariant derivative

D± = ∂± − ieA± (2.11)
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with A± in the fundamental representation.
The classical action SGF is invariant under the BRST transformation

δA− = −iε
1

e
D−c

(0)
−

δψ
(0)
1 = εc

(0)
− ψ

(0)
1

δψ2 = εc
(0)
− ψ2

δc
(0)
− = ε

1

2
{c(0)
− , c

(0)
− } (2.12)

δb
(0)
− = ε

1

e2
D−(∂+A−) + εψ

(0)
1 ψ

(0)†
1

+ε{b(0)
− , c

(0)
− } (2.13)

These transformation laws can be obtained from (2.8) by eliminatingA+ and
B using the equations of motion

A+ = 0

Ba = −
δSYM

δAa
+

− eψ†1t
aψ1 + iefabcb

b
−c

c
− (2.14)

Regarding (2.12) as a classical transformation, it is a symmetry of the
gauge-fixed Lagrangian (2.10). In order to analyse the corresponding sym-
metry at the partition function level, one has however to take into account
the following facts:

i) The fermionic path-integral in (2.4) (i.e., before fixing the gauge toA+ = 0)
leads to

Zfer = det(i∂+ + eA+)det(i∂− + eA−)× exp(−i
e2

4π

∫
d2xA+A−) (2.15)

The last term in the r.h.s. of (2.15) has been added, exploiting regularization
ambiguities, so as to ensure gauge invariance [2].

ii) Analogously, the determinant arising from integration of ghosts with ac-
tion (2.6) has to be adjusted with the same type of A+A− counterterm,

Zghosts = detAdj(i∂+ + eA+)× exp(−iα
∫
d2xA+A−) (2.16)

Since, as it is well-known [2], the determinant in the adjoint
representation is related with that in the fundamental through the Casimir

CV (see [6] for details), consistency of the regularization implies that α should
be chosen as α = (e2/4π)CV .
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Taking into account the i) and ii), the transformation law for the ghost

field b(0)
− takes the form

δb
(0)
− = −

ε

e
D−(∂+A−) + εψ

(0)
1 ψ

(0)†
1 + ε{b(0)

− , c
(0)
− } − εe

(1 + CV )

4π
A− (2.17)

The last term in the r.h.s. of (2.17) arises from the A+A− counterterms
as discussed above. The transformations (2.12) and (2.17) now represent a
symmetry transformation of the partition function associated with (2.10).

We now go to a new set of variables such that the partition function
factorizes in terms of decoupled fields, by writing

A− =
i

e
V ∂−V

−1

ψ2 = V ψ
(0)
2 (2.18)

For the corresponding transformation of the integration measure one has

DA− =
∫
Db+Dc+ exp

(
i
∫
d2x tr b+iD−c+

)
×DV

= exp(−iCV Γ[V ])
∫
Db(0)

+ Dc
(0)
+

exp(i
∫
d2x tr b

(0)
+ i∂−c

(0)
+ )×DV (2.19)

Dψ2Dψ
†
2 = Dψ(0)

2 Dψ
(0)†
2 exp(−iΓ[V ]) (2.20)

where Γ[g] is the Wess-Zumino-Witten functional [3]

Γ[g] =
1

8π

∫
d2x tr ∂µg

−1∂µg+
1

12π

∫
d3yεαβγtr[g−1∂αgg

−1∂βg
−1∂γg] (2.21)

with the remarkable property (see [7] for details)

δΓ[g] =
1

4π

∫
d2x trgδg−1∂+(g∂−g

−1)

=
1

4π

∫
d2x trg−1δg∂−(g−1∂+g) (2.22)

In terms of the new variables, the partition function reads

Z = Z
(0)
F Z

(0)
gh ZV (2.23)

where

ZV =
∫
DV exp

{
−i(1 + CV )Γ[V ] +

i

8e2

∫
d2xtr[∂+(V i∂−V

−1)]2
}

(2.24)

5



and

Z
(0)
F =

∫
Dψ(0)Dψ̄(0) exp

(
i
∫
d2xψ̄(0)i/∂ψ(0)

