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Abstract

Incorporating the zonal spherical function (zsf) problems on real and p-adic hyperbolic

planes into a Zakharov-Shabat integrable system setting, we find a wide class of integrable

evolutions which respect the number-theoretic properties of the zsf problem. This means

that at all times these real and p-adic systems can be unified into an adelic system with

an S-matrix which involves (Dirichlet, Langlands, Shimura...) L-functions.
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1. Introduction

Scattering theory on real [1] and p-adic [2] symmetric spaces can be unified in an

adelic context [2], [3]. This has the virtue of producing S-matrices involving the Riemann

zeta function and of throwing new light on earlier work [4] concerning scattering on the

noncompact finite-area fundamental domain of SL(2,Z) on the real hyperbolic plane H∞.

The real hyperbolic plane is a smooth manifold and as such quantum mechanics on H∞

involves a second order Schrödinger differential equation. By contrast the p-adic hyperbolic

planes Hp are discrete spaces (trees), and the corresponding Schrödinger equations are

second order difference equations. The Jost functions, and therefore the S-matrices from

all these local problems combine in adelic products, which then involve the Riemann zeta

function [2].

At a given initial time consider all these (“S-wave”) scattering problems and then let

all of them undergo an integrable time evolution. In general such an evolution need not re-

spect the number-theoretic endowment of the initial problem. In other words, even though

at the initial time the real and p-adic scattering problems assembled into an interesting

adelic scattering problem, at later times this need no longer be so. We want to explore

here the conditions under which the integrable evolution respects adelizability and to see

what kind of scattering problems can be obtained this way at later times. Specifically, we

will incorporate the initial scattering problem into a Zakharov-Shabat (ZS) system and

follow its integrable evolution. For the p-adic problems, time has to be discrete and for

adelic purposes time then has to be discrete in the real problem as well. We will see that

adelic products can be meaningful at later times in the evolution of such a system and that

along with the Riemann zeta function involved in the adelic problem at the initial time,

various (Dirichlet, Langlands, Shimura,...) L-functions [5] appear at later times.

2. Integrable Evolution of the p-adic Zonal Spherical Function Problem

As mentioned in the introduction, we consider “S-wave” scattering problems on local

(real and p-adic) hyperbolic planes and embed them in integrable ZS systems. We start

by setting up quantum mechanics on these hyperbolic planes and then finding S-wave

solutions (i.e. solutions independent on the angular variable) thereof. Dealing with S-

waves corresponds mathematically to the zonal spherical function (zsf) problems on these

hyperbolic planes. We first consider the p-adic hyperbolic plane Hp = SL(2,Qp)/SL(2,Zp).

This Hp is a discrete space, a homogeneous Bruhat-Tits-Bethe tree of incidence number
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p + 1 (or equivalently, branching number p) and the radial coordinate is an integer, say n.

The zsf wn on Hp solves the familiar difference equation [2]

pwn+2 −
√

p
(

p
ik
2 + p−

ik
2

)

wn+1 + wn = 0. (2.1)

It is this equation that we wish to embed in an integrable ZS system. We do this as follows.

Consider the two-component ZS system governed by the equations

un+1 = zun + Qnvn

vn+1 = Pnun + z−1vn

. (2.2)

By decoupling this set of first order difference equations, one obtains separate second order

difference equations for the two components of the ZS doublet. In particular vn obeys

Pn

Pn+1(1 − PnQn)
vn+2 −

1

1 − PnQn

[

Pn

Pn+1
z−1 + z

]

vn+1 + vn = 0. (2.3)

We achieve the embedding of the zsf equation (2.1) in the ZS system, by requiring that

this vn essentially reproduce the zsf wn, specifically that for some real ν

wn = p−νnvn. (2.4)

For this to be the case, Qn and Pn must obey the relations

Pn

Pn+1(1 − PnQn)
p2ν = p

1

1 − PnQn

[

Pn

Pn+1
z−1 + z

]

pν =
√

p
(

p
ik
2 + p−

ik
2

)

.

(2.5)

Here we must require Qn and Pn to be z-independent and the relation between z and k to

be n−independent. These requirements result in

z = p
ik−ρ

2 (2.6a)

where for convenience we introduced the new parameter

ρ = 2 ν − 1 (2.6b)

with ν as in equation (2.4).
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On account of the invariance of equation (2.1) under a sign change for k, in equation

(2.6) k can just as well be replaced by −k. We opt for the relation (2.6a), as it stands.

When used in eq.(2.5) it gives

Pn+1

Pn
= pρ, Qn = 0 (2.7)

so that

Pn = σp(0) pρn and Qn = 0, (2.8)

where σp(0) is an integration constant.

