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ABSTRACT
Peculiar velocities induce apparent line of sight displacements of galaxies in redshift
space, distorting the pattern of clustering. On large scales, the amplitude of the distor-
tion yields a measure of the dimensionless linear growth rate β ≈ Ω0.6/b of fluctuations,
where Ω if the cosmological density and b is the bias factor. To make the maximum
statistical use of the data in a wide-angle redshift survey, and for the greatest accuracy,
the spherical character of the distortion needs to be treated properly, rather than in the
simpler plane-parallel approximation. In the linear regime, the redshift space correlation
function is described by a spherical distortion operator acting on the true correlation
function. It is pointed out here that there exists an operator, which is essentially the
logarithmic derivative with respect to pair separation, which both commutes with the
spherical distortion operator, and at the same time defines a characteristic scale of sep-
aration. The correlation function can be expanded in eigenfunctions of this operator,
and these eigenfunctions are eigenfunctions of the distortion operator. Ratios of the
observed amplitudes of the eigenfunctions yield measures of the linear growth rate β
in a manner independent of the shape of the correlation function. More generally, the
logarithmic derivative ∂/∂ ln r with respect to depth r, along with the square L2 and
component Lz of the angular momentum operator, forms a complete set of commuting
operators for the spherical distortion operator acting on the density. The eigenfunctions
of this complete set of operators are spherical waves about the observer, with radial
part lying in logarithmic real or Fourier space.
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1 INTRODUCTION

Peculiar velocities induce apparent line of sight displacements of galaxies in redshift space, distorting the pattern of clustering.
In an influential paper, Kaiser (1987) pointed out that, in the large-scale linear regime, and in the plane-parallel approximation,
the distortion takes a particularly simple form in Fourier space. He showed that a wave of amplitude δ̃(k) appears amplified
in redshift space by a factor 1 + βµ2 (in this paper a superscript s is used to distinguish the redshift space overdensity δ̃s

from the unredshifted overdensity δ̃, and likewise the redshift space correlation function ξs and power spectrum P s from their
unredshifted counterparts ξ and P ):

δ̃s(k) = (1 + βµ2)δ̃(k) . (1)

Here µ ≡ ẑ.k̂ is the cosine of the angle between the wavevector k and the line of sight z, and β is the growth rate of growing
modes in linear theory, the dimensionless quantity which solves the linearized continuity equation ∇.v+βδ = 0 in units where
the Hubble constant is one. In unbiased standard pressureless Friedmann cosmology, the linear growth rate β depends on the
cosmological density parameter Ω as (e.g. Peebles 1980, equation [14.8])

β ≈ Ω0.6 . (2)

If the galaxy overdensity δ is linearly biased by a factor b relative to the underlying matter density δM of the Universe,
δ = bδM, but velocities are unbiased, then the observed value of β is modified to

β ≈
Ω0.6

b
. (3)

However, the assumption of linear bias lacks compelling justification, and equation (3) is really just an acknowledgment that
the measurement of Ω may be biased if galaxies do not trace mass. In general, β depends on the adopted cosmological model,
and is a function of Ω, the cosmological constant Λ, bias, and perhaps other quantities.
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Kaiser concluded from equation (1) that the power spectrum of galaxies (the Fourier transform of the correlation function)
appears in redshift space amplified by a factor (1 + βµ2)2:

P s(k) = (1 + βµ2)2P (k) . (4)

Kaiser’s formulae (1) and (4) assume the plane-parallel approximation, where galaxies are taken to be sufficiently far
away from the observer that the displacements induced by peculiar velocities are effectively parallel. To date, most studies of
large-scale redshift space distortions have assumed the plane-parallel approximation (Lilje & Efstathiou 1989; McGill 1990;
Loveday et al. 1992; Hamilton 1992, 1993a; Gramann, Cen & Bahcall 1993; Bromley 1994; Fry & Gaztañaga 1994; Fisher et
al. 1994a; Fisher 1995; Cole, Fisher & Weinberg 1994, 1995). In the plane-parallel approximation one is necessarily restricted
to considering only pairs of galaxies separated by no more than some angle on the sky. For example, Hamilton (1993a) and
Cole et al. (1995) restricted the opening angle to 50◦ as a reasonable compromise between statistical uncertainties and the
error resulting from the plane-parallel approximation. Cole et al. (1994, fig. 8) show from simulations that at this opening
angle the plane-parallel approximation causes β to be underestimated by about 5 per cent.

Properly, however, the redshift displacements of galaxies are radial about the observer, not plane-parallel. A correct
treatment of radial distortions, besides being more accurate for pairs of modest angular separation, would improve statistics
by admitting pairs at large angular separations, which would be particularly helpful for measurements at the largest scales.
In all sky surveys such as the IRAS redshift surveys, for example, one could effectively double (by going fore and aft instead
of just fore) the effective scale over which redshift distortions can be measured. The need for greater accuracy will increase as
redshift surveys grow larger, and statistical errors decrease.

The first study of spherical redshift distortions was by Fisher, Scharf & Lahav (1994b) on the 1.2 Jy redshift survey.
They expanded the density field in spherical harmonics, windowing the density in the radial direction with Gaussian windows
at several depths. Heavens & Taylor (1995) improved on Fisher et al.’s procedure by expanding the radial density field in a
complete set of spherical waves. Both sets of authors assumed a prior form of the (unredshifted) power spectrum in determining
a maximum likelihood value of β. Ballinger, Heavens & Taylor (1995) took Heavens & Taylor’s approach a step further by
allowing the power spectrum to vary in six bins. One curious aspect of these studies is that they gave values consistently
higher, β = 0.96+0.20

−0.18 (Fisher et al., 1.2 Jy), β = 1.1 ± 0.3 (Heavens & Taylor, 1.2 Jy), and β = 1.04 ± 0.3 (Ballinger et al.,
1.2 Jy), than values obtained assuming the plane-parallel approximation, β = 0.69+0.28

−0.24 (Hamilton 1993a, 2 Jy), β = 0.45+0.27
−0.18

(Fisher et al. 1994a, 1.2 Jy), and β = 0.52± 0.15 and β = 0.54± 0.3 (Cole et al. 1995, 1.2 Jy and QDOT). The origin of this
discrepancy is not yet clear.

The purpose of the present paper is to set forth a procedure for measuring β from spherical distortions in a manner
independent of the form of the power spectrum. The basic idea is to represent the correlation function in eigenfunctions of
the spherical distortion operator.

It is instructive to see how this works in the plane-parallel case. In general, the linear redshift distortion equation (1) is
an operator equation. In ordinary space, for example, it is

δs(r) = [1 + β(∂/∂z)2∇−2] δ(r) (5)

where ∇−2 is the inverse Laplacian. A key advantage of Kaiser’s formulation is that Fourier modes are eigenfunctions of the
(plane-parallel) distortion operator. This is intimately related to the circumstance that the i∇ operator, whose eigenfunctions
define the Fourier modes, commutes with the distortion operator.

The other key aspect of Kaiser’s formula (4) is that the unredshifted power spectrum P (k) is a function only of the
absolute value k of the wavevector. This implies that ratios of the redshift power spectrum for waves with the same k but
different angles to the line of sight (different µ) yield measures of β independent of the amplitude P (k) of the power spectrum.
This argument identifies k2, or equivalently the operator −∇2, as playing a special role, which is, roughly stated, that k2

‘defines a scale’ of separation.
The first aim, then, of this paper is to identify an operator, analogous to k2 in the plane-parallel case, which both

commutes with the spherical distortion operator, and at the same time ‘defines a scale’ of separations. This is done in Section
3, the spherical distortion operator having been derived in Section 2. The procedure is carried a step further in Section
4, which presents a complete set of commuting operators for the spherical distortion operator. The eigenfunctions of this
complete set of commuting operators are logarithmic spherical waves. Section 5 discusses how to measure β. The conclusions
are summarized in Section 6.