)
(2.25)

Z
(0)
gh =

∫
Db(0)
± Dc

(0)
± exp[i

∫
d2x tr

(
b

(0)
+ i∂−c

(0)
+ + b

(0)
− i∂+c

(0)
−

)
] (2.26)

Notice that the WZW action enters in (2.24) with negative level −(1 +CV ).
It is interesting at this stage to compare our results, summarized in

eqs.(2.23)-(2.26), with those presented in [8]. Eq.(2.23) shows that theQCD2

partition function factorizes into the partition functions for free fermions,
ghosts and perturbed WZW fields. This factorization (including the rema-
nence of free fermions) is characteristic of path-integral bosonization which
is always based in the decoupling of the interacting fermions, which thus
become free [4]-[6] (Of course, these free fermions can in turn be bosonized
in terms of Wess-Zumino fields −g̃ in ref. [8]).

In terms of the new variables the BRST symmetry transformation (2.12),
(2.17) reads

V δV −1 = −εc(0)
− ,

δψ
(0)
1 = εc

(0)
− ψ

(0)
1 , δψ

(0)
2 = 0

δc
(0)
− =

ε

2
{c(0)
− , c

(0)
− }, δc

(0)
+ = 0

δb
(0)
− = εB

(0)
− + ε∆−(V ), δb

(0)
+ = 0 (2.27)

where

B
(0)
− = ψ

(0)
1 ψ

(0)†
1 + {b(0)

− , c
(0)
− }

∆−(V ) = −
1

4e2
D−(V )(∂+(V i∂−V

−1))−
(

1 + CV

4π

)
V i∂−V

−1

(2.28)

and
D−(V ) = ∂− + [V ∂−V

−1, ] (2.29)

Using (2.22) one readily checks that the partition function (2.23) is invari-
ant under the above transformation. The corresponding BRST current, as
obtained via the usual Noether construction, is found to be (the superscript
“(B)” stands for “BRST”)

J
(B)
− = trc

(0)
−

[
−

1

4e2
D−(V )∂+

(
V i∂−V

−1)
)
−
(

1 + CV
4π

)
V i∂−V

−1

+ψ(0)
1 ψ

(0)†
1 +

1

2
{b(0)
− , c

(0)
− }

]
(2.30)
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with
∂+J

(B)
− = 0 (2.31)

Remarkably enough, BRST symmetry leads to a current which only depends
on the variable x−.

It is desirable to rewrite (2.30) in standard form, exhibiting explicitly its
BRST character. To this end we observe that

Ω− := −
1

4e2
D−(V )∂+(V i∂−V

−1)−
(

1 + CV
4π

)
V i∂−V

−1 + j− ≈ 0 (2.32)

with

j− = ψ
(0)
1 ψ

(0)†
1 + {b(0)

− , c
(0)
− }

∂+j− = 0 (2.33)

is a constraint of the theory. To see this, we follow the general ideas outlined
in ref. [15], “and gauge” the partition function (2.23) with an external field
W+ = iω−1∂+ω, by making the substitutions

∂+ → D+(ω) = ∂+ − iW+

∂+ → D+(ω) = ∂+ − i [W+, ] (2.34)

in the right-hand sector of (2.25) and (2.26), as well as the substitution

Γ[V ]→ Γ[V ]−
1

4π

∫
trW+V i∂−V

−1 (2.35)

tr
[
∂+(V ∂−V

−1)
]2
→ tr

[
D+(ω)V ∂−V

−1 + i∂−W+

]2
(2.36)

in (2.24). Noting that

tr
[
D+(ω)V ∂−V

−1 + i∂−W+

]2
= tr

[
∂+(ωV )∂−(ωV −1)

]2
(2.37)

and making use of the Polyakov-Wiegmann identity [2]

Γ[gh] = Γ[g] + Γ[h] +
1

4π

∫
d2xtr

(
g−1∂+gh∂−h

−1
)

(2.38)

one has after a change of integration variable V → ωV ,

Z
(0)
F → Z

(0)
F e−iΓ[ω]

Z
(0)
gh → Z

(0)
gh e

−iCV Γ[ω]

ZV → ZV e
i(1+CV )Γ[ω] (2.39)
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This shows that the partition function (2.23) is unchanged by the
transformations (2.34) to (2.36). From here we derive the constraint

(2.32) by taking the functional derivative of the gauged partition function
with respect to W+, and setting W+ = 0. This constraint (Gauss’ law) can
be shown to satisfy a Kac-Moody algebra4 with vanishing central charge;
hence, in the terminology of Dirac [10], it is first class.

