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Abstract

We derive the contribution of ∆-h excitations to quasielastic charged-current

neutrino-nucleus scattering in the framework of relativistic mean-field theory.

We discuss the effect of ∆ production on the determination of the axial mass

MA in neutrino scattering experiments.
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I. INTRODUCTION

The interpretation of neutrino-nucleus scattering data relies on accurate knowledge of

the νA cross section. Above the quasielastic peak higher resonances increasingly contribute

to the cross section. Neutrino experiments generally measure integrated yields which in-

clude contributions from quasielastic nucleon knock-out as well as from higher resonance

production. We discuss, in the following, the effect of ∆ production in neutrino scattering.

It has already been shown in the case of electron scattering that a qualitative description

of the data can only be achieved when ∆-h excitations are included [1,2]. Charged-current

neutrino-nucleus scattering has been used as tool to investigate axial-vector form factor of

the nucleon [3]. For low momentum transfers the Q-dependence of the form factor can be

parameterized by a dipole mass MA, Eq. (A19). We will consider the effect of ∆ excita-

tions on the experimental extraction of MA. Kim et al. [4] have examined nuclear structure

corrections to the extraction of MA but do not consider the ∆. Singh and Oset [5] have

included ∆-h but calculated in nonrelativistic formalism.

The article is organized as follows. First, in Section II we introduce the relativistic

mean-field formalism of the nucleus including the ∆ resonance, deriving the appropriate set

of nuclear response functions. In Section III we discuss the results for cross sections and

yields as modified by the inclusion of the ∆ channel.

II. FORMALISM

In this section, we derive the inclusive cross section for quasielastic charged-current

neutrino scattering including ∆-h excitations in the nucleus. We consider a neutrino with

four-momentum k=(Eν , k) which scatters from a nucleus viaW± boson exchange producing

a charged lepton with four-momentum k′=(Ek′ ,k′). Using an impulse approximation and a

Fermi gas description of the nucleus the formula for the double differential scattering cross

section for mass number A is given by (we assume a symmetric N = Z nucleus):
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d3σ

d2Ωk′dEk′
= −

AG2
F cos2θc |k′|

32π3ρEν
Im (LµνΠ

µν
A ) , (1)

where ρ = 2k3
F /3π

2 is the baryon density with Fermi momentum kF . GF denotes the Fermi

constant and θc is the Cabibbo mixing angle. The leptonic tensor Lµν is defined as

Lµν = 8
(
kµk

′
ν + kνk

′
µ − k · k

′gµν ∓ iεαβµνk
αk′β

)
, (2)

with the minus (plus) sign denoting neutrino (anti-neutrino) scattering. Πµν
A is the polariza-

tion tensor of the target nucleus for the charged weak current. Here we consider p-h, Πµν
ph,

and ∆-h, Πµν
∆h, contributions to the polarization:

Πµν
A = Πµν

ph + Πµν
∆h . (3)

The expressions for the p-h polarizations have been derived in previous publications [4,6].

The weak interaction contains vector current (v) and axial-vector current (a) contributions.

Therefore we split Πµν
∆h into:

Πµν
∆h = (Πvv

∆h)
µν + (Πaa

∆h)
µν + (Πva

∆h)
µν + (Πav

∆h)
µν . (4)

(Πva
∆h)

µν and (Πav
∆h)

µν are interference terms of the vector and axial-vector currents. In a

Hartree approximation the polarization tensor can be written in the form

(Πij
∆h)µν = − i

∑
n,p

∫
d4p

(2π)4
Tr[Γiβµ(−q,−p) S

βα(p) Γjαν(q, p) G(p− q) ]

+ (qµ →−qµ) (i, j) = (a, v) . (5)

We rewrite the interference term as

(Πva
∆h)

µν = (Πav
∆h)

µν = iεµνα0qαΠ
va
∆h . (6)

Sµν(p) is the Rarita-Schwinger form of the free spin 3/2 propagator with momentum p [1]:

Sµν(p) = −
6p+M∆

p2 −M2
∆ + iε

[
gµν −

1

3
γµγν −

2

3

pµpν

M2
∆

+
pµγν − pνγµ

3M∆

]
, (7)

Note that this expression is not unique and other forms of the ∆ propagator have been

considered (see Ref. [7]). The differences enter the off-shell behavior of the propagator
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which do not affect the following calculations. The vector part of the nucleon-delta vertex

has been studied in the case of the γN∆ transition [1],

Γvµν(q, p)=
√

2F∆T
±
[
(−qµγν + gµν 6q)M∆γ5 + (qµpν − q · pgµν)γ5

]
. (8)

The isospin raising (lowering) operator originating from W+ (W−) exchange is defined

through

T± =
1
√

2
(T1 ± iT2) (9)

where 2× 4 isospin matrices T i satisfy [8]

T i(T †)j = δij −
1

3
τ iτ j . (10)

The form factor F∆ is defined in the appendix [Eq. (A18)].

