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Abstract

In this work we investigate the restoration of chiral symmetry in the

Gross-Neveu model at finite temperature using a nonperturbative variational

method which is compatible with the usual renormalization program of the

theory. It is shown, in this first letter, that the variational procedure can be

generalized to the finite temperature case. The large N result for the phase

transition is correctly reproduced.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25181895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I. INTRODUCTION

The study of chiral symmetry breaking/restoration in QCD requires the use of non-

perturbative techniques like numerical simulations or analytical methods such as the 1/N

expansion, the Hartree-Fock approximation and variational methods [1-3]. In general, most

approximations designed to tackle the nonperturbative QCD regime are tested in effective

models which share some of QCD’s characteristics. The renormalizable and asymptoti-

cally free Gross-Neveu model (GN) [4] is particularly useful in the study of chiral symmetry

breaking/restoration. The exact solution for the chiral symmetry related mass gap equation,

which is known in the large N limit, turns the model into an ideal laboratory for testing

newly developed or improved existing nonperturbative approximations.

In this letter, we will be concerned with a variational method which was originally pro-

posed in Ref. [1] and which is related to the optimized δ expansion [2,3]. It has been

recently improved, in order to cope with the renormalization program of quantum field the-

ories, and successfully tested in the GN model at zero temperature both in the large [5] and

finite [6] N limits. Our purpose is to extend the method to the finite temperature domain

where the related optimized δ expansion has already been successfully applied, without ad-

dressing the renormalization problem, to the study of chiral symmetry restoration in the

GN model [7] as well as in Nambu-Jona-Lasinio model [8]. Most applications performed

with the optimized δ expansion start from an interpolated renormalized lagrangian written

in terms of non original arbitrary parameters around which perturbative calculations are

performed. The perturbative result is then extremized with respect to arbitrary mass pa-

rameters. This optimization procedure known as the Principle of Minimal Sensitivity (PMS)

[9] gives the calculation a nonperturbative character. However, this whole program makes

the introduction of counterterms rather confusing, mixing perturbative orders and rendering

the renormalization process unclear particularly away from the well behaved large N limit

where the renormalizability of the linear δ expansion has already been investigated [10].

On the other hand, the method proposed in Ref. [5] suggests that one should start with
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a bare lagrangian density and that the evaluation of physical quantities should be accom-

plished with bare parameters which, at the end, are related to the renormalized ones via the

Renormalization Group (RG). The calculation is improved by a simple but powerful analyti-

cal method which allows to attain arbitrarily large and even infinite order of perturbation in

the parameter δ. This procedure reconciles the variational method with the renormalization

program of the theory for any N [6].

In analysing the large N finite temperature behaviour of the GN model one observes

a second order phase transition which leads to chiral symmetry restoration at the critical

temperature

Tc = 0.57×MF (0) , (1)

where MF (0) is the renormalized fermion mass, generated through the breaking of chiral

symmetry at T = 0 [11,12]. However, one should note that this result is only valid in the

large N limit where some important kink effects are missed [13]. That is due to the fact that

in 1+1 dimensions it is energetically favorable to have kink configurations, which implies

that the sign of the order parameter alternates over small regions of space. The average over

space of these kink configurations then makes the order parameter zero. Thus, there is no

symmetry breaking in one space dimension at finite temperatures (Landau’s theorem [14])

and one expects calculations performed at finite N to take this fact into account. Indeed, it

has been explicitly demonstrated , in the context of the effective potential (free energy), that

the optimized δ expansion predicts a smaller critical temperature for the phase transition

at finite N in agreement with Landau’s theorem [7]. Although reassuring, in what concerns

convergence, this result is not completely satisfactory since renormalization has not been

dealt with.

It is our goal to show that the renormalization friendly variational method developed in

Ref. [5] generalizes to finite temperatures. In this first investigation we restrict ourselves

to the large N limit GN model where the calculational scheme can be set up more clearly.

Then, in a subsequent work [15] we shall treat the technically more complex finite N limit
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which is interesting due to Landau’s theorem.

In the next section we review the usual large N result for the temperature dependent

fermionic mass and perform the variational calculation to lowest orders. Because we are in

the large N limit the renormalization problems discussed above will not show up explicitly

although we will be able to see another unwanted problem arising during the optimization

process. In Section III we follow Ref. [5] to rectify the situation by performing the variational

calculation to all orders. When this is done the variational method reproduces the large

N result for chiral symmetry restoration in the GN model. The conclusions and future

perspectives are presented in section IV.