This determines, via (2.1) and (2.4)

u0
n = p

(ik−ρ)n

2 u0
0

v0
n =

p

p + 1

[

p
(ik+ρ)n

2 c0(k; p) + p
(−ik+ρ)n

2 c0(−k; p)

] (2.9)

where c0(k; p) is the Jost-Harish-Chandra function for the scattering problem on a tree [2],

c0(k; p) =
ζp(ik)

ζp(ik + 1)
=

1 − p−ik−1

1 − p−ik
(2.10)

and

u0
0 =

p
ik+ρ+2

2 − p
−ik+ρ

2

σp(0)(p + 1)
(2.11)

We now wish to find an integrable time-evolution for this system. We will assume,

throughout this paper, that time is discrete and its value will be indicated by a superscript,

say m. Imposing the condition that at any later time the spatial dependence of the system

should still be of the ZS type, leads to a compatibility relation between the time and space

evolutions. Let us introduce matrix notation

Ψm
n =

(

um
n

vm
n

)

Rm
n =

(

z Qm
n

Pm
n z−1

)

(2.12a)

where as explained the superscript m indicates time and the subscript n distance to the

origin of the tree. The ZS equations at time m are then

Ψm
n+1 = Rm

n Ψm
n (2.12b).
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Introducing the time evolution matrix

Mm
n =

(

Am
n Bm

n

Cm
n Dm

n

)

, (2.12c)

the time evolution of the system is governed by the equation

Ψm+1
n = Mm

n Ψm
n . (2.12d)

The compatibility condition between the time evolution and the eigenvalue problem

is

Rm+1
n Mm

n = Mm
n+1R

m
n . (2.13)

In order to solve equations (2.11) we need to make some further assumptions, as

otherwise we have six unknowns and four relations. We will expand the elements of the

time-evolution matrix in powers of z, and retain only the first term. However, because of

the way z and z−1 occur in Rm
n , these expansions will be chosen differently [6] for the four

matrix elements of Mm
n :

Am
n = am

n + z−2αm
n

Bm
n = zbm

n + z−1βm
n

Cm
n = zcm

n + z−1γm
n

Dm
n = dm

n + z2δm
n

. (2.14)

As shown in detail in Appendix A, these assumptions lead to the following solution

for the ZS system (2.12):

Rm
n =

(

z 0

σp(m)pρ(n−m) z−1

)

(2.15a)

and

Mm
n =

(

a(m) + z−2 α(m) 0

−pρ(n−m−1)
[

σp(m)δ(m)z + σp(m + 1)α(m)z−1
]

d(m) + z2δ(m)

)

(2.15b)

where σp(m) is an arbitrary function of the discrete time m and a(m), α(m), d(m) and

δ(m) are equal respectively to am
0 , αm

0 , dm
0 and δm

0 of eq.(2.14) and must be related by:

σp(m + 1)
[

α(m) pρ + a(m)
]

= σp(m)
[

δ(m) + d(m) pρ
]

(2.15c)

Just like σp(m), the quantities a(m), α(m), d(m) and δ(m) all depend, of course,

on the Bethe lattice branching number p, but we choose not to explicitly indicate this

dependence.
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Corresponding to this solution, the ZS doublet, which at time m = 0 takes the form

(2.9), evolves into:

um
n = u0

n

m−1
∏

j=0

[a(j) + pρ−ikα(j)]

vm
n =

p

p + 1
p

ρn

2

[

p
ikn
2 c0(k; p)

σp(m)

σp(0)

m−1
∏

j=0

[a(j)p−ρ + α(j)p−ik]+

+ p−
ikn
2 c0(−k; p)

m−1
∏

j=0

[d(j) + pik−ρδ(j)]
]

.

(2.16)

with u0
n given by eq. (2.9). For the S-matrix at m 6= 0 to be unitary, in the expression for

vm
n , p

ikn
2 and p−

ikn
2 must have complex conjugate coefficients, which requires that equation

(2.15c) be replaced by the stronger pair of equations:

σp(m + 1) α(m) pρ = σp(m) δ(m)

σp(m) d(m) pρ = σp(m + 1) a(m),
(2.15d)

which, of course, imply eq.(2.15c).

With these relations one can eliminate a(m) and α(m) and the formulae for um
n and

vm
n simplify considerably. To see this, it is convenient to renormalize u and v by removing

from them an overall factor which depends only on the discrete time m. This way, we

introduce the new functions ũm
n and ṽm

n as follows:

ũm
n = f(m) um

n

ṽm
n = g(m) vm

n

(2.17)

with

f(m) =

m−1
∏

j=0

d−1(j)

g(m) =
σp(m)

σp(0)
f(m)

(2.18)

Then, the final simplified form of ũm
n is

ũm
n = Λ(m, χ(p), k; p)u0

n (2.19)

and ṽm
n is given by the second equation (2.9) with the Jost-Harish-Chandra c−function

c0(k; p) replaced by

cm(k; p) = c0(k; p) Λ(m, χ(p), k ; p). (2.20)

6



In equations (2.19) and (2.20), the function Λ is given by

Λ(m, χ(p), k ; p) =

m−1
∏

j=0

[

1 − χj(p)−ik
]

(2.21)

with

χj(p) = − δ(j)

d(j)
p−ρ. (2.22)

In other words ũm
n and the c−function both accrete the same factor Λ.