2 THE SPHERICAL DISTORTION OPERATOR

This section derives the operator equations (12) and (15) which relate the redshift density, hence correlation function, to the
real density and correlation function in the linear regime. We assume the standard gravitational instability picture in the
standard pressureless Friedmann cosmology (e.g. Peebles 1980). The derivation treats correctly the spherical character of the
redshift space distortions about the observer, so structures may be nearby and may subtend a large angle. It is nevertheless
necessary to exclude a local region of the Universe about the Milky Way, both to avoid local bias (Section 2.1), and to ensure
the linear requirement that peculiar velocities be small compared to the distance to the observed structures, equation (11).
The derivation here is similar to that of Kaiser (1987, section 2).



4 A. J. S. Hamilton and M. Culhane

In this subsection, the frame of reference is taken to be stationary, that is, the frame of reference of the Cosmic Microwave
Background (CMB). Subsection 2.2 below discusses the transformation to the Local Group frame.

Let s denote the observed redshift distance (in the CMB frame) to a galaxy, and r its true distance from the observer.
The two distances differ by the line of sight peculiar velocity v of the observed galaxy:

s = r + v (6)

in units where the Hubble constant is unity. The number Ns(s)d3s of galaxies observed in an interval d3s of redshift space in
a redshift survey is related to the real space number density N(r) by number conservation:

Ns(s)d3s = N(r)d3r . (7)

An unbiased estimate of the true galaxy overdensity δ(r) at position r is given by 1 + δ(r) = N(r)/Φ(r), where Φ(r) is the
selection function, the expected number density of galaxies at depth r given the selection criteria of the survey. As emphasized
by Fisher et al. (1994b), the selection function Φ(r) in a flux-limited survey is a function of the true distance r, not of the
redshift distance s. Thus one would be inclined to estimate the overdensity δs(s) in redshift space by 1 + δs(s) = Ns(s)/Φ(r).
However, this estimate of the overdensity δs(s) requires knowing not only the true selection function Φ(r), but also the true
distance r to the galaxy at redshift distance s. This can be done, but it requires a full reconstruction of the deredshifted
density field, which is not the philosophy of the present paper. We assume here instead that one measures, by some standard
technique (Binggeli, Sandage & Tammann 1988), a selection function Φs(s) in redshift space, and that the overdensity δs(s) in
redshift space is then defined by 1 + δs(s) = Ns(s)/Φs(s). We distinguish here between the measured redshift space selection
function Φs(s) and the true selection function Φ(r), though, as argued below, the two in fact agree to linear order. Thus the
relation between the observed redshift space overdensity δs(s) and the true overdensity δ(r) is

Φs(s)[1 + δs(s)]s2ds = Φ(r)[1 + δ(r)]r2dr . (8)

With equation (6), equation (8) rearranges to

1 + δs(s) =
Φ(r)

Φs(r + v)

(
1 +

v

r

)−2 (
1 +

∂v

∂r

)−1

[1 + δ(r)] (9)

which, with some small differences, is Kaiser’s (1987) equation (3.2). In linear theory, the peculiar velocity of the galaxy along
the line of sight is

v(r) = −β
∂

∂r
∇−2δ(r) (10)

where ∇−2 denotes the inverse Laplacian. Thus to linear order in the overdensity δ(r), and with the additional condition that
peculiar velocities v be much smaller than the distance r to the structures being observed,

v � r , (11)

equation (9) reduces to [note in particular that δs(s) = δs(r) to linear order]

δs(r) =

[
1 + β

(
∂2

∂r2
+
α(r)∂

r∂r

)
∇−2

]
δ(r) (12)

where α(r) is the logarithmic slope of r2 times the redshift space selection function Φs(r) at depth r:

α(r) ≡
∂ ln r2Φs(r)

∂ ln r
. (13)

Equation (12) is an operator equation relating the redshift space overdensity δs to the real space overdensity δ. The quantity
in square brackets in equation (12) is the spherical distortion operator. It is straightforward to transform the equation
into Fourier space (Zaroubi & Hoffman 1995), but, unlike the plane-parallel case considered by Kaiser (1987), the spherical
distortion operator does not simplify to an eigenvalue in Fourier space, but remains an operator. Tegmark & Bromley (1995)
obtain an expression for the Green’s function (i.e. the inverse) of the spherical distortion operator in equation (12), for the
particular case α = 2.

Deriving the linearized equation (12) from equation (9) involves the approximation Φs(r) = Φ(r), which is valid to linear
order, as will now be argued. In a flux-limited survey, the selection function Φ(r) at depth r is the number density of galaxies
luminous enough to be seen to depth r, which is the integrated luminosity function above a threshold. All modern methods of
measuring the selection function (Binggeli et al. 1988) seek to eliminate dependence on density inhomogeneity, by assuming
that the luminosity function is independent of density, and constructing the luminosity function by counting relative numbers
of bright and faint galaxies in identical volumes. If bright and faint galaxies at any point share the same peculiar velocity, as
seems probable in the linear regime, then the measurement of the selection function in redshift space should remain unbiased
by inhomogeneity. A systematic difference between the real and redshift space selection functions will however result from the
fact that on average peculiar velocities will cause galaxies to tend to ‘diffuse’ away from depths where the density per unit
velocity r2Φ(r) is larger, towards regions, both shallower and deeper, where the density is smaller. This diffusion will perturb
the shape of the luminosity function observed in redshift space from its true shape, biasing the measurement of Φs(r). The
diffusive flux of galaxies is proportional to the variance 〈∆v2〉 of radial peculiar velocities at depth r, which is of second order
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in perturbations, and hence vanishes to linear order. It follows that the redshift and real selection functions agree to linear
order, Φs(r) = Φ(r), as claimed. It is to be noted that in general the difference between Φs(r) and Φ(r) is confined only to the
monopole mode about the observer, and only to the longest wavelength modes, since the difference of the functions is slowly
varying with depth r. Thus in any case there is little harm in approximating Φs(r) = Φ(r) for all but the fundamental modes.

Fisher et al. (1994b) make the clever point that the observed galaxy density weighted by some window W (s) is

W (s)Ns(s)d3s = W (s)N(r)d3r ≈W (r)
(

1 +
v

r

∂ lnW

∂ ln r

)
N(r)d3r (14)

for sufficiently smooth windows W (s). Equation (14), which is basically an integration by parts, allows the effect of redshift
distortions to be cast in terms of the window W (s), rather than the selection function Φs(s) and the overdensity δs(s).
However, our aim here is to decouple the measurement of the linear growth rate β from the shape of the correlation function.
For this purpose it appears essential to work with the overdensity δs(s) deconvolved from the shape of the selection function,
which compels us to work with equation (12) rather than equation (14).

The redshift space correlation function follows from equation (12) by taking an ensemble average of products of densities
at positions r1 and r2 relative to the observer:

ξs(r12, r1, r2) = 〈δs(r1)δs(r2)〉 =

[
1 + β

(
∂2

∂r2
1

+
α(r1)∂

r1∂r1

)
∇−2

1

][
1 + β

(
∂2

∂r2
2

+
α(r2)∂

r2∂r2

)
∇−2

2

]
ξ(r12) (15)

where r12 ≡ |r1 − r2| is the pair separation. Equation (15) is the basic equation which describes the redshift space correlation
function ξs(r12, r1, r2) in the linear regime as the result of the spherical distortion operator acting on the true correlation
function ξ(r12). It is a consequence of isotropy about the observer that the redshift correlation function ξs(r12, r1, r2) is a
function only of the lengths of the sides, not of the orientation, of the triangle defined by the observer and the pair of galaxies
observed.