II. THE VARIATIONAL CALCULATION TO LOWEST ORDERS

The variational calculation starts with the addition of an arbitrary bare mass (m0) to

the original massless Gross-Neveu [4]

L = i
N∑
i=1

ψ̄i 6∂ψi +m0

N∑
i=1

ψ̄iψi +
g2

0

2

(
N∑
i=1

ψ̄iψi

)2

(2)

where g0 is the bare coupling constant (in the following we shall suppress the summation

over the index i). The relation to the linear δ expansion and other variational methods

becomes clear by performing the substitutions

m0 → m0(1− δ) , (3)

g2
0 → δg2

0 . (4)

These will be done at a later stage in order to avoid the explicit evaluation of Feynman

graphs which differ only by δm0 insertions. To perform finite temperature calculations in

the imaginary time formalism one does the following substitutions [16]

∫
dp0

2π
→ iT

∑
n

, (5)
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p0 → iωn , (6)

where for fermions

ωn = T (2n+ 1)π . (7)

The sum over Matsubara’s frequencies can be performed with

T
∑
n

ln(ω2
n +m2

0) = E + 2T ln[1 + exp(−E/T )] + c , (8)

where c is a E-independent constant [16]. In 1+1 dimensions

E = (p2
1 +m2

0)
1
2 . (9)

The remaining space integral is evaluated in 1−ε dimensions using conventional dimensional

regularization techniques.

In the large N limit a perturbative calculation of the fermionic mass (MF ) to O(g4
0)

yields

M
(2)
F = m

(0)
F + g2

0m
(1)
F + g4

0m
(2)
F + O(g6

0) , (10)

where m(0)
F = m0,

m
(1)
F =

N

2π
m1−ε

0

[
(4π)

ε
2 Γ(ε/2) − 4IT1 (y0)

]
, (11)

and

m
(2)
F =

N2

4π2
m1−2ε

0

{
(4π)εΓ2(ε/2)(1− ε)

+(4π)
ε
2 Γ(ε/2)

[
(ε− 2)IT1 (y0) + (m0/T )2(IT2 (y0) + IT3 (y0))

]
+IT1 (y0)

[
IT1 (y0)− (m0/T )2(IT2 (y0) + IT3 (y0))

]}
. (12)

The temperature dependent integrals are

IT1 (y0) =
π

1−ε
2

Γ(1/2 − ε/2)
(2πy0)

ε
∫ ∞

0
dx

x−ε

(x2 + y2
0)

1
2 [1 + exp(x2 + y2

0)
1
2 ]

, (13)
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IT2 (y0) =
π

1−ε
2

Γ(1/2 − ε/2)
(2πy0)

ε
∫ ∞

0
dx

x−ε

(x2 + y2
0)

3
2 [1 + exp(x2 + y2

0)
1
2 ]

, (14)

and

IT3 (y0) =
π

1−ε
2

Γ(1/2− ε/2)
(2πy0)

ε
∫ ∞

0
dx

x−ε exp(x2 + y2
0)

1
2

(x2 + y2
0)[1 + exp(x2 + y2

0)
1
2 ]2

, (15)

with y0 = m0/T and x = p1/T . These integrals are related to each other via

−−−2yε0
∂(y−ε0 IT1 )

∂y2
0

= IT2 + IT3 . (16)

The nonperturbative large N calculation consists in the evaluation of all cactus diagrams

which can be summed up as

MF = m0

{
1−

N

2π
g2

0M
−ε
F

[
(4π)

ε
2 Γ(ε/2) − 4IT1 (yF )

]}−1

, (17)

where yF = MF/T . The bare and renormalized parameters are related via

m0 = Zmm , (18)

and

g2
0 = Zgg

2µε , (19)

where µ is the arbitrary scale introduced by dimensional regularization. The renormalization

constants are

Zm = Zg =

[
1 +

g2N

πε

]−1

. (20)

Substituting Eqs. (18) and (19) into Eq. (17) yields the finite expression for the dimensionless

quantity MF /ΛMS

MF

ΛMS

=
m

ΛMS

{
1 +

N

π
g2

[
ln

(
MF

µ̄

)
+ 2IT1 (yF )

]}−1

, (21)

where ΛMS = µ̄ exp[−π/(Ng2)] and µ̄ = µ(4π)
1
2 exp(−γE/2) with γE = 0.577215. Equation

(21) satisfies the RG equation
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µ
d

dµ
MF =

(
µ∂y2

0 = IT2 + IT3
∂

∂µ
+ gβ(g)

∂

∂g
−mγm(g)

∂

∂m

)
MF = 0 , (22)

where

β(g) = −
N

2π
g2 and γm(g) =

N

π
g2 . (23)

Then, in the chiral limit (m = 0), the finite temperature mass gap equation is given by

MF (T ) = MF (0) exp[−2IT1 (yF )] , (24)

where MF (0) = ΛMS. This is just the large N result which reproduces the phase diagram

for the fermion mass [11].

The variational calculation starts with the substitutions Eqs. (3) and (4) . With this

procedure Eq. (2) interpolates between the original massless GN model (at δ = 1) and a

massive free theory (at δ = 0). The perturbative calculation is now done in powers of the

bookkeeping parameter δ and extremized with respect to m0 at δ = 1 (PMS). Starting with

O(δ) one has at δ = 1

M
(1)
F (m0) = m

(0)
F + g2

0m
(1)
F −m0

∂m
(0)
F

∂m0
= g2

0m
(1)
F , (25)

which has no nontrivial extremum in m0 at T = 0 nor at finite temperatures. At δ = 1 the

O(δ2) fermionic mass is given by

M
(2)
F (m0) = g2

0m
(1)
F − g

2
0m0

∂m
(1)
F

∂m0
+ g4

0m
(2)
F . (26)

The extremization with respect to m0 in the limit ε→ 0 does not give any useful information

since the term g4
0m

(2)
F , which has no nontrivial extremum, dominates. This behaviour, which

persists to higher orders, has also been noted at zero temperature [5] and we find that the

situation does not change at finite temperatures.