In the tendentious notation just used, it is clear that Λ is a candidate factor in an

Euler product, provided only χj(p) has a “nice” p−dependence. By this we mean that in

the simplest case χj(p) is a Dirichlet character, or something similar. We shall return to

this point when we treat the adelic problem.

Finally, ũm
n does not correspond to a scattering problem, since it does not contain

an incoming wave. Yet, even ũm
n has encoded in it an object lm(k, p), which in adelic

considerations will play a role similar to that played by the Jost-Harish-Chandra function

cm(k, p), which is encoded in the v’s. This lm(k, p) is found by rewriting ũm
n in the form

ũm
n = lm(k, p)

p
ik(n+1)−ρ(n−1)+2

2

(p + 1)σp(0)
. (2.23)

Comparing with equations (2.19), (2.9)-(2.11), we then find

lm(k, p) =
Λ(m, χ(p), k; p)

1 − p−(ik+1)
. (2.24)

Next we have to deal with the place at infinity, which involves the real hyperbolic

plane H∞ = SL(2, Q∞)/SO(2, Q∞) where Q∞ ≡ R is the field of real numbers.

3. Integrable evolution of the real Zonal Spherical Function Problem

The adelic partner of the zsf problems on the p-adic hyperbolic planes tackled in

section 2, is the zsf problem on the real hyperbolic plane H∞ = SL(2, R)/SO(2, R). The

corresponding eigenvalue equation for the radial Laplacian is:

w′′ + 2 coth 2x w′ + (k2 + 1) w = 0 (3.1)

This is no longer a difference equation, but rather a differential equation, (w′ ≡
dw/dx), since, unlike its p-adic counterparts, the real hyperbolic plane is a continuous
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manifold and not a discrete Bruhat-Tits-Bethe tree. We therefore encounter a continuous

radial coordinate x, while time m in the ZS system must stay discrete, for a proper match

with the p-adic cases. The standard ZS problem in this case is [6]

(u0)′ = iζu0 + q0v0

(v0)′ = P 0u0 − iζv0
(3.2)

with ζ the counterpart of the spectral variable z. Specifically, ζ and z are related as

z = eiζ . (3.3)

Were we to deal with this problem, we could easily find its solution and integrable

time evolution. Yet expanding in ζ not being the same as expanding in z in section 2, the

nice adelic match would be lost. Therefore, we shall consider a different, adelically better

suited alternative, namely

(u0)′ = z u0 + Q0(x) v0

(v0)′ = P 0(x) u0 + z−1 v0
. (3.2′)

We will return to the original ZS problem (3.2) in Appendix C.

Just like in the discrete case, the second order equation obeyed by v0 is

(v0)′′ − (v0)′
[

z + z−1 +
(P 0)′

P 0

]

+ v0
[

1 − Q0P 0 + z−1 (P 0)′

P 0

]

= 0 (3.4)

which, after a ’gauge’ transformation similar to (2.3),

v0(x) = w0(x)τ(x) (3.5)

upon comparison with (3.1) yields the conditions

2 coth 2x = 2
τ ′

τ
− z − z−1 − (P 0)′

P 0

k2 + 1 =
τ ′′

τ
− τ ′

τ

[

z + z−1 +
(P 0)′

P 0

]

+ 1 − P 0Q0 + z−1 (P 0)′

P 0

(3.6)

where P 0 and Q0 are z-independent, and the relation between z and k has to be x-

independent. Once these conditions are imposed, it follows that

P 0 = σ(0)e2νx

Q0 = − 1

σ(0) sinh2 2x
e−2νx

(3.7)
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and

τ(x) =τ0(x)(sinh 2x)1/2e(ν+ z+z−1

2 )x

z − z−1 = − 2ν ± 2ik
(3.8)

with ν an arbitrary complex number. Again, everything is symmetric with respect to

changing the sign of k, and we chose the + sign in (3.8). The x-dependence in relations

(3.7) shows that at large x only one of the two functions, P 0 and Q0, survives, depending

upon the real part of ν. In what follows, without any loss of generality, we assume Re ν ≥ 0,

so as to preserve the resemblance with the discrete case.

The x → ∞ asymptotic form of the solution to (3.1) is

u0(x) ∼ 2ik
τ(x)

σ(0)
c0 (k;∞)e(ik−1−2ν)x

v0(x) ∼ τ(x)
[

c0 (k;∞) e(ik−1)x + c0 (−k;∞) e−(ik+1)x
]

(3.9)

where

c0 (k;∞) = π−1/2 Γ
[

1
2 ik
]

Γ
[

1
2
(ik + 1)

] =
ζ∞(ik)

ζ∞(ik + 1)
(3.10)

Next, we need to find an integrable time evolution for the system that is compatible with

(3.1). The compatibility condition in this case is

(Mm)′ = Rm+1Mm − MmRm (3.11)

and the superscript m again stands for discrete time. We shall solve equation (3.11) subject

to the condition that at all times m, the asymptotic R matrix at large radial distances x

have the form

Rm ∼
(

z 0

σ(m)e2νx z−1

)

. (3.12)

This insures a proper adelic match with the p-adic cases treated in Section 2.

