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Abstract

The formalism developed by Chandrasekhar for the linear polar pertur-

bations of the Reissner-Nordström solution is generalized to include the case

of dipole (l=1) perturbations. Then, the perturbed metric coefficients and

components of the Maxwell tensor are computed.
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The gravitational and electromagnetic perturbations of Schwarzschild and

Reissner-Nordström black holes have been studied in detail [1, 2, 3, 4]. Even

though these two exact solutions are spherically symmetric, there is an impor-

tant difference in the character of their perturbations: In the Schwarzschild

solution the gravitational and electromagnetic (linear) perturbations are un-

coupled, while, in contradistinction, in the Reissner-Nordström solution, due

to the background electric field, any electromagnetic perturbation causes

a gravitational perturbation, and vice versâ. This coupling of the electro-

magnetic and the gravitational perturbations complicates the study of the

perturbations in Reissner-Nordström black holes considerably. Despite this

complication, it turns out that even in the Reissner-Nordström black hole it

is possible to decouple the perturbations (of each multipole order and for each

parity) to two independent modes (each of which is made of an electromag-

netic component and a gravitational component). This decoupling plays a

crucial rôle in the study of perturbations in Reissner-Nordström black holes.

The decoupling of the perturbations of Reissner-Nordström into electro-

magnetic and metric perturbations was treated, for both polar and axial

modes, in Ref. [2] and summarized in Ref. [3]. (The treatment for the

Schwarzschild black hole is very similar, and is given in Refs. [1] and [3]).

We shall see, however, that the formalism presented in Refs. [2, 3] is not valid

in the case of dipole (l = 1) modes. For many applications, this difficulty is

not very crucial, as one may be primarily interested in the dynamics of grav-

itational waves, for which there are no radiative modes with l < 2. However,

it may be of interest to treat the propagation of dipole electromagnetic waves,

especially in the Reissner-Nordström spacetime, because of the coupling of

the gravitational and the electromagnetic fields. Thus, the late-time behav-

ior of electromagnetic perturbations produced during the collapse decays like

the (2l+ 2) inverse-power of external time [5], and is therefore dominated by

the l = 1 mode. In addition, the l = 1 perturbations are especially impor-

tant in the analysis of the (electromagnetic) effects of the blue-sheet at the

Cauchy horizon of Reissner-Nordström black holes [6]. (Similar electromag-

netic effects are to be expected at the inner horizon of the Kerr black hole,

though we have not analyzed this case.)
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for dipole polar modes. Then, we generalize the formalism to include polar

perturbations of any l, including l = 1. The treatment of axial perturbations

is different and we hope to treat them separately.

This Paper deals with perturbations of the Reissner-Nordström black

hole. The perturbations of the Schwarzschild black hole are obtained from

our formalism as a special case. Throughout this Paper we shall use the

notation and convention of [3] unless when explicitly stated otherwise. As

a rule, we shall not deviate from the notation of [3] except when necessary.

When we do change the notation, it will be by adding ‘bars’ to the symbols of

[3]. The ‘barred’ objects will be defined such that they are treated properly

for dipole perturbations.

The outline of this Paper is as follows: In Section 2 we shall describe the

definitions and notation. In Section 3 we give a full treatment for the general

formalism of polar perturbations of the Reissner-Nordström solution. In

Section 4 we shall decouple the fundamental equations for the perturbations

for the dipole case, and in Section 5 we shall generalize the treatment for

all polar modes. In Sections 6 and 7 we shall present the completion of

the solution, and in Section 8 we shall discuss the formalism and give some

concluding remarks.

2 Definitions and Notation

Following Chandrasekhar [3], we write the line-element of an unperturbed

Reissner-Nordström black hole in the form

ds2 = e2ν
(
dx0

)2
− e2ψ

(
dx1

)2
− e2µ2

(
dx2

)2
− e2µ3

(
dx3

)2

= e2ν
(
dx0

)2
− e2µ2

(
dx2

)2
− r2 dΩ2, (1)

where the co-ordinates are(
x0 x1 x2 x3

)
= (t φ r θ) , (2)