2.1 Local bias

Equation (15) is the ensemble average redshift correlation function observed by stationary observers at random positions in
the Universe. But we are not at a random position: we reside on a galaxy, the Milky Way.

Consider an ensemble of observers who sit on galaxies, measuring the correlation function. The probability that an
observer on a galaxy at position 0 sees a pair of galaxies at points 1 and 2 is the probability of finding a triple of galaxies at 0,
1, and 2, divided by the probability of finding the galaxy at 0. It follows that the apparent correlation function ξ12(apparent)
observed from galaxies at 0 is

ξ12(apparent) = 〈(1 + δ0)δ1δ2〉 = ξ12 + ζ012 (16)

which differs from the true correlation function ξ12 by the three-point correlation function ζ012. The three-point function in
the real Universe appears well approximated by the hierarchical model ζ012 = Q(ξ01ξ12 + ξ02ξ12 + ξ01ξ02) with Q ≈ 1 (e.g. Fry
& Gaztañaga 1994, table 8). To ensure that the three-point term in equation (16) is small compared with the desired two-point
term, ζ012 � ξ12, requires at least that ξ01, ξ02 � 1. Thus, on average, galaxy-bound observers who want an unbiased measure
of the correlation function would be advised to exclude a local region around themselves which is at least a correlation length
in radius.

The importance of deleting the local region around the Milky Way needs emphasizing. If the local region is not deleted,
then the spherical distortion equation (15) will attempt to interpret the local overdensity as caused by peculiar redshifts,
which is clearly wrong. The local region must be deleted in any case to ensure that peculiar velocities are small compared
with the depth of the structures being observed, v � r, equation (11).

2.2 The peculiar velocity of the Milky Way

Formula (15) for the redshifted correlation function is valid for randomly located observers in stationary frames of reference.
The Milky Way however is not stationary, but moving. Happily, this motion is rather accurately known from the dipole
anisotropy of the CMB (Kogut et al. 1993). The linear part of the Milky Way’s peculiar velocity is the streaming motion V

of the Local Group (LG) (Yahil, Tammann & Sandage 1977) with respect to the CMB frame.
In the LG frame, the peculiar redshift sLG of a galaxy at true position r relative to the observer is

sLG = r + v − r̂.V . (17)

Recapitulating the derivation of equation (12), but starting from equation (17) instead of (6), one concludes that, to linear
order, the redshift space overdensity δsLG(r) observed in the LG frame differs from the redshift space overdensity δs(r) in the
CMB frame by a dipole term directed along the LG motion V :

δsLG(r) = δs(r) + α(r)
r̂.V

r
. (18)

The fact that the dipole term changes sign when α(r) goes negative, that is, where the selection function Φ(r) is steeper
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than r−2, is the origin of the ‘rocket effect’ noted by Kaiser (1987, section 2). It follows from equation (18) that the redshift
correlation function ξsLG(r12, r1, r2) in the LG frame is related to that ξs(r12, r1, r2) in the CMB frame by

ξsLG(r12, r1, r2) = ξs(r12, r1, r2) +

[
α(r1)V δsLG

1 (r1V̂ )

3r1
+
α(r2)V δsLG

1 (r2V̂ )

3r2
+
α(r1)α(r2)V 2

3r1r2

]
r̂1.r̂2 (19)

where δsLG
1 (rV̂ ) is the dipole component of the redshift space overdensity in the LG frame at depth r in the direction of the LG

motion V . That is, if the overdensity is expanded in spherical harmonics about the observer, δsLG(r) =
∑

lm
δsLG
lm (r)Ylm(r̂),

then δsLG
1 (r) =

∑
m
δsLG
1m (r)Y1m(r̂) is the dipole component. As in the case of the density, the difference between the correlation

functions in the two frames is pure dipole.
There are basically three ways to deal with the finite peculiar velocity V of the Local Group with respect to the CMB

frame, when measuring redshift distortions. The first is to work in the CMB frame using the known value of V . The second
is to treat V as unknown, and to average the right hand side of equation (19) over an ensemble of observers who measure
structure in frames at rest with respect to the local streaming frame. The third way is to avoid the problem altogether by
ignoring the dipole component of the redshift correlation function.

Of these options the first, to work in the CMB frame using the known value of V , makes the most use of available
information, and is also the simplest, which would seem to make it a clear winner.

To linear order in the supposedly small quantity v/r, measuring ξs in the CMB frame is the same as measuring ξsLG in the
LG frame and then using equation (19) to transform to the CMB frame. The two measures do however differ in higher order.
Since for nearby structure the approximation v − r̂.V � r is better than the approximation v � r, it should be somewhat
more accurate to measure ξsLG in the LG frame and then to transform to the CMB frame using equation (19).

3 THE ∂/∂ ln r12|4 OPERATOR

The symbol 4 is shorthand for any two variables, such as (r1/r12 , r2/r12), which define the shape (angles) of the triangle
formed by the observer (= the Milky Way) and the observed pair of galaxies at positions r1 and r2 relative to the observer.

3.1 The constancy of α in the distortion operator

The spherical distortion operator, the quantity in square brackets in equation (12), contains a term which depends on the
function α(r), equation (13), which is the logarithmic slope of r2 times the selection function Φ(r) at depth r. It is a basic
assumption of this paper that α(r) can be approximated by a constant (or more generally by a function only of triangle
shape 4), to ensure that the operator ∂/∂ ln r12|4 considered in Section 3.2 below, and also the logarithmic radial derivative
operators considered in Section 4, do in fact commute with the spherical distortion operator as claimed.

While α(r) is generally not constant in real redshift surveys, it is typically a slowly varying function of depth r. According
to the uncertainty principle, modes can be located in space within no better than a wavelength, so the approximation of
constant α might be expected to be valid for modes whose wavelengths are short compared with the scale over which α(r)
varies.

In a flux-limited redshift survey, α is typically approximately constant at moderate depths, a consequence of the power-
law character of the luminosity function at faint fluxes. Since α decreases in importance for pairs at depths greater than their
separation, the approximation of constant α should be valid at least at separations no larger than the depth at which α starts
to deviate significantly from a constant.

3.2 The ∂/∂ ln r12|4 operator

Let ∂/∂ ln r12|4 denote the logarithmic derivative with respect to pair separation r12, the shape (angles) of the triangle formed
by the observer and the observed pair of galaxies being held fixed.

The operator ∂/∂ ln r12|4 possesses two key properties, discussed in the Introduction. The first is that it commutes
with the spherical distortion operator (to the extent that α is constant or can be approximated as a function of 4, Section
3.1), which implies that eigenfunctions of ∂/∂ ln r12|4 are also eigenfunctions of the spherical distortion operator. The second
property is that the eigenfunctions of ∂/∂ ln r12|4 form a complete set for the (unredshifted) correlation function ξ(r12), which
is a function of separation r12 alone.

A complete set of orthogonal eigenfunctions of ∂/∂ ln r12|4 is

r−γ−iω12
12 (20)

where ω12 takes all real values from negative to positive infinity, and γ is some fixed real number, chosen in practice to secure
convergence at r12 → 0 and r12 →∞. The choice of the units of the separation r12 in equation (20) is a matter of convenience.
Let ξω12 denote the representation of the real space correlation function ξ(r12) in the eigenfunctions r−γ−iω12

12 :

ξ(r12) =

∫ ∞
−∞

ξω12r
−γ−iω12
12 dω12 , ξω12 = (2π)−1

∫ ∞
0

ξ(r12)rγ+iω12
12 dr12/r12 . (21)
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In effect, ξω12 is the Fourier transform of ξ(r12)rγ12 with respect to logarithmic separation ln r12. If the index γ + iω12 were
taken to be real rather than complex, then ξω12 would be the Mellin transform of ξ(r12). The reality of ξ(r12) implies the
condition

ξ−ω12 = ξ∗ω12
. (22)

Consider for example the case where the correlation function is an exact power law ξ(r12) = r−γ12 . Then the correlation
function in ω12-space is a Dirac delta-function, ξω12 = δD(ω12), provided that γ in the expansion (21) is chosen equal to the
actual power-law index γ of the correlation function.