With this choice, some straightforward calculations give the following form for the

M -matrix

Mm ∼ (3.13)
(

a(m, k) − b(m,k)

2ik
σ(m)e2ikx

b(m, k)e2(ik−ν)x

e2νx

[

σ(m+1)a(m,k)−σ(m)d(m,k)

2ik
+ c(m, k)e−2ikx +

b(m,k)

4k2 e2ikx

]

d(m, k) +
b(m,k)

2ik
σ(m + 1)e2ikx

)

9



where a(m, k), b(m, k), c(m, k) and d(m, k) all are x-independent. The complete derivation

of these results is given in Appendix B. The ZS doublet at time m then has the asymptotic

form

um(x) ∼ u0(x)

m−1
∏

j=0

[

a(j, k) +
b(j, k)σ(j)

2ik

cj
− (k;∞)

cj
+ (k;∞)

]

vm(x) ∼ τ(x)

[

e(ik−1)x c0 (k;∞)
σ(m)

σ(0)

m−1
∏

j=0

[

a(j, k) +
b(j, k)σ(j)

2ik

cj
− (k;∞)

cj
+ (k;∞)

]

+

+ e−(ik+1)x c0 (−k;∞)

m−1
∏

j=0

[

d(j, k) +
2ik c(j, k)

σ(j)

cj
+ (k;∞)

cj
− (k;∞)

]

]

(3.14)

where cj
+ (k;∞), cj

− (k;∞) obey the recursion relations

cj+1
+ (k;∞)

σ(j + 1)
= a(j, k)

cj
+ (k;∞)

σ(j)
+ b(j, k)

cj
− (k;∞)

2ik

cj+1
− (k;∞) = d(j, k) cj

− (k;∞) + 2ik c(j, k)
cj
+ (k;∞)

σ(j)

(3.15)

This is precisely the real analog of the p-adic equation (2.16). Again we enforce

S-matrix unitarity, by imposing

b(j, k)σ(j + 1)

2ik
= −2ik c(j, k)

σ(j)
(3.16a)

and

σ(j) d(j, k) = σ(j + 1) a(j, k) (3.16b)

and, therefore, [cj
− (k;∞)]∗ = cj

+ (k;∞). Here again, σ(m), a(m, k), b(m, k), c(m, k) and

d(m, k) are different from those in section 2, as now they correspond to p = ∞. Then

vm(x) ∼ τ(x)
[

e(ik−1)x c0(k;∞)

m−1
∏

j=0

∆(j, k) + e−(ik+1)x c0(−k;∞)

m−1
∏

j=0

∆∗(j, k)
]

(3.14a)

where

∆(j, k) = d(j, k)
[

1 + 2ik
c(j, k)

σ(j)d(j, k)

cj
+ (k;∞)

cj
− (k;∞)

]

(3.17)
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and we see that

cm(k;∞) = c0(k;∞) Λ(m, k ;∞) (3.18)

where

Λ(m, k ;∞) =
m−1
∏

j=0

∆(j, k) (3.19)

As we shall see in the next section this has precisely the right form for an adelic

product formula.

The asymptotics of um(x) yields the p = ∞ counterpart of the lm of section 2. The

same Λ(m, k;∞) function (3.19) is involved. Everything parallels the p-adic case, as ex-

pected.

For completeness, in Appendix C we discuss the integrable evolution of the real zsf

problem with ZS system of type (3.2).

4. Integrable Evolution of the Adelic Zonal Spherical Function Problem

In sections 2 and 3 we treated an infinite set of ZS problems, one for each Bruhat-

Tits tree with finite prime branching number p and one for the ZS problem on the real

hyperbolic plane, the case p = ∞. We found similar evolutions in discrete time m for, the

Jost-Harish-Chandra c-functions in all these cases. Specifically

cm(k; v) = c0(k; v) Λ(m, χm(v), k; v) (4.1)

with c0(k; v) the ordinary Jost-Harish-Chandra c-function for the local hyperbolic planes

(following arithmetic usage, v labels the places of the field Q of rational numbers and runs

over all finite primes and the infinite prime v = ∞, which denotes the place at which

completion of the rationals yields the ordinary real numbers) and

c0(k; v) =
ζv(ik)

ζv(ik + 1)
, (4.2a)

ζp(ik) =
1

1 − p−ik
, (4.2b)

ζ∞(ik) = π− ik
2 Γ(

ik

2
), (4.2c)
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Λ(m, χm, k; p) =
m−1
∏

j=0

[1 − χm(p)p−ik], (4.2d)

Λ(m, χm, k;∞) =

m−1
∏

j=0

∆(j, k). (4.2e)

One passes from these local evolutions to the adelic evolution, by performing the adelic

product over all the finite and infinite places v. At time m = 0 this yields the familiar

result

c0
A
(k) =

ζA(ik)

ζA(ik + 1)
, (4.3a)

where

ζA(s) = π− s
2 Γ(

s

2
)ζ(s), (4.3b)

ζ(s) being the ordinary Riemann zeta function and ζA(s) the adelic zeta function which

obeys the simple functional equation

ζA(1 − s) = ζA(s). (4.4)