dΩ2 is the unit two-sphere line-element, and the metric coefficients are e2ν =

e−2µ2 = (r2 − 2Mr + Q2
∗)/r

2 ≡ ∆/r2, M,Q∗ being the mass and electric

charge, respectively, of the Reissner-Nordström black hole, and r being the
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circumference 2πr. The general form of the line-element (1) is preserved un-

der polar perturbations (sometimes called even-parity perturbations); On the

other hand, axial perturbations (called also odd-parity perturbations), will

lead in general to non-vanishing off-diagonal metric coefficients1. Therefore,

the form of the metric of a generally-perturbed Reissner-Nordström black

hole will be much more complicated than the line-element (1). It has been

shown [3], that a metric of sufficient generality is of the form

ds2 = e2ν
(
dx0

)2
− e2ψ

(
dx1 − ω dx0 − q2 dx

2 − q3 dx
3
)2

− e2µ2

(
dx2

)2
− e2µ3

(
dx3

)2
. (3)

Since the unperturbed Reissner-Nordström background is spherically sym-

metric, we can consider only axisymmetric modes of perturbations without

any loss of generality2. The line-element (3) involves seven functions, namely,

ν, ψ, µ2, µ3, ω, q2, and q3. Beacuse the Einstein equations involve only six in-

dependent functions, not all seven functions can be determined arbitrarily,

and there is one constraint on the metric coefficient. It has been shown [3],

that this constraint is

(ω,2 − q2,0),3 − (ω,3 − q3,0),2 + (q2,3 − q3,2),0.

3 The General Formalism

For completeness, we shall first present the linearized field-equations and the

decoupling of the r, θ varibles as given in [3]: The formalism for the treatment

of the perturbations is made of the linearization of the coupled Einstein-

Maxwell equations about the Reissner-Nordström solution. In particular,

1Axial perturbations are characterized by the non-vanishing of the metric functions
ω, q2, q3 (the non-vanishing of these metric-coefficients induce a dragging of the inertial-
frame and impart a rotation to the black hole), while polar perturbations are those which
alter the values of the metric functions ν, µ2, µ3 and ψ (which are in general non-zero for
the unperturbed black hole).

2This is because all non-axisymmetric modes can be obtained from the axisymmetric
modes, if the unperturbed spacetime is spherically symmetric [3].
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equations [3]:

( δψ + δµ3),r +
(

1

r
− ν,r

)
( δψ + δµ3)−

2

r
δµ2 = − δR(0)(2) = 0, (4)

[
( δψ + δµ2),θ + ( δψ − δµ3) cot θ

]
,0

= −eν+µ3 δR(0)(3) = −2Q∗
eν

r
F(2)(3), (5)

( δψ + δν)r,θ + ( δψ − δµ3),r cot θ −
(

1

r
− ν,r

)
δν,θ −

(
1

r
+ ν,r

)
δµ2,θ

= −eµ2+µ3 δR(2)(3) = −2Q∗
e−ν

r
F(0)(3), (6)

e2ν
[
2

r
δν,r +

(
1

r
+ ν,r

)
( δψ + δµ3),r − 2

(
1

r2
+ 2

ν,r

r

)
δµ2

]
+

1

r2
[( δψ + δν),θ,θ + (2 δψ + δν − δµ3),θ cot θ + 2 δµ3]

− e−2ν( δψ + δµ3),0,0

= δG(2)(2) = δR(2)(2) = 2
Q∗
r2

δF(0)(2), (7)

e2ν

[
δψ,r,r + 2

(
1

2
+ ν,r

)
+

1

r
( δψ + δν + δµ3 − δµ2),r

− 2
(

1

2
+ 2ν,r

)
1

r
δµ2

]
+

1

r2
[ δψ,θ,θ + δψ,θ cot θ + ( δψ + δν

− δµ3 + δµ2),θ cot θ + 2 δµ3]− e−2ν δψ,0,0

= − δR(1)(1) = 2
Q∗

r2
δF(0)(2), (8)

re−νF(0)(3),0 =
[
reνF(2)(3)

]
,r
, (9)

δF(0)(2),0−
Q∗

r2
( δψ + δµ3),0 +

eν

r sin θ

[
F(2)(3) sin θ

]
,θ

= 0, (10)

[
δF(0)(2)−

Q∗

r2
( δν + δµ2)

]
,θ

+
[
reνF(3)(0)