In terms of the constraint (2.32), the current (2.30) takes
the standard form expected from general considerations [11], [12]:

J
(B)
− = tr

[
c

(0)
− Ω− −

1

2
b

(0)
−

{
c

(0)
− , c

(0)
−

}]
(2.40)

Since Ω− is first class, the corresponding charge Q
(B)
− is nilpotent.

A second BRST symmetry

As is well known [13], [14], one expects a further BRST current associated
with the change of variables (2.18). In fact, it is easy to see that the partition
function (2.23) is also invariant under the transformation

V −1δV = −εc(0)
+

δψ
(0)
1 = 0, δψ

(0)
2 = εc

(0)
+ ψ

(0)
2

δc
(0)
− = 0, δc

(0)
+ =

ε

2

{
c

(0)
+ , c

(0)
+

}
δb

(0)
− = 0, δb

(0)
+ = εB

(0)
+ + ε∆+(V ) (2.41)

with B(0)
+ and ∆+(V ) given by

B
(0)
+ = ψ

(0)
2 ψ

(0)†
2 + {b(0)

+ , c
(0)
+ }

∆+(V ) =
1

e2
V −1

(
∂2

+(V i∂−V
−1)

)
V −

1 + CV

4π
V −1i∂+V (2.42)

This transformation law should be compared with the one in (2.27). The
corresponding BRST current obtained via the standard Noether construction
is found to be

J
(B)
+ = trc

(0)
+

[
1

4e2
V −1(∂2

+(V i∂−V
−1))V −

1 + CV
4π

V −1i∂+V

+ψ(0)
2 ψ

(0)†
2 +

1

2

{
b

(0)
+ , c

(0)
+

}]
(2.43)

4In ref. [9] the terminology “affine Lie algebra” is preferred.
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To put this expression into standard form we observe, following again the
method of [15], that gauging with the external field,

W− =
i

e
ω∂−ω

−1 (2.44)

by making the substitutions

∂− → ∂− − iW−

∂− → ∂− − i[W−, ] (2.45)

in the left-hand sector of (2.25) and (2.26), we have in analogy to (2.39),

Z
(0)
F → Z

(0)
F e−iΓ[ω]

Z
(0)
gh → Z

(0)
gh e

−iCV Γ[ω]

e−i(1+CV )Γ[V ] → e−i(1+CV )(Γ[V ω]−Γ[ω])

V i∂−V
−1 → V (i∂− +W−)V −1 = (V ω)i∂−(V ω)−1 (2.46)

Hence the partition function (2.23) is left invariant by this transformation.
From this, we can derive the constraint

Ω+ ≡
1

4e
V −1

[
∂2

+(V i∂−V
−1)

]
V −

(1 + CV )

4π
V −1i∂+V + j+ ≈ 0 (2.47)

where

j+ = ψ
(0)
2 ψ

(0)†
2 +

{
b

(0)
+ , c

(0)
+

}
∂−j+ = 0 (2.48)

One readily checks that this constraint is first class (vanishing central charge).
In terms of Ω+, the BRST current (2.43) is seen to take the standard

form expected from general considerations [11]

J
(B)
+ = tr

[
c

(0)
+ Ω+ −

1

2

{
b

(0)
+ , c

(0)
+

}]
∂−J

(B)
+ = 0. (2.49)

and hence the associated charge is nilpotent.