At time m = 0, an interesting adelic problem (see [2]) thus unifies all the local problems

considered in sections 2 and 3. Does this adelic unification persist in the course of the

time evolution? In general it does not, but one can constrain the p-dependence of the

integration constants which appear in equation (4.2), in such a manner that the adelic

unification remain meaningful at all times m. By inspecting equation (4.2), it becomes

evident that the p-dependence of the χm(p) must be such as to allow an Euler product to

be formed at each time m. The simplest way to insure this is, to fix, at each time m, the

p-dependence of χm(p) to be that of a Dirichlet character modulo some integer rm, which

can depend on the discrete time m. Then the adelic Λ-function,

ΛA(m, χ, k) =
∏

v

Λ(m, χm(v), k; v), (4.5)

the product of all local Λ-functions of equation (4.2), evolves in a simple fashion:

ΛA(m + 1, χ, k) = LA(χm, ik) ΛA(m, χ, k) (4.6)

with LA the adelic Dirichlet L-function corresponding to the Dirichlet character χm:

LA(χm, ik) = L∞(χm, ik) L(χm, ik). (4.7)
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Here

L(χm, ik) =
∏

p

1

1 − χm(p)
(4.8)

is the Dirichlet L-function corresponding to the character χm and L∞(χ, ik) its gamma

factor. Specifically [7], if the exponent ǫ of the character χm is defined by

(−1)ǫm =
χm(−1)

χm(1)
, (4.9)

then

L∞(χm, ik) = (
rm

π
)

ik
2 Γ(

ik + ǫm

2
) (4.10)

It is now evident that the time evolution in the adelic case amounts to the accretion

at time m of a factor LA(χm, ik) by the adelic Jost-Harish-Chandra c-function.

A similar adelic treatment can also be given to the other component, the u-component

of the ZS doublet, more precisely to the lm function encoded in it. From the local lm

functions (2.24) we can construct an adelic lm function, by forming the Euler product

and including the place at infinity. This adelic l-function then keeps accreting the same

LA(χm, ik) factors as the cm-function. The evolution of the adelic ZS system is thus fully

(i.e. for both components of the ZS doublet) determined by a single adelic ΛA function.

All this can be considerably generalized, by weakening the condition that an adelic

amplitude be obtained at all times m. If instead, we only require an adelic amplitude at

all even values of the discrete time m, as if though time steps of the adelic system were

twice longer than those of the local systems, then Langlands-type L-functions for GL(2)

can be accreted. To see how this comes about, let us consider a cusp form f of weight k,

which is an eigenfunction of all Hecke operators T (p). Let an be the Fourier coefficients of

f and let a1 = 1. Then the local Langlands L-functions corresponding to f are

Lp(s, f) =
1

1 − ap p−s + pk−1−2s
=

1

(1 − µp p−s+ k−1
2 )(1 − νp p−s+ k−1

2 )
(4.11a)

with

µp νp = 1 µp + νp = ap p
1−k
2 , (4.11b)

so that setting

χ2j+1(p) = µp p
k−1
2 (4.12a)

and

χ2j+2(p) = νp p
k−1
2 , (4.12b)
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we pick up a GL(2) Langlands L-factor at each positive even value of the discrete time m.

Similarly requiring the adelic time to correspond to every third, fourth or higher step of the

ordinary “local” time, we can accrete higher Langlands L-functions (GL(3),...), Shimura

symmetric squares of L-functions, etc...

It can also happen that the L-function accretion is irregular, say at time m = 1 we

accrete a Dirichlet L-function, then at time m = 3 a GL(2) Langlands L-function, then

at times m = 4, 5, 6 again Dirichlet L-functions, and so on without any visible Dirichlet-

Langlands-Shimura-... pattern. All the local χm(p) at each time m are given in terms of

the arbitrary local parameters of the time evolution (dm(p) and δm(p) in equation (2.21.b)).

So, there is no mechanism directing the arithmetic evolution of the system. In particular

the adelizability at all times was obtained by restricting the integration constants and not

by explicit dynamical constraints. What we have found, is an infinite family of integrable

systems, which together give rise to adelic integrable systems with the just explained degree

of arbitrariness.

5. Conclusions

We have studied integrable ZS systems which for one of the components of the ZS

doublet, reduce at the initial time to the zsf problem on a (local) real or p-adic hyperbolic

plane. We have found that it is possible to so coordinate the integrable evolutions of these

systems, that at all later times as well, meaningful adelic Jost functions are obtained.