]
,r

+ re−νF(2)(3),0 = 0, (11)
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are the Maxwell, Einstein, and Ricci tensors, respectively. The variables r

and θ in Eqs. (4)–(11) can be separated by the Friedman substitutions [7]

δν = N(r)Pl(cos θ), (12)

δµ2 = L(r)Pl(cos θ), (13)

δµ3 = [T (r)Pl(cos θ) + V (r)Pl,θ,θ(cos θ)] , (14)

δψ = [T (r)Pl(cos θ) + V (r)Pl,θ(cos θ) cot θ] , (15)

δF(0)(2) =
r2e2ν

2Q∗
B(0)(2)(r)Pl(cos θ), (16)

F(0)(3) =
r2eν

2Q∗
B(0)(3)(r)Pl,θ(cos θ), (17)

and

F(2)(3) = −iσ
r2e−ν

2Q∗
B(2)(3)(r)Pl,θ(cos θ). (18)

Pl(cos θ) are the Legendre functions of order l. We assume that the perturba-

tions can be analyzed into their normal modes with a time dependence eiσt.

This Fourier decomposition of the perturbations can be done without any

loss of generality due to the linearized theory we assume3. Using these sub-

stitutions, we obtain the following equations for the radial functions defined

by Eqs. (12)–(18):[
d

dr
+
(

1

r
− ν,r

)]
[2T − l(l + 1)V ]−

2

r
L = 0, (19)

(T − V + L) = B(2)(3), (20)

(T − V +N),r −
(

1

r
− ν,r

)
N −

(
1

r
+ ν,r

)
L = B(0)(3), (21)

2

r
N,r +

(
1

r
+ ν,r

)
[2T − l(l + 1)V ]−

2

r

(
1

r
+ 2ν,r

)
L

−
l(l + 1)

r2
e−2νN −

(l− 1)(l + 2)

r2
e−2νT + σ2e−4ν [2T − l(l + 1)V ]

= B(0)(2), (22)

3We note, that these components are frequency-dependent. To obtain components
independent of the frequency one should Fourier-transform from the frequency-plane to
the temporal-plane.
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r4e2νB(0)(2) = 2Q2
∗ [2T − l(l + 1)V ]− l(l + 1)r2B(2)(3), (24)[

r2e2νB(0)(3)

]
,r

+ r2e2νB(0)(2) + σ2r2e−2νB(2)(3) = 2Q2
∗

N + L

r2
. (25)

Note, that in Eq. (22) we changed the formalism of [3]. We shall now see the

reasons for this change in the formalism, which makes the extension of the

formalism to l = 1 necessary. In Ref. [3], a new radial function X is defined

by

X = nV =
1

2
(l − 1)(l + 2)V.

For dipole radiation n, and consequentlyX, vanish. Hence, it is clear that the

variable X – because it vanishes identically for dipole perturbations – cannot

carry any information on the original variable V , which is to be calculated.

As it is clear that the perturbative terms do not vanish identically (it is

well known that there is in general a dipole electromagnetic mode, also in

Minkowski spacetime), the formalism of [3] needs to be generalized to be

valid for the treatment of dipole radiation too. Furthermore, in Ref. [3]

physically-meaningful variables are devided by n or by µ, where µ2 ≡ 2n.

This is clearly inappropriate4 for dipole radiation due to the unity value of l

and consequently the identically-vanishing values of n and µ.

We re-write Eq. (20) as

2T − l(l + 1)V = −2
[
L +

1

2
(l − 1)(l + 2)V − B(2)(3)

]
, (26)

which, after substitution in Eq. (19) yields[
L+

1

2
(l− 1)(l + 2)V − B(2)(3)

]
,r

= −
(

1

r
− ν,r

) [
L+

1

2
(l − 1)(l + 2)V

− B(2)(3)

]
−

1

r
L. (27)

Combining Eqs. (20),(21), and (23) we obtain

(N − L),r =
(

1

r
− ν,r

)
N +

(
1

r
+ ν,r

)
L+

2

r
B(2)(3) (28)

From Eqs. (22),(27), and (28) we find the following equations for the radial

functions L,N , and V : (Note, that Eq. (31) is an equation for the variable

4See, e.g., Eqs. (180)–(181) of Chapter 5 of [3].
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vanishes identically, and therefore is not to be treated.)

