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Abstract

The equations of motion (e.m.’s) of the N=1, D=10 anomaly free supergravity,
obtained in the framework of the superspace approach, are analyzed. The formal
equivalence of the usual and dual supergravities is discussed at the level of e.m.’s.
The great simplicity of the dual formulation is established. The possibillity of the
lagrangian formulation of the dual supergravity is pointed out. The bosonic part of
the lagrangian is found.

1 Introduction

There are two versions of the same theory: 1) the D=10, N=1 supergravity [1], [2], [3]

with the 3-form graviphoton field H
(0)
abc as a member of the gravity supermultiplet, and

2) the dual D=10, N=1 supergravity [1], [4], [5], [6] where the 7-form graviphoton field

Na1...a7 is used instead of H(0)
abc. For further references we introduce notations G3 (Gravity

with the 3-form H-field) and G7 (Gravity with the 7-form N-field) for these two versions.
The G7 can be derived from the G3-theory by the dual transformation at the lagrangian
level [4], [6]. Both theories are anomalous.

The connection between usual and dual versions becomes less clear if one considers
G3 as a low energy limit of the heterotic superstring. In this case superstring corrections
(anomaly cancelling) must be added to the H(0) field in the G3-theory lagrangian [7]:

H
(0)
abc ⇒ Habc = H

(0)
abc + kg Ω(g)

abc (1.1)

where H(0) = dB, B is the two-form potential, Ω(g) is the Lorentz-group Chern-Symons
(CS) three-form, kg is a constant ∼ α′ (the string-tension constant), dΩ(g) = trR2, where
R is the curvature two-form, trace is calculated in the fundamental represention of the
Lorentz O(1.9)- group. (We consider here the gravity sector. The incorporation of the
Yang-Mills matter can be done by standard methods).

After the change (1.1) one obtains a theory which can be made anomally-free (by
addition of special counter-terms at the one-loop level), but it is not supersymmetric even
at the tree-level.

1E-mail: saulina@vxitep.itep.ru, terent@vxitep.itep.ru, zyablyuk@vxitep.itep.ru
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The supersymmetric completion of such a theory has been done at the mass shell
in papers [8], [9], [10] (see also [11] for more complete list of references). The complete
lagrangian has not been constructed but it has become clear that it contains (being
formulated in terms of physical fields) terms ∼ R2 and an infinite number of terms ∼
kqg H

p, q ≥ 1, p ≥ 3. (Several terms of the lowest order were found in [6], [12]). For brevity
we name this theory SG3 (from ”Superstring inspired Gravity”). The important property
of the SG3 is the scale invariance [13], which is the tree-level (classical) symmetry. (It
means that only tree-level superstring corrections are taken into account).

We discuss here the (scale invariant) dual analog of the SG3 - theory. We name
it SG7 for short. It is expected, that such a theory is a low energy limit of a five-
brane [14]. The SG7 can be formulated self-consistently and we write explicitely the
dual transformation from the SG7 to the SG3 - theory at the mass-shell. (The inverse
transformation is much more complicated and can be defined only as a perturbative series
in kg). The connection between SG7 and SG3-theories was suggested much earlier in [15]
where explicit calculations were not presented (we agree with the remarks from [15]). We
use the mass-shell superspace approach to the problem. The iterative scheme for the dual
transformation and for the lagrangian of SG7 in the component approach was discussed
in [6],[16].

Equations of motion (e.m.’s) in the SG7 are much simpler than in the SG3. That
makes it possible to construct a supersymmetric lagrangian for the general kg 6= 0 case.
We derive here the bosonic part of this lagrangian. The simplicity of the final result is
in a great contrast with the enormous complexity of intermediate calculations. The dual
transformation from the (relatively simple) SG7 to the SG3 lagrangian is possible only
perturbatively in kg . (That explains the complexity of the SG3 - theory). The fermionic
and Yang-Mills matter sectors of a the SG7 lagrangian can be also constructed using the
described procedure. (The corresponding results will be published elsewhere).

Preparatory results for this study was given in [17], [18]. Results connected with the
lagrangian construction are based on papers [19], [20]. We use the computer program
”GRAMA” [21] written in MATHEMATICA for analytical calculations in supergravity.
Our notations correspond in general to [17] (small differences are self-evident or explained
in the text).