The vertex for the axial N∆ transition is given by [8,9]

Γaµν = −rN∆GA
T±
√

2
gµν , (11)

with the axial form factor GA, Eq. (A19). The parameter rN∆ indicates the strength of

axial N∆ transition and will be discussed later. In the noninteracting limit the nucleon

propagator G(p) reduces to the free fermion propagator Go(p) for a relativistic Fermi gas

with Fermi momentum kF . We consider only the density-dependent part Go
F as vacuum

contributions do not enter at the Hartree level. In the rest frame of the nucleus one obtains

Go
F (p) = (6p+M)

iπ

Ep
δ(p0 − Ep)θ(kF − |p|) . (12)

Using an impulse approximation, the imaginary parts of (Πij
∆h) enter the cross section

Eq. (1). As long as the ∆ is assumed to be stable, the imaginary parts can be calculated

analytically. The resulting expressions are given in the appendix.

In a relativistic mean field description of the nucleus, nucleons and ∆s interact with the

background of scalar (σ) and vector (ω) meson mean fields. The interactions are assumed

to be analogous to those of nucleons with possible new couplings, gs∆ and gv∆. The values of
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the couplings can be constrained somewhat by fitting the quasielastic peak of ∆ production

in electron scattering [1,2].

In a relativistic mean-field approximation (MFA), the noninteracting nucleon propagator

Go
F (p) is replaced by

G∗F (p) = (6p∗ +M∗)
iπ

E∗p
δ(p0 −Ep)θ(kF − |p|) (13)

where

M∗ = M − SN , E∗p =
√

p2 +M∗2 , p∗µ = pµ − VNg
µ0 . (14)

The scalar (SN ) and the vector (VN ) self-energies can be obtained for a given kF [10].

Analogously, the mass and the momentum in the ∆ propagator Sµν are replaced by [1]

M∆ →M∗∆ = M∆ − S∆ , tµ → t∗µ = tµ − V∆g
µ0 . (15)

The calculation proceeds in the same way as in the case of the free ∆. The expressions for

the imaginary parts are given in the appendix. For simplicity we assume the ∆ self-energies

S∆, V∆ to be the same as nucleon self-energies SN , VN .

In free space, a ∆ decays into πN with a width Γ = 115 MeV. In the medium the

situation is more complicated. The πN decay channel is partially suppressed because of

Pauli blocking, i.e., the phase space available to the nucleon produced in the ∆ decay is

reduced by the Fermi sea. However, the ∆ in the medium has additional channels of decay

and obtains a “spreading” width with the main decay mechanism from ∆ +N → N + N .

These two competing effects cancel each other partially. In our calculation, lacking better

theoretical and experimental knowledge of the ∆ width in nuclear matter, we assume a value

identical to the free width Γ = 115 MeV [1,11].

As we are mainly interested in integrated cross sections, the results do not depend

strongly on the way the width of the ∆ is treated. We adopt a simple method to include

the decay width by averaging the nuclear response over the ∆ mass with a Breit-Wigner

distribution [1,2]. The averaged cross section follows as
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〈 d3σ

d2Ωk′dEk′

〉
=
∫ ∞
M2

dµ2 d3σ

d2Ωk′dEk′
(µ)f(µ2) /

∫ ∞
M2

dµ2f(µ2) , (16)

f(µ2) =
M∆Γ

(M2
∆ − µ

2)2 +M2
∆Γ2

(17)

integrating from threshold to infinity.

III. RESULTS

In this section we present result for the ∆-h calculations of charged-current neutrino

interactions. We discuss the case of muon neutrinos but the general features of the results

hold for electron neutrinos as well. In addition to a relativistic Fermi gas calculation we

consider the effects of the mean field and include the decay width of the ∆. The target

nucleus is assumed to be 16O with a Fermi momentum kF = 225MeV. For the strength of the

axial N∆ transition a simple argument using the ∆ decay width suggests a value rN∆ ∼ 2.2

[8] whereas constituent quark models give a somewhat smaller value of rN∆ = 6
√

2√
5
∼ 1.7.