N,r = aN + bL+ c

[
1

2
(l − 1)(l + 2)V − B(2)(3)

]
, (29)

L,r =
(
a−

1

r
+ ν,r

)
N +

(
b−

1

r
− ν,r

)
L

+ c

[
1

2
(l − 1)(l + 2)V − B(2)(3)

]
−

2

r
B(2)(3), (30)

1

2
(l − 1)(l + 2)V,r = −

(
a−

1

r
+ ν,r

)
N −

(
b+

1

r
− 2ν,r

)
L

−
(
c+

1

r
− ν,r

) [
1

2
(l− 1)(l + 2)V − B(2)(3)

]
+ B(0)(3), (31)

where

a =
1 + (l− 1)(l + 2)/2

r
e−2ν , (32)

b = −
1

r
−

[
(l − 1)(l + 2)

2r
−
M

r2

]
e−2ν

+

[
M2

r3
+ σ2r −

Q2
∗

r3

(
1 + 2e2ν

)]
e−4ν , (33)

c = −
1

r
+

1

r
e−2ν +

[
M2

r3
+ σ2r −

Q2
∗

r3

(
1 + 2e2ν

)]
e−4ν . (34)

It is important to notice, that for dipole radiation Eq. (31) becomes an

algebraic equation rather than a differential equation. (We shall see this in

detail when we explicitly discuss the dipole mode.) Eqs. (23),(25),(29),(30),

and (31) can be reduced to a pair of second-order equations (and thus allow

for a special solution [3]). We now define the following functions: (Notice

the difference between these functions and the functions defined in Ref. [3].)

H̄
(+)
2 = rV −

r2

$

[
L+

1

2
(l − 1)(l + 2)V − B(2)(3)

]
, (35)

H̄
(+)
1 = −

1

Q∗

{
r2B(2)(3) + 2Q2

∗

r

$

[
L+

(l − 1)(l + 2)

2
V − B(2)(3)

]}
,(36)

where $ = (l − 1)(l + 2)r/2 + 3M − 2Q2
∗/r. The newly-defined functions

satisfy the following coupled equations:

Λ2H̄
(+)
2 =

∆

r5

{
ŪH̄

(+)
2 + W̄

[
−3MH̄

(+)
2 + 2Q∗H̄

(+)
1

]}
, (37)

Λ2H̄
(+)
1 =

∆

r5

{
ŪH̄

(+)
1 + W̄

[
2Q∗(l− 1)(l + 2)H̄(+)

2 + 3MH̄
(+)
1

]}
, (38)
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Ū = [(l − 1)(l + 2)r + 3M ] W̄ + [$ − (l− 1)(l + 2)r −M ]

−
(l − 1)(l + 2)∆

$
, (39)

W̄ =
∆

r$2
[(l − 1)(l + 2)r + 3M ] +

(l− 1)(l + 2)r +M

$
, (40)

and Λ2 ≡ d2/ dr2
∗ + σ2, r∗ being the Regge-Wheeler ‘tortoise’ co-ordinate

defined by (∆/r2)d/ dr = d/ dr∗.

4 Decoupling of the Equations – Dipole Case

The decoupling of the equations for the radial functions H̄(+)
1 , H̄

(+)
2 is easier

when one first decouples them for the special case l = 1, and then uses this

case for the determination of parameters for the decoupling of the general

equations. In the next section we shall decouple the equations for any l. for

l = 1, Eqs. (37) and (38) assume the form

Λ2H̄
(+)
1 =

∆

r5

(
Ū + 3MW̄

)
H̄

(+)
1 , (41)

Λ2H̄
(+)
2 =

∆

r5

[
($ −M) H̄

(+)
2 + 2Q∗W̄H̄

(+)
1

]
. (42)

It is important to notice, that Eq. (41) is already decoupled. We shall find

it convenient to define new radial functions Z̄(+)
1 , Z̄

(+)
2 by

H̄
(+)
1 = αZ̄

(+)
1 + βZ̄

(+)
2 , (43)

H̄
(+)
2 = γZ̄

(+)
1 + δZ̄

(+)
2 . (44)