These adelic Jost functions involved L-functions of various kinds, Dirichlet, Langlands,

Shimura... Though the appearance of these number-theoretic functions is interesting in

its own right, it is far from fully understood. First of all, it is not clear what replaces

at later times the adelic symmetric space on which the adelic scattering problem at the

initial time is defined. Moreover, as we saw, there is a lot of freedom in the order in

which the various types of L-functions get accreted at later times. It would be interesting

if a dynamical principle could be found to determine the ”arithmetic evolution” of the

system. This principle would ultimately have to account for the arithmetically meaningful

p-dependence of the χm(p) assumed in section 4 to make an adelic evolution possible.
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Appendix A. Derivation of the solution (2.15)

In this appendix we find the solution for the time evolution (2.13) of the ZS system

(2.12), when the z-dependence of the M -matrix elements is as given in eq.(2.11). Inserting

(2.14) into (2.13) we obtain

am
n + Qm+1

n cm
n = am

n+1 + Pm
n bm

n+1

αm
n + Qm+1

n γm
n = αm

n+1 + Pm
n βm

n+1

δm
n + Pm+1

n bm
n = δm

n+1 + Qm
n cm

n+1

dm
n + Pm+1

n βm
n = dm

n+1 + Qm
n γm

n+1

βm
n + Qm+1

n dm
n = bm

n+1 + Qm
n am

n+1

cm
n + Pm+1

n am
n = γm

n+1 + Pm
n dm

n+1

bm
n + Qm+1

n δm
n = 0

γm
n + Pm+1

n αm
n = 0

βm
n + Qm

n−1α
m
n = 0

cm
n + Pm

n−1δ
m
n = 0

(A.1)

From these equations, one readily finds

am
n = Qm+1

n Pm
n−1δ

m
n + a(m)

bm
n = −Qm+1

n δm
n

cm
n = −Pm

n−1δ
m
n

dm
n = Qm

n−1P
m+1
n αm

n + d(m)

βm
n = −Qm

n−1α
m
n

γm
n = −Pm+1

n αm
n

(A.2a)

αm
n =

[

n−1
∏

i=0

(

1 − Qm+1
i Pm+1

i

)

(

1 − Qm
n Pm

n

)

]

α(m) δm
n =

[

n−1
∏

i=0

(

1 − Qm+1
i Pm+1

i

)

(

1 − Qm
n Pm

n

)

]

δ(m) (A.2b)

and two coupled equations for Qm
n and Pm

n :

Qm
n a(m) − Qm+1

n d(m) =
[

n−1
∏

i=0

(

1 − Qm+1
i Pm+1

i

)

(

1 − Qm
i Pm

i

)

]

(

1 − Qm+1
n Pm+1

n

)(

Qm+1
n+1 δ(m) − Qm

n−1α(m)
)

(A.3a)

Pm
n d(m) − Pm+1

n a(m) =
[

n−1
∏

i=0

(

1 − Qm+1
i Pm+1

i

)

(

1 − Qm
i Pm

i

)

]

(

1 − Qm+1
n Pm+1

n

)(

Pm+1
n+1 α(m) − Pm

n−1δ(m)
)

(A.3b)

where a(m) = am
0 , α(m) = αm

0 , d(m) = dm
0 and δ(m) = δm

0 are arbitrary functions

depending on the discrete time m and on the lattice branching number p, but we choose

not to show the latter dependence explicitly.
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Dividing the two equations (A.3), we have

α(m)a(m)
(

Qm
n−1P

m+1
n − Qm

n Pm+1
n+1

)

+ δ(m)d(m)
(

Qm+1
n+1 Pm

n − Qm+1
n Pm

n−1

)

+

+α(m)d(m)
(

Qm+1
n Pm+1

n+1 − Qm
n−1P

m
n

)

+ δ(m)a(m)
(

Qm
n Pm

n−1 − Qm+1
n+1 Pm+1

n

)

= 0
(A.4)

From eq.(A.4) we recognize the particular solution:

Qm+1
n+1 =

σp(m)

σp(m + 1)
Qm

n Pm+1
n+1 = Pm

n

σp(m + 1)

σp(m)
(A.5a)

with

[

δ(m)d(m)(σp(m))2 − α(m)a(m)(σp(m + 1))2
](

Qm
n−1 Pm

n−1 − Qm
n Pm

n

)

= 0 (A.5b)

There might be some further solutions of this type, but those would require that Qm
n

and Pm
n also satisfy some supplementary conditions (such as Pm

n−1 = Pm
n+1, for example),

which have to be reflected at time m = 0, and which are not satisfied in our case, so we

will not concern ourselves with them.

Since n ≥ 0 and Q0
n vanishes in our case, (see (2.8)), this solution will produce a Qm

n

which vanishes for n > m at any finite time m. In other words Qm
n = 0 asymptotically at all

times. As we are interested in the Jost functions, i.e. the asymptotic scattering regime, this

means that for our purposes Qm
n can be set to zero at all times m and all radial distances

n, Qm
n = 0. A nice feature of such a choice of solution is that it preserves exactly, not

only asymptotically, the p-adic zsf-problem structure for the equation describing vm
n at all

times.