2 Geometrical Mass-Shell Formulation

The superspace e.m.’s can be formulated universaly for the SG3 and the SG7, using
relations which are valid for both theories. These relations are:

1) Geometrical Bianchi Identities (BI’s) for the supertorsion TBC
D:

D[ATBC)
D + T[AB

Q TQC)
D −R[ABC)

D = 0. (2.1)

The nonzero torsion components in (2.1) are Tabc ≡ ηcdTab
d (Tabc is a completely

antisymmetric tensr), Tab
γ and:

Tαβ
c = Γcαβ , Taβ

γ =
1

72
(T̂Γa)β

γ
, (2.2)
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where T̂ ≡ TabcΓabc. We use the constraints from [22].
2) Commutation relations for supercovariant derivatives DA:

(DADB − (−1)abDB DA)VC = −TAB
QDQ VC −RABC

D VD, (2.3)

where VC is a vector superfield, RABCD is a supercurvature (which differs in sign in
comparison with [17]).

3) The general result for the spinorial derivative of the dilatino χ-superfield (χα ≡ Dαφ,
where φ is the dilaton superfield):

Dαχβ = −
1

2
ΓbαβDbφ+ (−

1

36
φTabc +Aabc) Γabcαβ , (2.4)

Here Aabc is a completely antisymmetric superfield, which is unambiguously determined
(see below) in terms of torsion and curvature.

Some comments on the notations are helpful. We use letters from the beginning of
the alphabet for the tangent superspace indices A = (a, α) and letters from the middle of
the alphabet for the world superspace indices M = (m,µ). Here a,m are 10-dim. vector
indices, α, µ - 16-dim. spinorial indices. The veilbein is defined as follows [23]:

EM
A| =

(
em

a ψαm
0 δαµ

)
, (2.5)

where ψαm ia a gravitino superfield.
The supercovariant vector derivative Da ≡ Ea

M DM is equal to:

Da = ema Dm − ψ
β
a Dβ , (2.6)

where ψa = ema ψm but the space-time component of the covariant derivative is:

Dmλ = ∂ λ− ωm λ (2.7)

where λγ is any spinorial superfield and (ωm)βγ ≡
1
4
ωm

ab(Γab)
β
γ is the spin-connection

which is in the algebra of O(1.9).
By a standard way one finds the relation between the torsion-full spin-connection in

eq.(2.7) and the standard spin-connection ω(0)
cab defined in terms of derivatives of eam:

ωcab = ω
(0)
cab(e) +

1

2
Tcab + Ccab , (2.8)

where:

Ccab = ψa Γc ψb −
3

2
ψ[a Γc ψb] (2.8)

We use the notation ∇m for a covariant derivative with the spin-connection ω(0)
m (∇[me

a
n] =

0). We also define ∇a ≡ ema ∇m. Using these notations one obtains the torsion-component
Tab

γ = 2ema e
n
b (D[me

γ
n]) in the form:

Tab = 2∇[a ψb] −
1

72
(Γ[aT̂ + 3 T̂Γ[a)ψb] +

1

2
(Γcd)ψ[aCb]cd (2.9)
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Below we use different notations R... and R... for the curvature tensor defined in terms
of spin-connections ω and ω(0) correspondingly (dR = dω + ω2). The complete set of
e.m.’s for the gravity supermultiplet derived from (2.1)-(2.4) in [17] takes the form:

φLa −Daχ−
1

36
ΓaT̂χ−

1

24
T̂Γaχ+

1

42
ΓaΓ

ijkDAijk +
1

7
ΓijkΓaDAijk = 0, (2.10)

DbΓ
bχ+

1

9
T̂χ +

1

3
ΓijkDAijk = 0. (2.11)

D2
aφ+

1

18
φ(T 2)− 2 (TA)−

1

24
DΓijkDAijk = 0. (2.12)

φRab − L(aΓb)χ−
1

36
φηab(T

2) +D(aDb)φ−

−2 (TA)(ab) +
3

28
DΓij (aDAb)ij −

5

336
ηabDΓijkDAijk = 0. (2.13)

D[a(φTbcd]) +
3

2
T[abΓcd]χ+

3

2
φ(T 2)[abcd]+

+
1

12
(T εA)abcd + 6 (TA)[abcd] +

3

4
DΓ[ab

jDAcd]j = 0. (2.14)

DaTabc = 0, (2.15)

There are constraints:
TabΓ

ab = 0, (2.16)

R−
1

3
(T 2) = 0, (2.17)

where R is the supercurvature scalar (R ≡ Rabcdη
acηbd )

Furthemore, there are two equations for the Aabc-superfield. The first one [22],[17]
follows from the self-consistency of equations (2.10)-(2.15), the second one follows from
(2.4) [17] and means, that the 1200 IR contribution to the A-field spinorial derivative is
equal to zero.