Because Eq. (41) is decoupled, we find that for l = 1, β = 0. Substituting

Eqs. (43) and (44) in Eqs. (41) and (42), we find that

αΛ2Z̄
(+)
1 = α

∆

r5

(
Ū + 3MW̄

)
Z̄

(+)
1 , (45)

γΛ2Z̄
(+)
1 + δΛ2Z̄

(+)
2 =

∆

r5

[
γ($ −M) + 2αQ∗W̄

]
Z̄

(+)
1

+
∆

r5
δ($−M)Z̄(+)

2 . (46)
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equations, we find that

αδΛ2Z̄
(+)
2 = α

∆

r5

[
γ($ −M) + 2αQ∗W̄ − γ(Ū + 3MW̄ )

]
Z̄

(+)
1

+ αδ
∆

r5
($−M)Z̄(+)

2 . (47)

In order that Eq. (47) indeed be decoupled, the decoupling parameters α

and γ must be such that

γ($ −M) + 2αQ∗W̄ − γ(Ū + 3MW̄ ) = 0. (48)

We thus obtain that

α =
3MW̄ + Ū +M −$

2Q∗W̄
γ, (49)

or, substituting Eq. (39) for Ū ,

α = 3
M

Q∗
γ. (50)

We still have the freedom to fix one of the parameters α or γ. Choosing α =

1/(6M) [and, consequently, γ = Q∗/(18M2)], we obtain for the decoupled

equations (in the l = 1 case):

Λ2Z̄
(+)
1 =

∆

r5

(
2M − 2

Q2
∗

r
+ 6MW̄

)
Z̄

(+)
1 , (51)

Λ2Z̄
(+)
2 =

∆

r5

(
2M − 2

Q2
∗

r

)
Z̄

(+)
2 . (52)

We notice, that δ remains free to be fixed arbitrarily.

5 Decoupling of the Equations – General

Case

In this section, we shall decouple Eqs. (37) and (38) for any l. We again use

Eqs. (43) and (44), but in this case, of course, β will in general not vanish

identically. We thus find that

αΛ2Z̄
(+)
1 + βΛ2Z̄

(+)
2 =

∆

r5

[
αŪ + 2γQ∗(l − 1)(l + 2)W̄ + 3αMW̄

]
Z̄

(+)
1
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γΛ2Z̄
(+)
1 + δΛ2Z̄

(+)
2 =

∆

r5
(γŪ − 3γMW̄ + 2αQ∗W̄ )Z̄

(+)
1

+
∆

r5
(δŪ − 3δMW̄ + 2βQ∗W̄ )Z̄(+)

2 . (54)

We now multiply Eq. (53) by γ and Eq. (54) by α. Substracting the

equations we find that

(βγ − αδ)Λ2Z̄
(+)
2 =

∆

r5

[
2γ2Q∗(l − 1)(l + 2)W̄ + 6αγMW̄

− 2α2Q∗W̄
]
Z̄

(+)
1 +

∆

r5

[
βγŪ + 2γδQ∗(l − 1)(l + 2)W̄ + 3βγMW̄

− αδŪ + 3αδMW̄ − 2αβQ∗W̄
]
Z̄

(+)
2 . (55)

We now require that

2γ2Q∗(l− 1)(l + 2) + 6αγM − 2α2Q∗ = 0. (56)

The solution of this constraint is

α =
γ
[
3M ±

√
9M2 + 4Q2

∗(l− 1)(l + 2)
]

2Q∗
. (57)

To obtain the result of the previous section for the l = 1 mode, we choose

the positive root. We now define

q1 = 3M +
√

9M2 + 4Q2
∗(l − 1)(l + 2), (58)

and find that

α =
q1

2Q∗
γ. (59)

For the l = 1 case we find that q1 = 6M , and we thus indeed recover our

previous result for the l = 1 case [Eq. (50)]. To obtain a corresponding

connection between β and δ we multiply Eq. (53) by δ and Eq. (54) by β.