We choose an intermediate value rN∆ = 2 for our numerical calculations.

Figure 1 shows the double differential cross section for measuring an outgoing muon

produced by an incoming neutrino with energy Eν = 1 GeV and three-momentum transfer

|q| = 0.5 GeV. First, note that the curve neglecting the decay width of the ∆ has a peak

around q0 = 0.37 GeV which agrees with the expected elastic ∆ peak at

(q0)el =
√

q2 +M2
∆ −M , (18)

assuming the initial nucleon at rest. The ∆ cross section is similar to the p-h cross section.

Therefore, measurements of integrated quantities cannot neglect ∆ production. Including a

finite delta width reduces the peak height by about 30 to 35 percent but does not significantly

reduce the total integrated strength.

Nuclear matter effects are included using a mean-field approximation (MFA). Here we use

the same scalar and vector couplings for nucleon and ∆ (known as “universal couplings”).

For kF = 225 MeV, a self-consistent nuclear-matter calculation yields the effective masses
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M∗∆ = 931 MeV, M∗ = 638 MeV, and the vector self-energy VN = V∆ = 239 MeV. Mean-

field results are also shown in Fig. 1. p-h and ∆-h contributions are reduced by about 30

percent. Both peaks are shifted to higher energies due to the smaller effective masses.

As we have seen that ∆-h excitations can contribute substantially to the charged-current

cross sections, it is interesting to study the effect of ∆ production in neutrino-nucleus scat-

tering experiments. Experiments using muon neutrino beams have measured

(
dσ/dQ2

)
exp
≡
∫

dσ

dQ2
(Eν)f(Eν)dEν . (19)

f(Eν) denotes the spectrum of the neutrino beam. dσ/dQ2 is given by

dσ

dQ2
=
∫ Qc

0

π

Eν |k′|

d3σ

dEk′d2Ωk′
dq0 (20)

where Q2 = −q2 = q2 − q2
0 and the cut off for the energy transfer Qc reads

Qc = Eν +
q2 −m2

µ

4Eν
+

Eνm
2
µ

q2 −m2
µ

. (21)

Using the neutrino spectrum from the charged-current experiment at BNL [3] the resulting

cross sections are shown in Fig. 2 where we used an axial mass MA = 1.09GeV. At larger

momentum transfers the contribution from ∆-h excitations is as large as the nucleon knock-

out.

We now discuss the influence of deltas on the extraction of the axial mass from quasielas-

tic data. Different kinds of experiments are possible. If only a charged lepton is detected,

all ∆ events will be included on an equal footing with p-h excitations. Alternatively, an

experiment could detect pions and thereby separate ∆ events producing real pions from p-h

excitations. However, a significant fraction of ∆ excitations lead to two-particle two-hole

excitations without a real pion. A ∆ in a nucleus can decay via ∆ +N → N +N . This is

related to either pion absorption or weak meson exchange currents (involving an intermedi-

ate ∆). It may be difficult to separate two-particle two-hole from one-particle and one-hole

final states. The axial mass is often fit to reproduce the Q2 dependence of observed events.

This cancels some errors from unknown flux normalizations. Therefore it is interesting to
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consider the Q2 dependence of (a) p-h excitations only (b) p-h plus that fraction (see below)

of ∆-h excitations leads to 2p-2h (c) p-h plus all ∆-h excitations. An incorrect value of MA

could be extracted if one assumes only p-h excitations while the data is “contaminated” by

significant ∆-h excitations.

We leave it to the experimental groups to analyze their data in detail. For example,

Ref. [3] analyzed their data assuming only p-h excitations and extracted a value ofMA = 1.09

GeV with a very small statistical error of ±30 MeV. To estimate the uncertainty in this

extracted value of MA from ∆-h excitations we try and fit the Q2 dependence from 0.3 – 1

GeV2 of our full calculation (p-h plus some fraction of ∆-h) with a p-h only model. Thus

the full calculation assumes some value of MA (which is essentially arbitrary) and the p-h

calculation attempts to reproduce this result by using a possibly different value of MA. The

important quantity is the difference between the assumed and extracted MA. This may

represent some of the systematic error (from ∆-h excitations) in a p-h only analysis of data.

Figure 3 (a) shows a likelihood function for reproducing our theoretical results assuming a

p-h only free Fermi gas with different values of MA. (Note, all of the theoretical calculations

used MA = 1.09 GeV.) For theoretical calculations assuming only a p-h response (solid

line), the input MA = 1.09 GeV is of course reproduced in the fit. However, for theoretical

calculations including either all of the ∆-h (dashed line) or half of the ∆-h events (dots),

MA is underestimated by 70 to 90 MeV.