The following notations were used in (2.10)-(2.18):

La = TabΓ
b, T 2 = TijkT

ijk, TA = TijkA
ijk, (TA)ab = TaijAb

ij ,

(TA)abcd = TabjAcd
j , (T εA)abcd = T ijkεijkabcdmnsA

mns (2.18)

Spinorial derivatives of the Aabc- superfield can be calculated in terms of torsion and
curvature. After that the zero superspace components become the e.m.’s for physical
fields of the SG3 or SG7 theories. (We use the same notations for physical fields and
corresponding superfields expecting that it does not lead to the confusion).

Equations under discussion are not independent. Namely (2.12) follows from (2.13)
after contraction of a, b indices, but (2.11) follows from (2.10) after multiplication by Γa

matrix.
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In general, neglecting Yang-Mills matter, Aabc ∼ kg (see below). In the limiting
case Aabc = 0 these equations describe the pure gravity sector of the G3 - theory if
Tabc = −(1/φ)Habc. The same equations and constraints describe the G7 - theory if
Tabc = Nabc, where:

Nabc ≡
1

7!
εabc

a1...a7 Na1...a7 (2.19)

Now we consider in details the general kg 6= 0- case starting from the SG3-theory.

3 Duality on the Mass-Shell

SG3 theory

The H-superfield BI’s take the form:

D[AHBCD) +
3

2
T[AB

QH|Q|CD) = −3kgR[AB
efRCD)ef

(3.1)

(DH = kg trR2 in superform notations). Note, that γ = −2kg in [17].
The mass-shell solution of (3.1) which is compatible with (2.1)-(2.4) can be obtained

using the constraint Hαβγ = 0 in the standard procedure [24], [25], [8] . We find the
nonzero components of the HABC-superfield in the form:

Hαβa = φ (Γa)αβ + kg U
(g)
αβa , (3.2a)

Hαbc = −(Γbc χ)α + kg U
(g)
αbc, (3.2b)

Habc = −φTabc + kg U
(g)
abc (3.2c)

In this place we do not need the explicit result for the U (g)
αβa and U

(g)
αbc superfields (it will

be presented elsewhere). The U
(g)
abc-superfield is equal to:

U
(g)
abc = −2D2

j Tabc + 4 (T 3)abc +
2

27
(T 2)Tabc − 6Tab

jRcj−

−6Ta
ij (Rij,bc −Di Tbcj +Db Tcij)− TijΓabcT

ij − 12TjaΓbTc
j−

−LjΓabcL
j − 12LaΓbLc + 6LaTbc , [abc] (3.3)

where [abc] means the antisymmetrization of the expression in corresponding indices,

(T 3)abc = TaijTb
jkTck

i. The U (g)
abc -superfield was discussed earlier in [8], [9], [25] using

another parametrization (another set of constraints) .
The A-superfield in (2.4) is also determined unambiguosly from the (2,2)-component

of the BI (3.1) (the (p, q)-component of a superform contains p bosonic and q fermionic
indices):

Aabc = kg A
(g)
abc (3.4)

where

A
(g)
abc = −

1

18
D2
j Tabc +

5

18
(T 3)abc +

1

18 · 12
(T 2)Tabc−
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−
2

9
Tab

j (Rcj +
5

8
(T 2)cj −

1

9
Ta

ij (−Rij,bc +
5

4
Di Tbcj +

5

4
Db Tcij)−

−
1

24 · 36
[(TεT 2)abc +

2

3
(TεDT )abc]−

1

24
TijΓabcT

ij +
2

9
TajΓbTc

j−

−
7

8 · 18
LjΓabcL

j +
1

18
LaΓbLc +

4

9
LaTbc −

1

9
LjΓabTcj , [abc] (3.5)

where XεY abc = Xi1...ikεi1...ikabcj1...jpY
j1...jp , k + p + 3 = 10.