Substracting the equations we find that

(βγ − αδ)Λ2Z̄
(+)
1 =

∆

r5

[
βγŪ − 3βγMW̄ + 2αβQ∗W̄ − αδŪ

− 2γδ(l− 1)(l + 2)Q∗W̄ − 3αδMW̄
]
Z̄

(+)
1 +

∆

r5

[
−6βδMW̄

+ 2β2Q∗W̄ − 2δ2(l− 1)(l + 2)Q∗W̄
]
Z̄

(+)
2 . (60)
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2β2Q∗ − 2δ2(l − 1)(l + 2)Q∗ − 6βδM = 0. (61)

The solution of Eq. (61) is:

β =
δ
[
3M ±

√
9M2 + 4(l − 1)(l + 2)Q2

∗

]
2Q∗

. (62)

Because for l = 1 we have β = 0, we choose the negative root, and define

q2 = 3M −
√

9M2 + 4Q2
∗(l − 1)(l + 2). (63)

We thus find that

β =
q2

2Q∗
δ. (64)

We now fix δ = 1/q1, and consequently β = q2/(2q1Q∗). Thus, we found the

four parameters of Eqs. (43) and (44), and completed the decoupling of the

equations.

6 The Decoupled Equations

In the previous section we found that Eqs. (43) and (44) can be explicitly

written as

H̄
(+)
1 =

1

q1
Z̄

(+)
1 +

q2

2q1Q∗
Z̄

(+)
2 , (65)

H̄
(+)
2 =

Q∗

3Mq1

Z̄
(+)
1 +

1

q1

Z̄
(+)
2 . (66)

Substituting Eqs. (65) and (66) in Eqs. (37) and (38) we find that the

differential equations satisfied by Z̄
(+)
1 , Z̄

(+)
2 are

Λ2Z̄
(+)
1 =

∆

r5

{
Ū +

9M2W̄√
9M2 + 4Q2

∗(l− 1)(l + 2)

+
[q1q2 − 4Q2

∗(l− 1)(l + 2)]W̄

q2 − q1

}
Z̄

(+)
1 , (67)

Λ2Z̄
(+)
2 =

∆

r5

{
Ū −

9M2W̄√
9M2 + 4Q2

∗(l − 1)(l + 2)

−
[q1q2 − 4Q2

∗(l − 1)(l + 2)]W̄

q2 − q1

}
Z̄

(+)
2 . (68)
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Λ2Z̄
(+)
i = V̄

(+)
i Z̄

(+)
i , (69)

where i = 1, 2 and

V̄
(+)

1,2 =
∆

r5

[
Ū ±

1

2
(q1 − q2) W̄

]
. (70)

7 The Completion of the Solution

As five differential equations of the first order are reduced to a pair of second-

order equations, it is clear that there is a special solution. This special

solution is [3]:

N (0) = r−2eν
[
M −

r

∆

(
M2 −Q2

∗ + σ2r4
)
− 2

Q2
∗

r

]
(71)

L(0) = r−3eν
(
3Mr − 4Q2

∗

)
(72)

V (0) = eνr−1 (73)

B
(0)
(2)(3) = −2Q2

∗r
−3eν (74)

B
(0)
(0)(3) = 2Q2

∗r
−6e−ν

(
2Q2
∗ + r2 − 3Mr

)
. (75)

As in Ref. [3], the completion of the solution is given by:

N = N (0)Φ + (l − 1)(l + 2)
e2ν

$
H̄

(+)
2 −

e2ν

$

[
1

2
(l− 1)(l + 2)rH̄(+)

2

+ Q∗H̄
(+)
1

]
,r

+
1

r$2

{
e2ν [$ − (l− 1)(l + 2)r − 3M ]

−
[
1

2
(l − 1)(l + 2) + 1

]
$
} [

1

2
(l− 1)(l + 2)rH̄(+)

2 +Q∗H̄
(+)
1

]
(76)

L = L(0)Φ−
1

r2

[
1

2
(l− 1)(l + 2)rH̄(+)

2 +Q∗H̄
(+)
1

]
(77)

V = V (0)Φ +
1

r
H̄

(+)
2 (78)

B(2)(3) = B
(0)
(2)(3)Φ−

Q∗

r2
H̄

(+)
1 (79)

B(0)(3) = B
(0)
(0)(3)Φ−

Q∗

r2
H̄

(+)
1,r

− 2
Q2
∗

r2$

[
1

2
(l − 1)(l + 2)rH̄

(+)
2 +Q∗H̄

(+)
1

]
(80)

T = B(2)(3) + V − L (81)