More realistically, if the correlation function is flatter than r−γ12 at small scales and steeper than r−γ12 at larger scales, then
the correlation function in ω12-space should look like a ‘window’ about ω12 = 0 of width ∼ 1/∆ ln r, where ∆ ln r is roughly
the logarithmic range of r12 over which ξ approximates a power law r−γ12 .

The representation ξs(ω12,4) in ω12-space of the redshift correlation function is defined similarly to equation (21):

ξs(r12,4) =

∫ ∞
−∞

ξs(ω12,4)r−γ−iω12
12 dω12 , ξs(ω12,4) = (2π)−1

∫ ∞
0

ξs(r12,4)rγ+iω12
12 dr12/r12|4 . (23)

In ω12-space, the spherical distortion equation (15) becomes

ξs(ω12,4) = [1 + βA1(ω12,4) + β2A2(ω12,4)] ξω12 (24)

where, with

η12 ≡ γ + iω12 , (25)

the coefficient of β is

A1(ω12,4) =
2

3
−

4η12

3(3− η12)
B2(4) +

α

(3− η12)
B1(4) (26)

while the coefficient of β2 is

A2(ω12,4) =
1

5
−

4η12

7(3− η12)
B2(4) +

8η12(2 + η12)

35(3− η12)(5− η12)
B4(4)−

2(1− η12)

(3− η12)(5− η12)
B3(4)

+
α

5− η12

(
1 +

α

2− η12

)[
B1(4)−

(
4− η12

3− η12

)
B3(4)

]
. (27)

The shape-functions Bi(4) in equations (26) and (27) are (with a constant function B0 to complete the set)

B0(4) ≡ 1 (28)

B1(4) ≡
r12µ1

r1
+
r12µ2

r2
=
r2
12µ1µ2

r1r2
+ 1− µ2

12 = −
r2
12µ12

r1r2
+ 2(1− µ2

12) (29)

B2(4) ≡
1

2
[P2(µ1) + P2(µ2)] (30)

B3(4) ≡ 1− µ2
12 (31)

B4(4) ≡
1

8
(35µ2

1µ
2
2 − 15µ2

1 − 15µ2
2 + 3) (32)

where P2(µ) = 3
2
µ2− 1

2
is the quadrupole Legendre polynomial, and µ12 ≡ cos θ12, µ1 ≡ cos θ1 and µ2 ≡ cos θ2 are the cosines

of the interior angles of the triangle formed by the observer and the observed pair of galaxies, as illustrated in Fig. 1:

µ12 =
r2
1 + r2

2 − r
2
12

2r1r2
, µ1 =

r2
12 + r2

1 − r
2
2

2r12r1
, µ2 =

r2
12 + r2

2 − r
2
1

2r12r2
. (33)

The plane-parallel limit is attained when the distance to each galaxy of a pair is large compared with their separation,
r1, r2 � r12. Here µ1 → −µ2 and µ12 → 1, the functions B1 and B3 vanish, and the functions B2 and B4 go over to Legendre
polynomials B2(4) → P2(µ) and B4(4) → P4(µ) in the cosine µ ≈ |µ1| ≈ |µ2| of the angle to the line of sight. Thus the
spherical distortion coefficients A1 and A2 in equations (26) and (27) go over to their plane-parallel limits (compare Hamilton
1992, equations [10]–[12])

A1 →
2

3
−

4η12

3(3− η12)
P2(µ) (34)

A2 →
1

5
−

4η12

7(3− η12)
P2(µ) +

8η12(2 + η12)

35(3− η12)(5− η12)
P4(µ) . (35)

In the plane-parallel limit, the distortion decomposes naturally into a sum of mutually orthogonal parts, the harmonics Pl(µ),
but in the general case the shape-functions Bi(4), equations (28)–(32), are not orthogonal.

In the opposite limit where the distance to one of the galaxies, say 1, of a pair is much smaller than their separation,
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Figure 1. Contour diagrams showing, on the left, the ‘quadrupole’ amplitude A1− 2/3, and, on the right, the ‘hexadecapole’ amplitude
A2−3/7A1 +3/35, equations (26), (27) and (38), of the spherical distortion of the redshift correlation function for the case of a power-law
correlation function ξ ∝ r

−γ
12 with index γ = 1.5. To demonstrate the influence of the terms depending on the shape of the selection

function, i.e. on α, the top two contour diagrams are for α = 2, appropriate for a volume-limited sample, while the bottom two are for
α = 0, appropriate for a selection function Φ(r) ∝ r−2. The units are such that the unredshifted correlation function has unit amplitude.
The geometry of the observer and the observed pair is illustrated by the stick diagram at the centre. In the diagrams, the observed pair,
represented by two large dots joined by a thick vertical line, is fixed, while the position of the observer varies over the diagram. Thus
observers at 6 or 12 o’clock observe pairs which are aligned along the line of sight, while observers at 3 or 9 o’clock observe pairs which
are transverse to the line of sight. The kink in the contours at the outermost radius in each diagram is not an error; the final ring shows
the plane-parallel limit, corresponding to infinite radius. In the ‘quadrupole’ distortion, on the left, the correlation function appears
reduced for pairs along the line of sight, and enhanced for pairs transverse to the line of sight, which is the expected squashing effect.
If one imagines the figures to be rotated about their vertical axes, then volume elements in the resulting three-dimensional figure are in
correct proportion to the volume element d4 = r1dr1r2dr2/r4

12 of the geometrical configuration. Greyscales are graduated at intervals
of 0.1 in the interval [−2, 2], with contours at intervals of 0.5. Outside [−2, 2], contours are at intervals of 1, up to ±10.
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r1 � r12, then r2 → r12, µ12 → −µ1 and µ2 → 1, the B1 terms become large compared with the others, and equations (26)
and (27) reduce to

A1 →
α

(3− η12)

r12µ1

r1
(36)

A2 →
α

5− η12

(
1 +

α

2− η12

)
r12µ1

r1
. (37)

Here the distortion is dominated by a dipole about the near galaxy, reflecting the streaming motion of galaxies past the
stationary observer. The divergence of the distortion as r1 → 0 is an artefact which results from a violation of the presumption
(11) that v � r1. The divergence is removed in practice by deleting the local region. Note that the validity of the linear
approximation requires not that the dipole term be small, but only the weaker constraint that ξ(r12)r12/r1 be small.

3.3 Picture

Fig. 1 illustrates the spherical distortion of the redshift correlation function for the case of a pure power law ξ ∝ r−γ12 with
index γ = 1.5. As mentioned above, ξω12 is a Dirac delta-function at ω12 = 0 for a pure power law, so η12 = γ = 1.5 in
equations (26) and (27) for this case. Fig. 1 shows not the spherical distortion coefficients A1 and A2 directly, but rather
the combinations A1 − 2/3 and A2 − 3/7A1 + 3/35 which go over respectively to pure quadrupole and pure hexadecapole
distortions in the plane-parallel limit (cf. equations [34] and [35]). In terms of these coefficients, which we refer to loosely as
‘quadrupole’ and ‘hexadecapole’ coefficients, the distortion equation (24) is (the normalization of the coefficients here differs
by factors of 3/4 and 35/8 from the normalization of the ‘quadrupole’ and ‘hexadecapole’ correlation functions Ξs2 and Ξs4 of
equations [78] & [79] in Section 5.2)

ξs =
[(

1 +
2

3
β +

1

5
β2
)

+
(
β +

3

7
β2
)(

A1 −
2

3

)
+ β2

(
A2 −

3

7
A1 +

3

35

)]
ξ . (38)

To demonstrate the influence of the terms depending on the shape of the selection function, i.e. on α, equation (13), Fig.
1 shows two cases, the first with α = 2, appropriate for a volume-limited sample, the second with α = 0, appropriate for a
selection function Φ(r) ∝ r−2.