Imposing then

Qm
n = 0 (A.6a)

eqs. (A.5) are solved by

Pm
n = σp(m)pρ(n−m) (A.6b)

This yields precisely the R-matrix of eq. (2.15a). Inserting eqs.(A.6) into eqs.(A.2)

yields the M -matrix (2.15b). Once we impose (A.6a), eq.(A.5b) becomes an identity. So

far we have only used eq.(A.4) which is the ratio of the two eqs.(A.3). Eq.(A.3a) is now

an identity, too, and we thus require that eq.(A.3b) be obeyed. Inserting eqs.(A.6) into

(A.3b) one immediately finds eq.(2.15c). We thus showed that the equations (2.15) do

indeed solve the consistency equation (2.13).
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Appendix B. Derivation of equation (3.13)

We will find here an exact solution for the time-evolution equation (3.11) of the real

ZS system (3.2’). The form of the M−matrix is the same as in the previous paragraph

Mm(x) =

(

Am(x, k) Bm(x, k)

Cm(x, k) Dm(x, k)

)

. (B.1)

With the choice (3.12) for the R−matrix, equation (3.11) produces the following

equations

(Am)′ = −Bmσ(m) e2νx

(Bm)′ = Bm (z − z−1)

(Cm)′ = −Cm (z − z−1) + e2νx
[

Amσ(m + 1) − Dmσ(m)
]

(Dm)′ = Bmσ(m + 1) e2νx

(B.2)

It is readily seen that the second equation of this system yields

Bm(x, k) = b(m, k) e2(ik−ν)x (B.3)

which, when used in the first and fourth equation gives in turn

Am(x, k) = a(m, k) − b(m, k)

2ik
σ(m)e2ikx (B.4)

and

Dm(x, k) = d(m, k) +
b(m, k)

2ik
σ(m + 1)e2ikx. (B.5)

Finally a straightforward integration of the third equation in the system (B.2) results in

Cm(x, k) =
b(m, k)

4k2
σ(m)σ(m + 1) e2(ik+ν)x + c(m, k) e2(ν−ik)x+

+
σ(m + 1)a(m, k) − σ(m)d(m, k)

2ik
e2νx

(B.6)

where all the ’constants of integration’ a(m, k), b(m, k), c(m, k), and d(m, k) are arbitrary

functions of z, and implicitly of k,(see equation (3.8)).
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Appendix C. The ZS system (3.2)

Let us now return to the Z.S. system (3.2) mentioned at the beginning of section 3.

Just like in the ’exact’ case treated in section 3, we get a second order differential

equation for v0

(v0)′′ − (P 0)′

P 0
(v0)′ +

[

ζ2 − iζ
(P 0)′

P 0
− Q0P 0

]

v0 = 0 (C.1)

Again ζ is related to the spectral parameter k of equation (3.1). The gauge transfor-

mation

v0(x) = ρ(x)t0(x). (C.2)

and the same logic that led to equations (3.6), now yields

Q0(x) =
σ(0)

sinh2 2x
e−2νx and P 0(x) = − 1

σ(0)
e2νx (C.3)

with

k = ±
(

ζ − iν
)

and ρ(x) = ρ0e
νx
√

sinh 2x (C.4)

Using the known solution (3.9), (3.10) to (3.1), we now look for an integrable time evolution

of the system which at all times is compatible with the zsf equation (3.1). That is, we wish

to find a solution to equation (3.11), but, this time, by expanding in ζ. Again, because

we want to preserve as much as possible the form of the Rm-matrix, we will make the

following assumptions:

Qm(x) =
σ(m)

sinh2 2x
e−2νx and Pm(x) = τ(m) e2νx (C.5)

These assumptions together with the expansion

Am(x, ζ) = a(m, x)ζ + α(m, x) Bm(x, ζ) = b(m, x)ζ + β(m, x)

Cm(x, ζ) = c(m, x)ζ + γ(m, x) Dm(x, ζ) = d(m, x)ζ + δ(m, x)
(C.6)
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lead to the system:

am(x)′ = σ(m + 1)cm(x)
e−2νx

sinh2 2x
− τ(m)bm(x) e2νx

dm(x)′ = τ(m + 1)bm(x) e2νx − σ(m)cm(x)
e−2νx

sinh2 2x

αm(x)′ = σ(m + 1)γm(x)
e−2νx

sinh2 2x
− τ(m)βm(x) e2νx

δm(x)′ = τ(m + 1)βm(x) e2νx − σ(m)γm(x)
e−2νx

sinh2 2x

2iβm(x) =
[

am(x)σ(m) − dm(x)σ(m + 1)
] e−2νx

sinh2 2x

2iγm(x) =
[

am(x)τ(m + 1) − dm(x)τ(m)
]

e2νx

βm(x)′ =
[

δm(x)σ(m + 1) − αm(x)σ(m)
] e−2νx

sinh2 2x

γm(x)′ =
[

αm(x)τ(m + 1) − δm(x)τ(m)
]

e2νx

bm(x) = 0 cm(x) = 0

(C.7)

In a straightforward manner, the solution for this system is found to be

am(x) = 2ia(m) αm(x) = −a(m)

2

[

τ(m + 1)σ(m + 1) − τ(m)σ(m)
]

coth 2x + α(m)

dm(x) = 2id(m) δm(x) =
d(m)