The Aabc-superfield defined by (3.4),(3.5) turns out to be a solution of eq.’s from [17].
That provides a good check of the result. 2

Now we are ready to discuss e.m.’s (2.10)-(2.15) in the SG3 - theory. All spinorial
derivatives can be calculated using relations from [17]. This work is in progress. The
analogous calculations were done in [10] where another parametrization was used. Un-
fortunately we are not able to use results from [10]. One needs the expression of Tabc
in terms of the Habc- field to get the final form of equations. That may be obtained by
inverting of eq. (3.2c) (it can be done only perturbatively in kg). Then one gets a system
of equations which is enormously complicated and obviously untractable 3.

Nevertheless one can interprete all the e.m.’s (2.10)-(2.15) in the SG3. Equations
(2.10) -(2.13) are interpreted unamiguosly as gravitino, dilatino, dilaton and graviton
e.m.’s, eq. (2.15) becomes the H-field e.m., but eq. (2.14) must be the H-field BI. Then
eq. (2.14) must coincide with the (4,0)-component of the BI (3.1). That is really the
case. Namely, substituting (3.2c) into the (4,0)-component of (3.1) we get eq. (2.14) if
the following equation is satisfied:

Da U
(g)
bcd +

3

2
Tab

eU
(g)
ecd +

3

2
Tab

γ U
(g)
γcd +

1

4
Kabcd =

3

2
(−2Rab

ijRcdij) , [abcd] (3.6)

where

Kabcd = 24(TA(g))abcd +
1

3
(TεA(g))abcd + 3DΓab

jDA
(g)
cdj , [abcd] (3.7)

We have checked, calculating spinorial derivatives, that (3.6) is satisfied identically.
Note, that (3.6) is a (4,0)-component of a general superform-identity [8]:

DU (g) +K = trR2 (3.8)

where U
(g)
(0.3) = K(0.4) = K(1.3) = 0. The (2,2), (1,3), (0,4) -components of (3.8) are satisfied

because they are reduced to that used for definition of A and U (g)- superfields.

2In deriving eq. (3.5) we have corrected some errors and misprints in [17]. Namely: 1) the factor
(−84 · 96) must be inserted into the l.h.s. of eq. (3.19) in [17], 2) the coefficient 2 must be changed to 4
in next to the last term in the r.h.s of eq. (3.19) in [17], and 3) the result for the Θabcd-tensor (see (3.18)
in [17]) must be changed to:

θabcd = (4/3)D[aTbcd] + (64/27) (T 2)[abcd]

This change is due to the fact that the term + 1
14 DΓefG

(1440)
e,fabcd was missed in the l.h.s of eq. (3.16) in [17].

Note, that A
(g)
abc = −2Labc, where Labc is determined by eq. (3.19) in [17] including all the corrections,

mentioned above.
3It is the reason why researh in this field, starting intensively in 1987, was stopped during the last few

years.
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One more remark is necessary. All the relations of the SG3 - theory are invariant
under the scale transformation [13], [5]:

Xj → µqj Xj (3.9)

where Xj is an arbitrary field, but qj is a numerical factor, which has a specific value for
each field, µ is a common factor. It is a classical symmetry, because the lagrangian is also
transformed according to (3.9) with q = −2.

In the Table 1 we present the transformation rules for different fields (the numerical
factors in the table are values of qj for each field):

Table 1

φ −1 Dα −1/4 Tabc −1/2 T γab −3/4
eam 1/2 Aabc −3/2 Habc −3/2 ψγa −1/4

Da −1/2 Rab
cd −1 Nabc −1/2 χ −5/4

Now we come to consideration of the SG7-case.

SG7 theory

One can interpret the same equations (2.10)-(2.15) in terms of the 7-form graviphoton
superfield NA1...A7 . The BI for such a field takes the form:

D[A1NA2...A8) +
7

2
T[A1A2

QN|Q|A3...A8) = 0 (3.10)

(DN = 0 in superform notations). Because of the scale invariance (3.9) it is impossible
to add any 8-form ∼ kg constructed from curvature into the r.h.s. of (3.10) [5].