One of the striking aspects of Fig. 1 is how large the distortions become for ‘nearby’ pairs, those whose distances are
less than or comparable to their separation, r1, r2r12 (note that such pairs need not be physically nearby if the separation
r12 is large). The large nearby distortion is produced by the ‘dipole’ term B1(4), equation (29). This dipole should not be
confused with the dipole in the correlation function, whose general form is µ12 times some function of r1 and r2, independent
of separation r12.

The amplitude of the nearby dipole distortion depends on α. This raises the concern that approximating α by a constant
[or more generally by a function α(4)] may be unreasonable, if in fact the amplitude of the distortion depends sensitively
on α. However, the problem is not as bad as it seems, because the functions Bi for i 6= 1 are all orthogonal to B1 in the
limit where one galaxy of a pair is much closer than their separation. That is, Bi for i 6= 1 all go over to sums of a constant
and a quadrupole in the limit r1/r12 or r2/r12 → 0, so are orthogonal to the diverging dipole. Thus uncertainty caused by
approximating α translates mainly into uncertainty about the amplitude of the B1 part of the distortion, with lesser impact
on the other parts.

It is to be noted that the spherical distortion coefficients A1 and A2, equations (26) and (27), depend on α only through
the shape-functions B1 and B3. As will be seen in Section 5.2, this has the consequence that the spherical distortion separates
naturally into a part (Ξs1 and Ξs3, equations [80] and [81]) that depends on α, and a part (Ξs0, Ξs2 and Ξs4, equations [77]–[79])
that has no explicit dependence on α.

4 LOGARITHMIC SPHERICAL WAVES

The trick in Section 3 of expanding the correlation function in eigenfunctions of a single operator fails in Fourier space. For
example, one would naturally think to expand the (unredshifted) power spectrum P (k), which is the Fourier transform of
the correlation function ξ(r12), in eigenfunctions of an operator ∂/∂ ln k. The procedure fails because the power spectrum is
correctly a function δD(k1+k2)P (k1) of two arguments, not one. The Dirac delta-function δD(k1+k2) arises from the statistical
homogeneity, or translational invariance, of clustering in space, the Fourier modes δ̃(k) being by definition the eigenfunctions
of the translation operator i∇. In redshift space radial distortions destroy homogeneity, although statistical isotropy about the
observer is preserved. Thus the delta-function δD(k1 +k2) cannot be an eigenfunction of the spherical distortion operator, and
it cannot be factored out. The situation here contrasts with the plane-parallel limit, where translation symmetry is preserved
in redshift space, and the delta-function factors out of the distortion equation.

So is there a basis of eigenfunctions for spherical distortions analogous to the Fourier modes for plane-parallel distortions?
As just mentioned, Fourier modes themselves fail, precisely because spherical distortions destroy homogeneity.

Now the great advantage of the power spectrum is that, for Gaussian fluctuations, the (unredshifted) modes δ̃(k) are
independent. Their independence is a consequence of homogeneity coupled with the Gaussian assumption. Homogeneity
implies that modes with different wavevectors k are uncorrelated, 〈δ(k1)δ∗(k2)〉 = 0 for k1 6= k2, while Gaussianity means
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that all higher order correlations vanish. Linear fluctuations may well be Gaussian, a consequence of an alliance between the
Central Limit Theorem and physical smoothing processes in the early Universe.

Spherical distortions destroy homogeneity, but they preserve isotropy about the observer. Thus the advantage of mode
independence is preserved to the greatest extent if the density is expanded in eigenfunctions of the generator of rotations,
which is the angular momentum operator L (e.g. Landau & Lifshitz 1958). These eigenfunctions are spherical harmonics,
and symmetry about the observer implies that spherical harmonic modes δlm(k) with different lm will be independent for
Gaussian fluctuations. This basic advantage of the spherical harmonic modes was exploited by Fisher et al. (1994b), and by
Heavens & Taylor (1995).

This leaves the problem of finding radial eigenmodes for the spherical distortion operator. Here one notices that, at least
to the extent that the slowly varying function α(r) is constant (see Section 3.1), the spherical distortion operator in equation
(12) is scale-free. A consequence of this is that the logarithmic derivative ∂/∂ ln r with respect to depth r (or alternatively
the logarithmic derivative ∂/∂ ln k with respect to radial wavevector k) commutes with the spherical distortion operator, and
its eigenfunctions therefore provide a basis of radial eigenmodes.

We proceed with this idea further in Section 4.2, but first it is necessary to write down some standard definitions.

4.1 Fourier space definitions

Let δ̃s(k) denote the Fourier transform of the overdensity:

δ̃s(k) = (2π)−3/2

∫
δs(r)eik.rd3r , δs(r) = (2π)−3/2

∫
δ̃s(k)e−ik.rd3k . (39)

The (unredshifted) power spectrum P (k) is by definition the Fourier transform of the correlation function ξ(r12), with
the conventional normalization

P (k) =

∫
ξ(r12)eik.r12d3r12 , ξ(r12) = 〈δ(r1)δ(r2)〉 = (2π)−3

∫
P (k)e−ik.r12d3k . (40)

In redshift space, it is necessary to retain the dependence of the correlation function ξs(r1, r2) and its Fourier transform
the power spectrum ξ̃s(k1, k2) on both their arguments:

ξ̃s(k1, k2) = 〈δ̃s(k1)δ̃s(k2)〉 = (2π)−3

∫
ξs(r1, r2)ei(k1.r1+k2.r2)d3r1d3r2 (41)

ξs(r1, r2) = 〈δs(r1)δs(r2)〉 = (2π)−3

∫
ξ̃s(k1, k2)e−i(k1.r1+k2.r2)d3k1d3k2 . (42)

The unredshifted power spectrum ξ̃(k1, k2) is related to the ‘reduced’ power spectrum P (k), equation (40), by

ξ̃(k1, k2) = δD(k1 + k2)P (k1) . (43)

4.2 A complete set of commuting operators

In Section 2 it was shown that, for linear fluctuations, the overdensity δs(r) in redshift space is described by a spherical
distortion operator acting on the real overdensity δ(r), equation (12). A complete set of commuting operators (to the extent
that the quantity α is constant, Section 3.1) for the spherical distortion operator is

∂

∂ ln r
= −

∂

∂ ln k
− 3 , L2 , Lz . (44)

Here ∂/∂ ln r is the logarithmic derivative with respect to depth r, which is the same, up to a change of sign and a constant,
as the logarithmic derivative ∂/∂ ln k with respect to radial wavevector k in Fourier space. The operators L2 and Lz are the
square and z-component (along some arbitrary axis) of the angular momentum operator L = ir × ∂/∂r = ik × ∂/∂k, which
is the same operator in real and Fourier space. The eigenfunctions of ∂/∂ ln r or ∂/∂ ln k are radial waves in logarithmic
depth r or wavevector k, while the eigenfunctions of L2 and Lz are the usual orthonormal spherical harmonics Ylm. Thus the
eigenfunctions of the commuting set (44) are spherical waves with radial parts in logarithmic real or Fourier space.