B(0)(2) = r−4e−2ν
{
2Q2
∗ [2T − l(l + 1)V ]− l(l + 1)r2B(2)(3)

}
, (82)
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Φ =
∫ [

1

2
(l − 1)(l + 2)rH̄

(+)
2 +Q∗H̄

(+)
1

]
e−ν

$r
dr. (83)

8 Discussion

The formalism presented here is adequate for the treatment of polar modes

of any l, including l = 1. Now, we shall see in detail the perturbation for-

malism for dipole polar perturbations. We can simply substitute a value

of unity for l, and obtain the equations for the dipole mode. We observe,

that Eq. (31) becomes an algebraic equation rather than a differential equa-

tion. This results from the non-radiative character of the dipole gravitational

mode. Hence, dynamics is obtained from just one differential equation (of

the second order) and not by a pair of second-order differential equations.

The expression for Eq. (31) in the case of dipole perturbations then reads

−
(
a−

1

r
+ ν,r

)
N −

(
b+

1

r
− 2ν,r

)
L

+
(
c+

1

r
− ν,r

)
B(2)(3) +B(0)(3) = 0, (84)

with a, b and c defined by Eqs. (32)–(34). Now, we re-write Eqs. (35) and

(36) as

H̄
(+)
2 (l = 1) = rV −

r2

$
(L− B(2)(3)), (85)

and

H̄
(+)
1 (l = 1) = −

1

Q∗

{
r2B(2)(3) + 2Q2

∗

r

$

[
L− B(2)(3)

]}
, (86)

where $(l = 1) = 3M − 2Q2
∗/r. With these definitions, the differential

equation for H̄
(+)
1 (l = 1) is already decoupled from the equation for H̄

(+)
2 (l =

1), and it reads

Λ2H̄
(+)
1 (l = 1) =

∆

r5

(
Ũ + 3MW̃

)
H̄

(+)
1 (l = 1), (87)

where Ũ = 3MW̃ + ($ −M) and W̃ = 3M∆/(r$2) + M/$. It turns out,

that all the physically meaningful quantities are fully determined by H̄
(+)
1 .
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N = N (0)Φ−
e2ν

$
Q∗H̄

(+)
1,r +

Q∗

r$2

[
e2ν ($ − 3M) −$

]
H̄

(+)
1 (88)

L = L(0)Φ−
Q∗

r2
H̄

(+)
1 (89)

B(2)(3) = B
(0)
(2)(3)Φ−

Q∗

r2
H̄

(+)
1 (90)

B(0)(3) = B
(0)
(0)(3)Φ−

Q∗

r2
H̄

(+)
1,r − 2

Q3
∗

r2$
H̄

(+)
1 (91)

B(0)(2) = r−4e−2ν
{

4Q2
∗[B(2)(3)− L]− 2r2B(2)(3)

}
, (92)

where we use Eqs. (47)–(51) for the definitions of the special functions used

in the above equations. The function Φ(l = 1) is

Φ(l = 1) = Q∗

∫
H̄

(+)
1

e−ν

$r
dr. (93)

Using these radial functions, the metric perturbations [through Eqs. (12)–

(15)] are given by

δν(l = 1) = N(r) cos θ (94)

δµ2(l = 1) = L(r) cos θ (95)

δµ3(l = 1) = δψ

=
[
B(2)(3)− L

]
cos θ, (96)

and the perturbations of the tetrad components of the Maxwell tensor [Eqs.

(16)–(18)] are

δF(0)(2)(l = 1) =
r2e2ν

2Q∗
B(0)(2)(r) cos θ (97)

F(0)(3)(l = 1) =
reν

2Q∗
B(0)(3)(r) sin θ (98)

F(2)(3)(l = 1) = iσ
re−ν

2Q∗
B(2)(3)(r) sin θ. (99)

To obtain the perturbations for the Schwarzschild solution we cannot

just set Q∗ equal to zero in Eqs. (69) and (70), because we devided by Q∗ in

several places during the development of the formalism. However, Eqs. (37)

and (38) are already decoupled for the Schwarzschild black hole. This is such

because in the Schwarzschild spacetime the electromagnetic and gravitational

fields are not coupled as in the Reissner-Nordström spacetime. Hence, one

needs not decouple the equations.
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