3 Non-local decoupled formulation of QCD2

The partition function (2.23) is particularly useful in the strong coupling
regime. Following the ideas of ref. [8], we now obtain an alternative, nonlocal
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representation useful in the weak coupling regime. To this end we make use
of the identity

exp[
i

4e2

∫
tr

1

2

[
∂+(V i∂−V

−1)
]2

]

=
∫
DE exp[−i

∫
tr

[
1

2
E2 +

E

2e
∂+(V i∂−V

−1)
]
] (3.1)

and make the change of variable

∂+E =
(

1 + CV
2π

)
β−1i∂+β (3.2)

or

E =
(

1 + CV
2π

)
(∂+)−1β−1i∂+β (3.3)

The Jacobian associated with this change of variables is

DE = exp(−iCVΓ[β])Dβ (3.4)

Making use of the above results, the partition function (2.23) reads

Z = Z
(0)
F Z

(0)
gh

∫
DV

∫
Dβ exp{−i(1 + CV )[Γ[V ] + Γ[β]

−
1

4π

∫
tr(β−1∂+βV ∂−V

−1)]}

× exp(iΓ[β]) exp

{
i
(

1 + CV

2π

)2

e2
∫ 1

2
tr
[
∂−1

+ (β−1∂+β
]2}

(3.5)

Now, using the Polyakov-Wiegmann identity (2.38) and making the change
of variable V → βV = Ṽ , we are left with

Z = Z
(0)
F Z

(0)
gh ZṼ Zβ (3.6)

where

Zβ =
∫
Dβ exp

{
iΓ[β] + i

(
1 + CV

2π

)2

e2
∫ 1

2
tr
[
∂−1

+ (β−1∂+β)
]2}

(3.7)

ZṼ =
∫
DṼ exp[−i(1 + CV )Γ[Ṽ ]] (3.8)

Expression (3.6) agrees with that of ref. [8].
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BRST invariance of the (F − gh− Ṽ ) sector

The product Z(0)
F Z

(0)
gh ZṼ is invariant under the BRST transformations

(2.27) and (2.41) with the substitution V → Ṽ , and ∆∓(Ṽ ) now given by

∆−(Ṽ ) = −
(

1 + CV

4π

)
Ṽ i∂−Ṽ

−1 (3.9)

and

∆+(Ṽ ) = −
(

1 + CV

4π

)
Ṽ −1i∂+Ṽ (3.10)

implying the conservation of the corresponding Noether currents

J̃
(B)
− = tr c

(0)
−

[
ψ

(0)†
1 ψ

(0)
1 +

1

2

{
b

(0)
− , c

(0)
−

}
−
(

1 + CV

4π

)
Ṽ ∂−Ṽ

−1
]

(3.11)

J̃
(B)
+ = tr c

(0)
+

[
ψ

(0)†
2 ψ

(0)
2 +

1

2

{
b

(0)
+ , c

(0)
+

}
−
(

1 + CV

4π

)
Ṽ −1∂+Ṽ

]
(3.12)

One easily verifies that the corresponding charges are nilpotent. Indeed,
following again the procedure of ref.[15], one gauges the left- and right-handed
sector as in the conformal sector (e→∞) of the local formulation, and shows
(with V replaced by Ṽ ) that the partition function of the F − gh− Ṽ sector
remains invariant under this gauging.

This implies the existence of the two first-class constraints

Ω̃− ≡ ψ
(0)†
1 ψ

(0)
1 + {b(0)

− , c
(0)
− } −

1 + CV

4π
Ṽ i∂−Ṽ

−1 ≈ 0

Ω̃+ ≡ ψ
(0)†
2 ψ

(0)
2 + {b(0)

+ , c
(0)
+ } −

1 + CV

4π
Ṽ −1i∂+Ṽ ≈ 0 (3.13)

In terms of these constraints, the currents (3.11) and (3.12) take the standard
form of BRST currents associated with a first-class constraint algebra [11]:

J̃
(B)
± = tr

[
c±Ω̃(0)

± −
1

2
b

(0)
±

{
c

(0)
± , c

(0)
±

}]
(3.14)

It is important to note that these BRST currents
correspond in the non-local formulation to the currents (2.40) and (2.49)

were in the local one.