Equations (45)–(48) below are valid for both redshifted and unredshifted correlation functions. Let δsωlm denote the
representation of the overdensity δs(r) as spherical waves in logarithmic real space:

δs(r) = (2π)−1/2

∫ ∞
−∞

∑
lm

δsωlmr
−γ/2−iωYlm(r̂)dω , δsωlm = (2π)−1/2

∫
δs(r)r−3+γ/2+iωY ∗lm(r̂)d3r (45)

and let δ̃sωlm denote the alternative representation of the overdensity as spherical waves in logarithmic Fourier space

δ̃s(k) = (2π)−1/2

∫ ∞
−∞

∑
lm

δ̃sωlmk
−3+γ/2+iωYlm(k̂)dω , δ̃sωlm = (2π)−1/2

∫
δ̃s(k)k−γ/2−iωY ∗lm(k̂)d3k . (46)



Spherical redshift distortions 11

The index γ in equations (45) and (46) is the same γ as in the representation (21) or (23) of the correlation function in
eigenfunctions r−γ−iω12

12 . The factor of a half which multiplies the index γ in equations (45) and (46) arises because the
correlation function is the square of the density. The reality conditions δs∗(r) = δs(r), hence δ̃s∗(k) = δ̃s(−k), along with the
usual properties Y ∗lm = (−)mYl,−m and Ylm(−k̂) = (−)lYlm(k̂) of the spherical harmonics, imply

δs∗ωlm = (−)mδs−ω,l,−m , δ̃s∗ωlm = (−)l+mδ̃s−ω,l,−m . (47)

Equating the expansion of δs(r) in equation (45) to the Fourier transform of the expansion of δ̃s(k) in equation (46) shows
that the eigenfunctions δsωlm and δ̃sωlm are the same up to factors C(γ/2+iω, l):

δsωlm = C(γ/2+iω, l) δ̃sωlm , C(η, l) ≡ (−i)l2−(3/2)+η
Γ
[
η+l
2

]
Γ
[

3−η+l
2

] . (48)

The Γ functions come from integrals of power laws with spherical Bessel functions. The two Γ functions in equation (48) can
be reduced to the product of a single Γ function with a sine function and a rational function, but the expression (48) manifests
the symmetry between the two representations δsωlm and δ̃sωlm.

In ωlm-space, with

η ≡ γ/2 + iω (49)

the spherical distortion equation (12) becomes

δsωlm =

[
1 + β

(2− η)(1− η + α)

(2− η)(3− η)− l(l + 1)

]
δωlm (50)

with an identical relation between δ̃sωlm and δ̃ωlm. As expected, the spherical distortion operator reduces to eigenvalues in
ωlm-space.

4.3 The correlation function of logarithmic spherical waves

As will be seen shortly, the normalization of the ‘Fourier’ representation δ̃sωlm, equation (46), leads to simpler expressions for
the correlation function in ωlm-space than that of the ‘real’ representation δsωlm, equation (45). We therefore particularize to
the former.

Statistical isotropy about the observer implies that the correlation function of logarithmic spherical waves δ̃sωlm is diagonal
in the angular indexes lm:

〈δ̃sω1l1m1
δ̃sω2l2m2

〉 = (−)l1+m1δl1l2 δm1,−m2 ξ̃
s
ω1ω2l1 (51)

where the δl1l2 and δm1,−m2 denote Kronecker deltas, not to be confused with the overdensity. The extraneous minus signs
in equation (51) arise from pair exchange symmetry and reality, as in equation (47), and would disappear if the correlation
function in equation (51) were defined by 〈δ̃sδ̃s∗〉 rather than 〈δ̃sδ̃s〉. Equation (51) is valid for both redshifted and unredshifted
correlation functions.

The unredshifted correlation function ξ̃ω1ω2l is, from equations (41), (43), (46), and (51),

ξ̃ω1ω2l = (−)l+m〈δ̃ω1lmδ̃ω2,l,−m〉

= (2π)−1

∫
δD(k1 + k2)P (k1)k

−γ/2−iω1
1 k

−γ/2−iω2
2 (−)lYlm(k̂1)Y ∗lm(k̂2)d3k1d3k2 . (52)

Equation (52) reduces to the simple result that the unredshifted correlation function ξ̃ω1ω2l is a function only of the sum
ω1 + ω2:

ξ̃ω1ω2l = ξ̃ω12 , ω12 = ω1 + ω2 (53)

where the reduced correlation function ξ̃ω12 in equation (53) is the representation of the power spectrum P (k) in eigenfunctions
k−3+γ+iω12

P (k) =

∫ ∞
−∞

ξ̃ω12k
−3+γ+iω12dω12 , ξ̃ω12 = (2π)−1

∫ ∞
0

P (k)k3−γ−iω12dk/k . (54)

Equation (54) is entirely analogous to the representation (21) of the correlation function in eigenfunctions r−γ−iω12
12 . Equating

the expansion of ξ(r12) in equation (21) to the Fourier transform of the expansion of P (k) in equation (54) shows that the
‘real’ ξω12 and ‘Fourier’ ξ̃ω12 unredshifted correlation functions differ only by a factor

ξω12 = (2π)−3/2C(γ + iω12, 0) ξ̃ω12 (55)

where C is the function defined in equation (48).
It follows from equations (48), (53) and (55) that the unredshifted correlation function ξω1ω2l of spherical waves in

logarithmic real space is related to the unredshifted correlation function ξω12 defined in equation (21) by
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ξω1ω2l = (−)m〈δω1lmδω2,l,−m〉 = (−)l(2π)3/2C(γ/2 + iω1, l)C(γ/2 + iω2, l)

C(γ + iω12, 0)
ξω12 (56)

which is more complicated than the corresponding simple ‘Fourier’ relation (53).
The equality ω12 = ω1 + ω2 is a consequence of the equality of operators

∂

∂ ln r12

∣∣∣
4

=
∂

∂ ln r1
+

∂

∂ ln r2
. (57)

Equation (57) can be interpreted as meaning that an expansion (by a factor) of the separation r12 at fixed triangle shape is
equivalent to a combined expansion of the legs r1 and r2 at fixed angle between them. An equivalent statement is valid in
Fourier space.

In ωlm-space, with

η1 ≡ γ/2 + iω1 , η2 ≡ γ/2 + iω2 (58)

the spherical distortion equation (15) becomes

ξ̃sω1ω2l = (−)l+m〈δ̃sω1lmδ̃
s
ω2,l,−m〉

=

[
1 + β

(2− η1)(1− η1 + α)

(2− η1)(3− η1)− l(l + 1)

][
1 + β

(2− η2)(1− η2 + α)

(2− η2)(3− η2)− l(l + 1)

]
ξ̃ω12 . (59)

In the plane-parallel limit, ω1 ≈ −ω2 →∞ and l→∞, and the spherical distortion equation (59) reduces to

ξ̃sω1ω2l = (1 + βµ2)2ξ̃ω12 , µ2 ≈
ω2

1

ω2
1 + l2

≈
ω2

2

ω2
2 + l2

(60)

which is Kaiser’s equation (4), except that the power spectrum is expressed in the representation ξ̃ω12 , equation (54).