It is remarkable that the following nonzero components provide the solution of (3.10)
which is self-consistent with (2.1)-(2.4):

Nαβa1...a5 = −(Γa1...a5)αβ , (3.11)

Nabc = Tabc , (3.12)

where Nabc is defined in (2.19). This solution is valid for any Aabc-field , in particular for
that, defined by (3.4), (3.5), derived in the SG3-theory.

Using (3.12) in the equations (2.10)-(2.19) and defining the Aabc-field according to
(3.4), (3.5) , we get the mass-shell description of the SG7-theory in a closed and rela-
tively simple form. Eq.(2.14) becomes the Na1...a7-field e.m., but eq. (2.15) is the (8,0)-
component of the N-field BI. Using (3.12) in (3.2c) we get the duality relation between
Habc and Na1...a7 fields. Now we come to the discussion of the lagrangian in the SG7
theory.

4 Bosonic Part of the Lagrangian

The lagrangian of the SG7-theory is equal to (we consider the gravity sector):

L(g) = L(g)
0 + kg L

(g)
1 (4.1)
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where L(g)
0 is the gravity part of the (anomaly full) lagrangian of the G7-theory, but L(g)

1

describes the anomaly compensating term [7] and other terms, generated by supersym-
metry.

The L(g)
0 has a simple form [19], which follows from the linearity in φ and χ -fields of

the e.m.’s (2.10)-(2.15):

L(g)
0 = φ (R−

1

3
T 2) |+ 2χΓabTab | (4.2)

(As usual the symbol | means the zero superspace-component of the superfields). The
bosonic part of (4.2) takes the form:

L(g)
bos = φR −

1

12
φM2

abc (4.3)

where R is the curvature scalar (see the comment after eq. (2.9)), but

Mabc ≡
1

7!
εabc

a1...a7 (ea1

m1 . . . ea7

m7 Nm1...m7) , (4.4)

where Nm1...m7 = 7∂[m1
Mm2...m7], and Mm1...m6 is the 6-form graviphoton potential of the

SG7 - theory. Note, that

Mabc = Tabc −
1

2
ψf Γf abc

d
ψd (4.5)

as it follows from (3.12), (2.19).

The explicit form of L(g)
0 with all fermionic terms is presented in [19]. (The result

coincides with [4], [6] after the field redefinition). The field transformation to the set of
(primed) fields with canonical kinetic terms has the form:

eam = exp(
1

6
φ′) eam

′, φ = exp(−
4

3
φ′), χ = −

4

3
exp(−

17

12
φ′)χ′

ψm = exp(
1

12
φ′)(ψm

′ −
1

6
Γm
′χ′), Nabc = −2exp(−

7

6
φ′)N ′abc (4.6)

It is the Super-Weyl transformation [26] (see [18] for details).

Now we come to the discussion of kg L
(g)
1 -term in (4.1). It is the property of our

parametrization that L(g)
1 does not depend of φ and χ - fields. It means that the scale

invariance simplifies greatly the possible structure of L(g)
1 . There are 12 possible terms:

L(g)
1,bos =

12∑
i=1

xiLi (4.7)

where xi are numbers to be determined by comparison with e.m.’s (2.10)-(2.15), but Li
are presented in the Table 2.

Table 2

i Li i Li i Li

1 R2 5 (M2)R 9 Mabc;d(M2)abcd
2 R2

ab 6 (M2)abRab 10 (M2)2

3 R2
abcd 7 (M2)abcdRabcd 11 (M2)2

ab

4 ε0...9R01bcR23
bcM4...9 8 Mabc∇d∇dMabc 12 (M2)abcd (M2)acbd
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where (M2) = MabcM
abc, (M2)ab = Ma

cdMbcd and (M2)abcd = Mab
fMcdf .