To conclude this section let us remark that there exist further BRST-like
symmetries, which, however, are not generated by nilpotent charges. To take
an example, consider the gh− Ṽ −β sector. The partition function ZghZṼ Zβ
is readily seen to be invariant under the symmetry transformation
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Ṽ δṼ −1 = −εc(0)
−

βδβ−1 = −εc(0)
−

δc
(0)
− =

ε

2
{c(0)
− , c

(0)
− }, δc

(0)
+ = 0

δb
(0)
− = −ε

1 + CV

4π
Ṽ i∂−Ṽ

−1 + ε{b(0)
− , c

(0)
− }+ ε∆−[β] (3.15)

where ∆−[β] is given by

∆−(β) =
(

1 + CV

2π

)2

e2
[
β∂−2

+ (β−1i∂+β)β−1
]

+
1

4π
βi∂−β

−1 (3.16)

The corresponding Noether current is found to be

J̃− = tr

[
c

(0)
− Ω−

1

2
b

(0)
−

{
c

(0)
− , c

(0)
−

}]
. (3.17)

where

Ω ≡ −
(

1 + CV

2π

)2

e2β
(
∂−2

+ (β−1i∂+β)
)
β−1 +

1

4π
βi∂−β

−1

−
(

1 + CV
4π

)
Ṽ i∂−Ṽ

−1 +
{
b

(0)
− , c

(0)
−

}
. (3.18)

By gauging the right-handed ghost, and Ṽ
sector as in (2.39), (with V → Ṽ ), supplemented by the transformations

Γ[β]→ Γ[β]−
i

4π

∫
trW+β∂−β

−1 = Γ[ωβ]− Γ[β]

β−1∂+β → β−1(∂+ − iW+)β = (ωβ)−1∂+(ωβ) (3.19)

in the β-sector, one finds that expression (3.18) is constrained to vanish:

Ω ≈ 0 (3.20)

As pointed out in [8], this constraint is, however, not first-class with respect
to the constraints (3.13), and as a consequence the BRST charges associated
with the currents (3.14) already represent a complete set.

The role of the constraint (3.20) is best appreciated, by rewriting the
partition function Zβ in (3.7) with the aid of an auxiliary field C− as [8]

Zβ =
∫
DC−Dβe

iS[β,C−] (3.21)
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where

S[β, C−] = Γ[β] +
∫
tr

[
1

2
(∂+C−)2 +

(
1 + CV

2π

)
e(C−β

−1i∂+β)
]

(3.22)

Gauging ZghZṼZβ as described before (∂+C− and C− remain unchanged),
one arrives at the

constraint:(
1 + CV

2π

)
eβiC−β

−1 +
(

1 + CV

4π

)
Ṽ i∂−V

−1 −
1

4π
βi∂−β

−1 + {b(0)
− , c

(0)
− } = 0

(3.23)
This constraint determines C− as a function of the other fields. Using the
equation of motion for C−,

∂2
+C− +

(
2 + CV

2π

)
eβ−1∂+β = 0

one then formally arrives at constraint (3.20).

4 Discussion

The main objective of this paper was to
further elucidate the interesting analysis of ref. [8], by supplementing it

with an analysis of the BRST symmetries as well as the construction of the
corresponding BRST currents.

The study of BRST currents is important if one wants to obtain a com-
plete characterization of the physical Hilbert space. The formulation of ref.
[8] appears to be particularly suited for this purpose. Indeed, we have seen
that the conformal invariance of the pure gauged fermionic partition func-
tion, described by a WZW-type theory [3], is broken by the presence of the
Yang-Mills action, which implies the presence of

a coupling constant carrying dimensions. We have nevertheless seen the
BRST currents to be either left- or right-moving as in a conformally invariant
model. This is remarkable, and is at the heart of the claims in ref. [8] on the
exact integrability of QCD2. The structure of the physical Hilbert space

as determined by the BRST conditions is presently under investigation
[16].
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