5 MEASURING OMEGA

5.1 Considerations of optimality

The spherical distortion equation (24) in the ω124-representation is a linear equation in the unknown quantities βiξω12 :

ξs(ω12,4) = Ai(ω12,4)βiξω12 (61)

where indices i run over 0, 1, 2, and we adopt the summation convention for these indices. The spherical distortion equation
(59) in the ωlm-representation can be cast in a similar form:

ξ̃s(ω12, 4̃) = Ãi(ω12, 4̃)βiξ̃ω12 (62)

where 4̃ is shorthand for the ‘shape’ variables [(ω1−ω2)/2, l] at fixed ω12 = ω1 + ω2. The quantity on the left hand sides
of equations (61) and (62) is the redshift space correlation function, an observable quantity. On the right hand sides of
equations (61) and (62) is the ensemble average distortion predicted when the underlying pattern of clustering is statistically
homogeneous and isotropic. The problem is to find the values of βiξω12 that give the best fit between observation and
prediction. The ratios of any two of the three fitted quantities ξω12 , βξω12 and β2ξω12 will then give values for β that are
independent of ξω12 . It is convenient to think of β and β2 as ‘independent’ parameters to be fitted to the data, which can be
combined into a single best fit at the end of the day.

For a sufficiently large survey, the maximum likelihood solution of equation (61) at any particular ω12 is the least-squares
solution of (Kendall & Stuart 1967, section 19.17)

χ2 =

∫∫
[ξs(ω12,4)−Ai(ω12,4)βiξω12 ][ξs(ω12,4

′)−Aj(ω12,4
′)βjξω12 ]W (ω12,4,4

′)d4d4′ (63)

where the weighting function W (ω12,4,4
′) is the inverse of the covariance matrix

W (ω12,4,4
′) = 〈∆ξs(ω12,4)∆ξs(ω12,4

′)〉−1 . (64)

The volume element d4 of triangle configurations is

d4 =
r1dr1r2dr2

r4
12

, (65)

in terms of which the pair-volume element is d3r1d3r2 = 8π2d4 r6
12dr12/r12, the factor 8π2 coming from integration over

orientations. Similar equations are valid in the ωlm-representation (just put tildes on ξs, A, 4 and W in equations [63] and
[64]), the volume element d4̃ of configurations being

d4̃ = d(ω1−ω2)/2 (66)
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with integration implying summation over angular indices lm. For complex ξs, as here, the integrand of equation (63) should
be interpreted as representing its real and imaginary parts separately, or else some combination thereof, according to the form
of the covariance matrix in equation (64).

The sum of squares χ2, equation (63), is minimized when the derivatives with respect to the parameters βiξω12 are zero,
∂χ2/∂βiξω12 = 0. This is a set of linear equations, whose solution is

βiξω12 = M−1
ij (ω12)

∫
Aj(ω12,4)ξs(ω12,4

′)W (ω12,4,4
′)d4d4′ (67)

where M−1
ij (ω12) is the inverse of the symmetric 3× 3 matrix

Mij(ω12) =

∫
Aj(ω12,4)Ai(ω12,4

′)W (ω12,4,4
′)d4d4′ . (68)

If the covariance matrix is diagonal, then it is trivial to invert and hence determine the optimal weighting function W ,
equation (64). As made clear by Feldman, Kaiser & Peacock (1994) and exploited by Heavens & Taylor (1995), this is one of
the great advantages of working in Fourier space for Gaussian fluctuations, that the independence of (unredshifted) Fourier
modes causes the covariance matrix of the (unredshifted) power to be diagonal. Feldman et al.’s minimum variance pair
weighting [1 + ΦP (k)]−2 is definitive at scales which are Gaussian but smaller than the scale of the survey.

As argued in Section 4, the advantages of mode independence are preserved at least partially in the ωlm-representation.
We pursue this idea momentarily, before abandoning it in Section 5.2 in favour of the ω124-representation. The covariance
matrix of the correlation function in ωlm-space is

〈∆ξ̃sω1ω2lm∆ξ̃sω3ω4l′m′
〉 = δll′(δmm′ ξ̃

s
ω1ω4lξ̃

s
ω2ω3l + δm,−m′ ξ̃

s
ω1ω3lξ̃

s
ω2ω4l) + η̃sω1ω2ω3ω4lml′m′

(69)

where η̃s is the four-point function, which vanishes for Gaussian fluctuations, and is neglected hereafter. For the unredshifted
correlation function, equation (53), the covariance matrix (69) reduces to

〈∆ξ̃ω1ω2lm∆ξ̃ω3ω4l′m′〉 = δll′(δmm′ ξ̃ω14 ξ̃ω23 + δm,−m′ ξ̃ω13 ξ̃ω24) . (70)

For a power-law power spectrum, the unredshifted correlation function in ωlm-space is a Dirac delta-function, ξ̃ω12 = δD(ω12).
In this case, the only non-zero elements of the covariance matrix (70) are the diagonal elements 〈∆ξ̃ω1ω2lm∆ξ̃∗ω1ω2lm

〉, and
these elements are all equal. In effect, the covariance matrix is the identity matrix. The covariance matrix of the redshifted
correlation function is related to its unredshifted counterpart by the spherical distortion equation (59). In redshift space, the
covariance matrix (69) remains diagonal for a power-law power spectrum, but it depends on β.

The above argument, that the covariance matrix (69) is almost diagonal in the ωlm-representation, contains a serious
flaw. Namely, it neglects to take into account the shot noise caused by the discrete sampling of galaxies. Shot noise destroys
scale invariance, and introduces off-diagonal correlations between modes. We are not sure whether this difficulty is fatal.
Whatever the case, it is enough to persuade us to switch to the ω124-representation, which proves more tractable.

5.2 ω124-representation

Rather than attempt a weighting that is absolutely optimal, let us instead adopt a weighting function W that is diagonal in
real space. Great precision in the choice of W is not required, since any weighting in the vicinity of minimum variance should
give a variance not much different from the minimum. Thus we seek to minimize at each separation r12 the sum of squares

χ2 =

∫ [
ξs(r12,4)−

∫ ∞
−∞

Ai(ω12,4)βiξω12r
−γ−iω12
12 dω12

]2

W (r12,4)d4 . (71)

A near-minimum variance form of the weighting function W (r12,4) is (Hamilton 1993b, section 5; notice the following formula
is a volume weighting not a number weighting, which accounts for the Φ(r1)Φ(r2) in the numerator)

W (r12,4) =
Φ(r1)Φ(r2)

[1 + Φ(r1)J(r12)][1 + Φ(r2)J(r12)]
(72)

where J(r12) ≈
∫ r12

0
ξdV .

According to equations (26) and (27), the coefficients Ai(ω12,4) separate into sums of products of the five shape-functions
Bj(4), equations (28)–(32), with functions aji(ω12) which depend on ω12 but not on triangle shape 4:

Ai(ω12,4) = Bj(4)aji(ω12) . (73)

It is convenient to imagine the five quantities
∫∞
−∞

aji(ω12)βiξω12r
−γ−iω12
12 dω12 as ‘independent’ parameters to be fitted to

the data. Minimizing the sum of squares (71) with respect to these parameters yields five equations (cf. equation [67]):

M−1
ij (r12)

∫
Bi(4)ξs(r12,4)W (r12,4)d4 =

∫ ∞
−∞

aji(ω12)βiξω12r
−γ−iω12
12 dω12 (74)

where M−1
ij (r12) is the inverse of the symmetric 5× 5 matrix
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Mij(r12) =

∫
Bi(4)Bj(4)W (r12,4)d4 . (75)

Define Ξsi (r12) to be the vector on the left hand side of equation (74):

Ξsi (r12) ≡M−1
ij (r12)

∫
Bj(4)ξs(r12,4)W (r12,4)d4 . (76)

As will become apparent below, the Ξsi (r12) can be interpreted as the generalization to spherical distortions of the harmonics
of the redshift correlation function in the plane-parallel case. On the right hand side of equation (74), the quantities aji(ω12)
can be replaced by an operator in real space and taken outside the integral. Equation (74) then becomes, explicitly,