2

[

τ(m + 1)σ(m + 1) − τ(m)σ(m)
]

coth 2x + δ(m)

bm(x) = 0 βm(x) =
[

a(m)σ(m) − d(m)σ(m + 1)
] e−2νx

sinh2 2x

cm(x) = 0 γm(x) =
[

a(m)τ(m + 1) − d(m)τ(m)
]

e2νx

(C.8)

where the ’constants of integration’ a(m), d(m), α(m) and δ(m) are subject to either the

compatibility conditions

α(m)τ(m + 1) − δ(m)τ(m) = 2ν
[

a(m)τ(m + 1) − d(m)τ(m)
]

a(m)τ(m + 1) + d(m)τ(m) = 0

σ(m + 1)δ(m) − σ(m)α(m) = −2ν
[

a(m)σ(m) − d(m)σ(m + 1)
]

[

τ(m + 1)σ(m + 1) − τ(m)σ(m)
]2

= 8
[

τ(m + 1)σ(m + 1) + τ(m)σ(m)
]

(C.9)

or to the conditions
τ(m + 1)σ(m + 1) = τ(m)σ(m)

a(m)

d(m)
=

α(m)

δ(m)
=

σ(m + 1)

σ(m)

.

(C.10)
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From the first three equations (C.9) we have

d(m) = −a(m)
τ(m + 1)

τ(m)

α(m) = 2νa(m)

δ(m) = −2νa(m)
τ(m + 1)

τ(m)

(C.11)

whereas the last one determines the time-evolution of the R-matrix:

[

π(m + 1) − π(m)
]2

= 8
[

π(m) + π(m + 1)
]

(C.12)

where we used the notation π(m) = σ(m) τ(m). Notice that d(m), α(m), and δ(m) are all

proportional to a(m). Because of equation (C.8) so are then β(m) and γ(m). Thus a(m) is

an overall time-dependent normalization of the time evolution matrix Mm. Without any

loss of generality we henceforth set a(m) constant, say a(m) = 1/2.

We therefore start with equation (C.12) and introduce the function l(m) by

π(m) = l2(m) − 1 (C.13)

Then equation (C.12) becomes a quadratic equation for l(m+1)2 for a given l(m). Its two

solutions are

l2(m + 1) =
[

l(m) ± 2
]2

(C.14)

The R-matrix at time m = 0 determines π(0) = −1 so that

l(0) = 0. (C.15)

The corresponding solutions of (C.9), written in matrix form are:

Rm+1
± =

(

ik − ν σ(m+1)
sinh2 2x

e−2νx

[l(m)±1][l(m)±3]
σ(m+1) e2νx −ik + ν

)

(C.16)

and

Mm
± = 2 a(m)

(

ik −
[

1 ± l(m)
]

coth 2x
σ(m)

sinh2 r2x
e−2νx l(m)±1

l(m)∓1

[l(m)±1][l(m)±3]
σ(m+1) e2νx −

[

ik +
[

1 ± l(m)
]

coth 2x
]

σ(m)

σ(m+1)

l(m)±3

l(m)∓1

)

. (C.17)

For the alternate set (C.10) of compatibility conditions one finds
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π(m + 1) = π(m) (C.18)

and the corresponding solutions

Rm+1 = Rm and Mm =

(

a(m)
(

ik − ν
)

0

0 d(m)
(

ik − ν
)

)

. (C.19)

Thus, at any time there are five possible evolutions, the four (due to the two sign

ambiguities in the quadratic equation (C.14),)

l(m) → l(m + 1)± = ±l(m) ± 2 (C.20)

and the solution (C.18), (C.19). For simplicity we choose the time evolution corresponding

to l(m) → l(m)+2 so as to avoid ’returns’, ’reflections’, or ’stagnations’. Then l(m) = 2m

and the asymptotic solution of the Z-S system is

um(x) = − 2ikσ(0) e−νx
√

sinh 2x cm(k) e(ik−1)x (C.21)

vm(x) =
(

2m − 1
)(

2m + 1
) σ(0)

σ(m)
eνx

√
sinh 2x

[

cm(k) e(ik−1)x + cm(−k) e(−ik−1)x
]

The Jost functions at time m are given by expressions that are similar to those we

obtained for the p-adic case:

cm(k) = c0(k;∞)

m
∏

l=1

[

ik −
(

2l − 1
)]

(C.22)

with c0(k;∞) given by equation (3.10), and the conjugate relation for cm(−k). Although

the form of (C.22) is similar to the one in (2.22), it is not suited for adelization. This is

evident from the appearance of the factors linear in K as opposed to the expected gamma

factors. Presumably this is due to the expansion in ζ, undertaken here, which is different

from the z-expansion in section 3. It is amusing to note that the linear factors in (C.22)

are themselves “gamma-like” functions of one order lower in the Barnes hierarchy [8].

We note that the second order equation obeyed by wm(x) can be brought to the form

(wm)′′ + 2 coth 2x (wm)′ +

(

k2 + 1 − 4m2

sinh2 2x

)

wm = 0 (C.23)

or, equivalently, with wm(x) = z(x)√
sinh 2x
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z′′ +

(

k2 − 4m2 − 1

sinh2 2x

)

z = 0 (C.24)

which is the eigenvalue problem for the Pm
k (x), i.e. the associated Legendre functions [1].
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