III. THE VARIATIONAL CALCULATION TO ALL ORDERS.

In this section we shall follow Ref. [5] to perform an all order variational calculation in the

large N limit eliminating the optimization problem encountered in the previous section. The
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general philosophy within variational methods is to start with a trial value which is expected

to be reasonably close to the true value of the physical parameters. In our case this means

that we can start by formulating a nonperturbative ansatz which already resums a good

part of the RG behaviour of the fermionic mass before launching into the actual variational

calculation. Of course this is a rather easy task within the large N limit, where the exact

answer Eq. (17) constitutes the natural choice. Performing the substitutions Eqs. (3) and

(4) in Eq. (17) we get

MF (f) =
m0(1− δ)

f(δ)
, (27)

where we have defined

f(δ) = 1−
N

2π
δg2

0m
−ε
0 (1− δ)−εf ε

[
(4π)

ε
2 Γ(ε/2) − 4IT1 (y′F )

]
, (28)

with y′F = MF (f)/T . It is now possible to perform an expansion in powers of δ to order-n

around the free theory (δ = 0). Using contour integration one obtains MF to nth order of

perturbation theory

M
(n)
F (m0) =

1

2πi

∮
dz(

1

z
+

δ

z2
+ ...+

δn

zn+1
)
m0(1− z)

f(z)
, (29)

which, at δ = 1, gives

M
(n)
F (m0) =

1

2πi

∮
dz

zn+1

m0

f(z)
. (30)

Once Zm and Zg are applied to the bare m0 and g2
0 one gets the finite expression for the

dimensionless quantity MF /ΛMS

M
(n)
F (m)

ΛMS

=
1

2πi

∮
dz

zn+1

m

ΛMS

{
1 +

N

π
g2z

[
ln

(
MF (f)

µ̄

)
+ 2IT1 (y′F )

]}−1

. (31)

As noted in the case of the anharmonic oscillator [17], it is possible to extract more structure

from the limit of infinite order by rescalling m with the order n. After distortion of the

contour it is clear that only the vicinity of z = 1 survives in the limit n→∞, which can be

analyzed by changing variables
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1− z =
v

n
. (32)

Rescalling m by introducing m′ = m/n we get, in the n→∞ limit

MF (m′′)

ΛMS

=
1

2πi

∮
dvevm′′

K(v)
, (33)

where the integration runs counterclockwise around the negative real axis. The function

K(v) is given by

K(v) = ln

(
m′′v

K(v)

)
+ 2IT1

(
m′′v

tK(v)

)
, (34)

where

m′′ =
m′

ΛMS

(
Ng2

π

)−1

, (35)

with t = T/ΛMS. Equations (33) and (34), which summarize our variational approach,

should be understood as follows: for a given variational parameter m′′, and a given tem-

perature T , Eq. (34) enables one to determine K(v) self consistently. The variational result

is then given in an explicitly RG invariant way by extremizing Eq. (33) with respect to

m′′. In general this program has to be achieved numerically. However, before doing that

one can use the fact that the large N limit is free from infra red divergences to perform an

analytical exploitation of the m′′ → 0 limit where the integral is dominated by the v ∼ 0

region. Simple considerations show that for T < Tc

K(v) ∼
m′′→0

m′′v
ΛMS

MF (T )
, (36)

where MF (T ) is given in Eq. (24). Moreover, K(v) has a cut starting at a negative value of v

and lying along the negative real axis. Hence, the integral Eq. (33) converges exponentially to

the expected result as m′′→ 0. As T → Tc, the branching point approaches the value v = 0

merging to it at T = Tc. At this point the integral becomes divergent at m′′ = 0 and does

not allow more extrema for T > Tc. Numerical results obtained at different temperatures

(see Fig. 1) indicate that m′′ = 0 is in fact the only real extremum. The standard large N

structure of the phase transition is then clearly reproduced .
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IV. CONCLUSIONS

In this letter we have shown that a recently proposed variational method can be success-

fully generalized to the finite temperature domain. This nonperturbative scheme respects

the renormalization program of the theory, avoiding potential problems which may arise in

the application of variational methods to quantum field theories. For comparison purposes,

and to introduce the method in the study of finite temperature chiral symmetry restoration

we have chosen to start with the large N limit of the Gross-Neveu model. We have seen that

optimization problems encountered in the zero temperature low order variational calculation

persist at finite temperatures. Then by applying the all order variational calculation scheme

developed in Ref. [5] we were able to recover exactly the usual large N result for chiral

symmetry restoration in the GN model. The finite N case, which is also interesting due to

Landau’s theorem, is more complex and will be discussed in a forthcoming work.
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FIGURES

FIG. 1. MF (T )/MF (0) as a function of the arbitrary parameter m′′ for different temperatures.

From top to bottom the curves represent t = 0.1, t = 0.5 and t = 0.55 respectively.

12