Ξs0(r12) =
(

1 +
2

3
β +

1

5
β2
)
ξ(r12) (77)

Ξs2(r12) =
(

4

3
β +

4

7
β2
)[
ξ(r12)− ξ̄(r12)

]
(78)

Ξs4(r12) =
8

35
β2
[
ξ(r12) +

5

2
ξ̄(r12)−

7

2
¯̄ξ(r12)

]
(79)

Ξs1(r12) =
1

3
βαξ̄(r12) + β2

{
1

5
α ¯̄ξ(r12) + α2

[
1

6
ξ̆(r12)−

1

15
¯̄ξ(r12)

]}
(80)

Ξs3(r12) = β2
{

2

3
ξ̄(r12)−

4

5
¯̄ξ(r12)− α

[
1

6
ξ̄(r12) +

1

10
¯̄ξ(r12)

]
− α2

[
1

3
ξ̆(r12)−

1

6
ξ̄(r12)−

1

30
¯̄ξ(r12)

]}
(81)

where, following Hamilton’s (1992) notation,

ξ̆(r12) ≡ 2r−2
12

∫ r12

0

ξ(r)rdr , ξ̄(r12) ≡ 3r−3
12

∫ r12

0

ξ(r)r2dr , ¯̄ξ(r12) ≡ 5r−5
12

∫ r12

0

ξ(r)r4dr . (82)

In the plane-parallel limit, Ξs0, Ξs2 and Ξs4 go over to the monopole, quadrupole and hexadecapole harmonics of the
correlation function, while Ξs1 and Ξs3 vanish. The three equations (77)–(79) for Ξs0, Ξs2 and Ξs4 look exactly like their plane-
parallel counterparts, equations (6)–(8) of Hamilton (1992). In particular, the ‘quadrupole’ to ‘monopole’ ratio

Ξs2(r12)

Ξs0(r12)− Ξ
s
0(r12)

=
4
3β + 4

7β
2

1 + 2
3β + 1

5β
2

(83)

provides a way to measure β in a manner independent of the shape of the correlation function, but now for fully spherical
distortions.

As remarked by Cole et al. (1994, appendix B), the combinations of ξ on the right hand sides of equations (77)–(79) can

be regarded as arising from windowing the power spectrum with spherical Bessel functions jl(kr12). Thus if Ξ̃sl (k) for l = 0,
2, 4 are defined by

Ξ̃sl (k) = 4πil
∫ ∞

0

Ξsl (r12)jl(kr12)r2
12dr12 , Ξsl (r12) =

1

2π2il

∫ ∞
0

Ξ̃sl (k)jl(kr12)k2dk (84)

then the three equations (77)–(79) become

Ξ̃s0(k) =
(

1 +
2

3
β +

1

5
β2
)
P (k) (85)

Ξ̃s2(k) =
(

4

3
β +

4

7
β2
)
P (k) (86)

Ξ̃s4(k) =
8

35
β2P (k) (87)

where P (k) is the unredshifted power spectrum. Hence the ‘quadrupole’ to ‘monopole’ ratio (83) can also be written

Ξ̃s2(k)

Ξ̃s0(k)
=

4
3β + 4

7β
2

1 + 2
3
β + 1

5
β2

. (88)

The presence of the inverse 5×5 matrix M−1
ij (r12) in equation (76) makes the quantities Ξsi (r12) more difficult to evaluate

than in the plane-parallel limit. However, the 5× 5 elements of the matrix, equation (75), are integrals over known quantities
Bi(4) and the chosen weighting function W (r12,4), so can be precomputed.

5.3 The validity of the constant α approximation

Equations (77)–(81) are valid provided that α(r), equation (13), is approximated as a constant (cf. Section 3.1). How can the
validity of this approximation be checked?

Mathematically, the passage from equation (71) via equation (76) to equations (77)–(81) involves the approximation that
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α(r1)Bi(4)Bj(4)W (r12,4)d4 = αMij(r12) (89)

where α on the right hand side is required to be a constant independent of r12 and ij. A similar constraint on α(r1)α(r2) is
required. Note that α(r) in equations (26) and (27) multiplies only the shape functions B1 and B3, so it suffices that equation
(89) be valid when either of i or j is 1 or 3. The validity of equations (89) should be checked in applying equations (77)–(81).

5.4 Deconvolving the catalogue window

In measuring the redshift space correlation function ξs(r12,4), it is essential to disentangle the true anisotropy of the redshift
correlation function from the artificial anisotropy induced by the angular and radial selection functions of the survey. This
deconvolution is easy in real space, where the observed galaxy density is the product of the true density and the selection
function of the survey, but is complicated in any other space.

The ‘deconvolution’ procedure is described in some detail by Hamilton (1993b, section 6) for the plane-parallel case where
the aim is to measure the redshift correlation function ξs(r12, µ) as a function of separation r12 and cosine angle µ to the line
of sight. The procedure generalizes easily to the present case where the redshift correlation function ξs(r12,4) is a function of
separation r12 and triangle shape 4. Briefly, each observed galaxy pair at separation r12 and triangle configuration 4 makes
a contribution to the correlation function ξs(r12,4). To correct for the selection function of the survey, one simply divides by
the probability of finding a pair at r12 and 4, given the boundaries and selection function of the survey.

6 CONCLUSIONS

The aim of this paper has been to present the theoretical foundation of a procedure for measuring the linear growth rate
β, hence the cosmological density Ω in unbiased standard cosmology, from spherical redshift space distortions in a manner
independent of the shape of the power spectrum.

Our most important point, presented in Section 3, is that there exists an operator ∂/∂ ln r12|4 which both commutes
with the spherical distortion operator, and defines a characteristic scale of separation r12. Ratios of the amplitudes of the
eigenfunctions of this operator provide measures of β independent of the shape of the power spectrum.

In Section 4, we presented a complete set of commuting operators for the spherical distortion operator. The eigenfunctions
of this complete set are spherical waves about the observer, with radial part lying in logarithmic real or Fourier space.

In Section 5, we discussed the practical measurement of β using the ideas presented. In particular, we showed that there
is a set of five functions Ξsi (r12), equations (77)–(81), which can be regarded as the generalization to fully spherical distortions
of the monopole, quadrupole, and hexadecapole harmonics of the correlation function in the plane-parallel case.

A drawback of the method is that the spherical distortion operator commutes with ∂/∂ ln r12|4, and likewise with the
complete set of operators in Section 4, only to the extent that the logarithmic slope of the radial selection function can be
approximated by a constant. We argued in Section 3.1 that this may be a reasonable approximation in practice, and we
showed in Section 5.3 how to check the validity of the approximation.

Acknowledgments

This work was supported by NSF grant AST93-19977, NASA Astrophysical Theory Grant NAG 5-2797, and a PPARC Visiting
Fellowship (AJSH). We thank George Efstathiou for the hospitality of the Nuclear and Astrophysics Laboratory at Oxford
University, where much of this work was done.

REFERENCES

Ballinger W. E., Heavens A. F., Taylor A. N., 1995, MNRAS, submitted
Binggeli B., Sandage A., Tammann G. A., 1988, ARA&A, 26, 509
Bromley B. C., 1994, ApJ, 423, L81
Cole S., Fisher K. B., Weinberg D. H., 1994, MNRAS, 267, 785
Cole S., Fisher K. B., Weinberg D. H., 1995, MNRAS, 275, 515
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
Fisher K. B., 1995, ApJ, 448, 494
Fisher K. B., Davis M., Strauss M. A., Yahil A., Huchra J. P., 1994a, MNRAS, 267, 927

Fisher K. B., Scharf C. A., Lahav O., 1994b, MNRAS, 266, 219
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