This factor of half represents a very crude estimate of the ∆ +N → N +N to ∆→ Nπ

and ∆ + N → N + N branching ratio. Theoretical results [12,13] are consistent with this

factor. However, there could be both important Q2 and model dependence in this branching

ratio. Further theoretical work on the branching ratio would be very useful. Alternatively

one could try and measure it in coincidence electro-excitation experiments.

Finally in figure 3 (b), we fit theoretical calculations including scalar and vector mean

fields (assumed independent of momentum) as described in Ref. [14] with a free p-h cal-

culation without mean fields. Again large shifts in the extracted MA are found. ∆ events

tend to increase the effective cross section at high Q2 which might be fit with a smaller MA.
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Alternatively, mean field effects tend to reduce the cross section at high Q2 which can be

fit using a larger MA. Thus there is some cancellation between the two effects. However

this cancellation is unlikely to be perfect and the theoretical uncertainties are large. We

conclude that the theoretical uncertainty on an extracted MA could be of order 0.1 GeV and

thus large compared to the claimed experimental error of ±0.03(stat)±0.02(syst) GeV [3].

IV. SUMMARY AND OUTLOOK

We have calculated charged-current neutrino cross sections including ∆-h excitations of

the target nucleus. The calculation was done for free deltas as well as including the effects

of relativistic scalar and vector mean fields in the nucleus. ∆-h excitations are found to give

significant corrections to quasielastic nucleon knock-out processes in experiments measuring

neutrinos in the GeV range. In extracting the axial form factor of the nucleon from neutrino

scattering data the ∆-h channel enters with similar strength as p-h contributions. This may

introduce significant error in the extracted nucleon axial form factor.
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APPENDIX

The imaginary parts of the ∆-h polarizations are evaluated analytically and listed below.

Note that the second term of the polarization, Eq. (5), with (qµ →−qµ) vanishes for on-shell

∆:

Im(Πvv
∆h)

µ
µ =

α

9π|q|
F 2

∆[−q4 + 2q2(M2 +M2
∆)− (M2 −M2

∆)2]E∆
1 , (A1)

Im(Πvv
∆h)

00 = −
α

18π|q|
F 2

∆

[
4q2E∆

3 + 4q0βE
∆
2

+[q4 − 2q2(M2 +M2
∆) + (M2 −M2

∆)2 + 4M2q2
0]E

∆
1

]
, (A2)

Im(Πaa
∆h)

µ
µ =

2α

3π|q|
G2
AE

∆
1 , (A3)

Im(Πaa
∆h)

00 = −
2α

9π|q|
G2
A[
E∆

3 + 2q0E
∆
2 + q2

0E
∆
1

M2
∆

− E∆
1 ] , (A4)

Im(Πaa
∆h)

01 = −
α

9πq2M2
∆

G2
A[2q0E

∆
3 + (3q2

0 + q2 +M2 −M2
∆)E∆

2 + q0(β + 2q2)E∆
1 ] , (A5)

Im(Πaa
∆h)

11 = −
2α

9πq3M2
∆

G2
A[q2

0E
∆
3 + q0(β + 2q2)E∆

2 + (
β2

4
+ q2

0 +M2)E∆
1 ] , (A6)

Im(Πva
∆h) = −

α

9πq2
GAF∆[2q2E∆

2 + q0βE
∆
1 ] , (A7)

where α = [(M +M∆)2 − q2] and β = q2 +M2 −M2
∆. Also

E∆
n =

En
F − E

∆n
−

n
(n = 1, 2, 3) , (A8)

E∆
− = Min(EF , E∆max) , (A9)

E∆max = −
βq0 + |q|

√
β2 − 4M2q2

2q2
. (A10)

Im(Πaa
∆h)

22 is obtained from the relation,

Π22 =
Π00 − Π11 −Πµ

µ

2
. (A11)

In the mean field approximation, the ∆ and nucleon masses in the propagators are shifted

by strong scalar fields. Since we take the same interaction as in free space, the polarizations

involve complicated traces. After a little algebra, the polarizations are written as

(Π∗vv∆h )µν = −
8

3
F 2

∆

∫ EF

M∗
dEp

∫ 1

−1
dχ
|p|

8π2

T µνvv
(p+ q)2 −M2

∆ + iε
, (A12)
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(Π∗aa∆h )µν = −
8