Now we come to the determination of xi in (4.7). All the terms, containing the Mabc-
field (4.4) in the lagrangian (4.7) can be easily reconstructed with the help of the simple
procedure [20]. As was discussed before, equation (2.14) (which is the N-field e.m.) is
equivalent to the (4,0)-component of theH-field BI. Omitting spinorial terms, introducing
the standard covariant derivative∇a and the curvature-tensor Rabcd one can rewrite (4,0)-
component of eq. (3.1) in the form:

(Habc + 3kg (2TijaRbc
ij − Ta

ijTbij;c +
1

3
(T 3)abc));d = 3kg Rab

ijRcdij , [abcd] (4.8)

Then with the help of eq.’s (3.2c), (3.3) and (4.5) one can write everything in terms
of the Mabc - field. After that the terms in the lagrangian, containing the Mabc - field,
are reproduced immediately from the l.h.s. of (4.8) which has the desired form of a
complete derivative. The term ∼ MR2 is reproduced from the r.h.s. of (4.8). One can
not distinguish between R and (1/12)M2 on the mass shell. For this reason we are able
to determine by this way only xj, j = 4.6, 7, 8, 9, 11, 12 and find one relation between
xj, j = 5, 10.

The terms in (4.7), containg the M-field, were also derived by another procedure,
which makes it possible to obtain also terms ∼ R2. Calculating the variation of L(g) over
the graviton field one must get the e.m. (2.13). Then, contracting indices, one must
get the dilaton e.m. Comparing with (2.12) the result of such a variation, (spinorial
derivatives were explicitely calculated in (2.12)), we find the values of xi, i 6= 1, 5, 10 in
(4.7) and find the relation between xi, i = 1, 5, 10. There is the complete correspondence
between this calculation and the previous one, based on eq. (4.8).

The values of xj obtained by the described procedure are presented in Table 3.
Table 3

x1 undetermined x5 −2/27− 2x1/12 x9 1/2
x2 2 x6 −1/2 x10 1/162 + x1/144
x3 −1 x7 0 x11 0
x4 (2 · 6!)−1 x8 −1/6 x12 −1/24

Terms containing x1 in (4.7) appear in the combination which is the square of the
constraint (2.16). That is the reason why x1 is undetermined by comparison with e.m.’s.

To simplify the result one can make the following redefinition of the dilaton field in
(4.2):

φ = φ̃− kg x1 (R−
1

3
T 2) + kg

2

27
(T 2) (4.9)

The second term in the r.h.s of (4.9) leads to the cancellation of terms ∼ x1 in (4.1). Such
a redefinition does not change anything at the mass-shell due to the constraint (2.16)
(note, that neglecting fermions: R − (1/3)T 2 = R − (1/12)M2). So one can put x1 = 0
from the very beginning in the Table 3.

The third term in (4.9) leads to the cancellation of terms ∼ RM2 and ∼M4 in (4.1),
so one can put x5 = x10 = 0 in the Table 3, using φ̃ instead of φ. The third term in
the r.h.s. of (4.9) leads to the obvious change in the basic equation (2.4) and to the
controlable changes in other relations, discussed before.
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Finally, considering φ̃ as an independent variable, one can write the bosonic part of
the lagrangian (4.1) in the form:

L(g)
bos = φ̃ (R −

1

12
M2)+

+kg [2R2
ab −R

2
abcd +

1

2 · 6!
εabcdf1...f6 R2

abcdMf1...f6 −
1

2
Rab(M2)ab−

−
1

6
Mabc∇f∇

fMabc +
1

2
Mabc;d(M2)abcd +

1

162
(M2)2 −

1

24
(M2)abcd(M

2)acbd] (4.10)

Terms ∼ kgR
2 and ∼ kgM

2 in (4.10) are not free from ghosts. It is a consequence of a
supersymmetry because the part of L(g) quadratic in the gravitino field contains ghost-full
terms of the type kgψaΓabc(∇d)2ψc;b. (We have not discussed them in the present paper for
short). It is the ignoring of these terms in [12], [27] has led to prediction of the ghost-free
term (R2

abcd − 4R2
ab +R2) in the lagrangian.

The lagrangian (4.10) corresponds to the SG7-theory, which must be supersymmetric
by construction after including of fermions. It contains anomalies, but anomaly compen-
sating counter-terms appear only at the 8-th order in derivatives. All such terms in the
supersymmetric lagrangian can be reconstructed iteratively in β if one adds the term βX8

to the r.h.s. of the BI (3.10) [28],[5], where X8 = trR4 + (1/4)(trR2)2. In the limiting
case β = 0 the SG7 is the dual analog of SG3-theory, which is also anomaly full, inspite
of the Green-Schwarz term in the r.h.s. of the BI (3.1). Anomaly compensating counter-
terms in the SG3-theory appear at the same (8-th) order in derivatives and has never
been supersymmetrized.
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