3
G2
A

∫ EF

M∗
dEp

∫ 1

−1
dχ
|p|

8π2

T µνaa
(p+ q)2 −M2

∆ + iε
, (A13)

(Π∗va∆h )µν = −
8

3
GAF∆

∫ EF

M∗
dEp

∫ 1

−1
dχ
|p|

8π2

iεµνα0qαTva

(p+ q)2 −M2
∆ + iε

, (A14)

where T µνvv , T µνaa and Tva result from evaluating the traces. These can be determined straight-

forwardly as

T µνvv =
1

3M2
∆

{
(p∗ · t∗ −MM∗)

[
− t · qM∆M

∗
∆(qµt∗ν + qνt∗µ)

+(2M∗∆t · q −M∆t
∗ · q)(tµqν + pνqµ)M∗∆

+(tµt∗ν + tνt∗µ)(M∗∆M∆q
2 − 2t · qt∗ · q)

−2(t · q)2(gµνM∗2∆ − t
∗µt∗ν) + 2tµtν[(t∗ · q)2 − q2M∗2∆ ]

]
+ (qµt∗ν + qνt∗µ) M∆ [M∆(M∗2∆ p∗ · q + 2t∗ · p∗t∗ · q) + t · qM∗2∆ M ]

+M∗2∆ M∆[(tµqν +tνqµ)(t∗ · qM − p∗ · qM∗∆) + (qµp∗ν

+qνp∗µ)(t∗ · qM∆ − t · qM
∗
∆)]

+M∗∆M∆[(tµt∗ν + tνt∗µ)(p∗ · qt∗ · q −MM∗∆q
2)

+(p∗µt∗ν + p∗νt∗µ)(t · qt∗ · q − q2M∆M
∗
∆)]

+ 2(gµνq2 − qµqν )M2
∆M

∗2
∆ (t∗ · p∗ +M∗∆M)

+ 2t · qp · qM∆M
∗
∆ (gµνM∗2∆ − p

∗µp∗ν)

− 2t∗ · p∗M2
∆(gµν( t∗ · q)2 + q2t∗µt∗ν)

+ 2M∆M
∗
∆t
∗ · qgµν (t∗ · p∗t · q −M∆M

∗
∆p
∗ · q − 2t · qMM∗∆)

+M∆M
∗
∆(q2M∗2∆ − (t∗ · q)2)(tµp∗ν + tνp∗ν)

}
, (A15)

T µνaa =
1

6M∗2∆

[3(t∗2 −M∗2∆ )(p∗µt∗ν + p∗νt∗µ)− 16t∗µt∗ν(p∗ · t∗ +M∗M∗∆)

+gµνt∗2(p∗ · t∗ − 2M∗M∗∆) + 15gµνp∗ · t∗M∗2∆ + 18gµνM∗M∗3∆ ] , (A16)

Tva = −
2

3M∗∆
(E∗p −

|p|q0

|q|
χ)[2p · qM∗∆ −M

∗2M∆ − 4M∗M∗∆M∆ + q2M∆

−3M∗2∆ M∆] . (A17)
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The vector form factor of the N∆ vertex is given by

F∆ =
−(M∆ +M)

M((M∆ +M)2 − q2)

9

2

(
1−

q2

0.71GeV2

)−2(
1−

q2

3.5GeV2

)−1/2

(A18)

which has dipole form including some phenomenological corrections [15]. For the axial vertex

we use the nucleon axial form factor

GA =
1.26

(1− q2/M2
A)2

. (A19)
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FIGURES

FIG. 1. Double differential cross section for (ν, µ) scattering from 16O showing p-h and ∆-h

contributions separately. Results are shown neglecting (solid line) and including the width of the

delta (dashed line). The thin lines denote cross sections in the mean-field approximation.

FIG. 2. dσ/dQ2 averaged over BNL antineutrino spectrum are shown for Fermi gas (solid line)

and mean field approximation (dashed line). p-h and ∆-h results are shown separately.

FIG. 3. Likelihood function (normalized) of fitting experimental antineutrino-scattering results

varying the extracted axial mass, assuming a free particle-hole (p-h) only Fermi gas response. Parts

(a) and (b) show results for Fermi-gas and mean-field approximations, respectively. Curves are

shown for p-h events (solid line), the sum of p-h and ∆-h events (dashed line), and p-h plus half

of the ∆-h events (dots). Note, all theoretical calculations assumed MA = 1.09 GeV.
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