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Abstract

We discuss the connection between models of fermion masses and mixing involving a
string-motivated flavor/generation U(1)A gauge symmetry and the µ term. We point out
that in a certain class of such models the flavor physics can provide an appealing solution to
the µ problem, naturally yielding a µ ∼ O(m

W
). A simple relationship between the U(1)A

charge qH of the µ-term and the average generational U(1)A charges of the down quark and
leptonic sectors is derived. Finally, we construct an explicit model illustrating our results.
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Two of the most outstanding challenges at present in particle physics are to understand
(a) the observed pattern of fermion masses and mixing; and (b) the hierarchy between the
electroweak and Planck mass scales. The standard model (SM) can accomodate, but not
explain these fermion masses and mixing. Renormalizable supersymmetric extensions of the
standard model can stabilize the Higgs sector against large radiative corrections, but this,
by itself, is not enough to explain property (b) because of the µ–problem. This problem
concerns the fact that the term µH1H2 in the superpotential W , where Hi, i = 1, 2 are the
Y = −1, 1 Higgs chiral superfields in the minimal supersymmetric standard model (MSSM),
is supersymmetric, and hence there is no apparent reason why its coefficient, µ, should
have anything to do with the scale of supersymmetry breaking (which, in realistic theories
is of order the electroweak scale, v

EW
' 250 GeV). If, as is allowed by supersymmetry

itself, |µ| >> v
EW

, this would destroy the hierarchy, and, indeed, for a phenomenologically
acceptable model, |µ| must be of order v

EW
. On the other hand, one cannot forbid the µ

term completely, for this would lead to a phenomenologically unacceptable massless goldstone
boson.1

In this paper we discuss an appealing class of models yielding a unified explanation of
both of these outstanding problems (a) and (b). To introduce these, we first note that
recently there has been strong interest in models of fermion masses and mixing based on
a string-motivated, flavor- and generation-dependent U(1)A gauge symmetry [2]–[6] in the
context of a supergravity theory reducing at E << M̄P to the MSSM.2 The U(1)A symmetry
has field-theoretic anomalies which are cancelled by a Green-Schwarz mechanism [7]; as a
result, this symmetry is spontaneously broken, at a calculable high mass scale somewhat
below the string scale [8].

When one embeds global supersymmetry in a supergravity theory, the µ–parameter has
an additional contribution from the Kähler potential, K [9]

µ̃(M,M†)H1H2 (1)

where the parenthesis indicates the dependence of µ̃ on generic fields M which aquire large
vacuum expectation value (vev’s). Upon supersymmetry breaking, the second term can lead
to a contribution to an effective superpotential µ-term of the form

µ̃(< M >,< M† >)m3/2H1H2 (2)

in Weff . Here m3/2 is the gravitino mass, which is related to the scale of supersymmetry
breaking,

µ ∼ v
EW
∼ m3/2 (3)

If the superpotential contribution to the µ–term is zero, it becomes possible to generate
a µ term of an acceptable size (3) in Weff , via eq. (2), from Kähler couplings. In many
string-inspired effective supergravity models the superpotential contribution to the µ-term is
absent at tree level because of modular invariance, but can be generated by nonperturbative
effects in the hidden sector [1, 10, 11]. Unfortunately, it is difficult to ascertain whether this
nonperturbative contribution is of an acceptable size [11]. Moreover, in generic supergravity

1For a recent review of the µ problem, see Ref. [1].
2Here, M̄P ≡ (8πGN)−1/2 = 2.44× 1018 GeV is the (reduced) Planck mass.
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models there are even more serious problems with the µ term, and hence stabilization of the
hierarchy, than in renormalizable supersymmetric models. This is because of nonrenormal-
izable couplings in K which can lead to quadratically divergent loop corrections to µ [12, 13]
(see also [14]).

However, as was first pointed out in Ref. [12]3, in models with a U(1)A gauge symmetry,
such a destabilization can be avoided and furthermore, the natural value of the µ-parameter
is determined by the couplings allowed by the gauge group, so that in such models one can
achieve a solution of the µ problem. Moreover, as we discuss here, this solution connects the
physics of fermion masses and mixing with that of the hierarchy in a fundamental way. This
idea was embodied in new solutions of the anomaly cancellation conditions discovered in Ref.
[4] which had the property that the sum of the U(1)A charges of the Higgs, q

H
≡ q

H1
+q

H2
6= 0.

If and only if q
H
6= 0, the µ–term cannot, by itself, appear in either W or K. However, it

may appear in combination with powers of various other chiral superfields such that the
total U(1)A charge is zero, and in this case the natural order of the effective low energy
µ–parameter, which is calculable in terms of the U(1)A charges of these various fields, can
be naturally of order the electroweak scale.

We first briefly review U(1)A models of fermion masses and mixing. One of the most puz-
zling aspects of the known fermion masses is that if one assumes, as in the SM, that they arise
from conventional, dimension-4 Yukawa operators, then the associated Yukawa couplings for
all of these fermions except the top quark are all much smaller than a typical small coupling
like e =

√
4πα ' 0.3, without any explanation. In these models, this feature of the first two

generations is explained in an elegant way, since they arise from higher-dimension, nonrenor-
malizable operators.4 This is appealing, because these operators are generically present in
the supergravity theory which forms the field-theory limit of the presumed underlying string
theory for energies E << Mstr (where Mstr = 2(α′)−1/2 = gM̄P denotes the string scale)
with c-number coefficients proportional to the requisite inverse powers of Mstr. Via vacuum
expectation values of the scalar components of certain chiral superfields, which we shall de-
note generically as v, these higher-dimension operators can yield contributions to effective
dimension-4 Yukawa interactions which are suppressed by powers of the ratio ε ∼ v/Mstr.
An important aspect of this approach is that ε is calculable; the U(1)A symmetry-breaking
scale v is given by [8] v2 ' (Mstr)2/(192π2), whence ε ∼ λ2 (where λ = |Vus| ≈ 0.22), so that
ε is in the right range to explain the fermion mass hierarchies5

mu/mc ∼ λ
5, mc/mt ∼ λ

4, md/ms ∼ λ2, ms/mb ∼ λ
2 (4)

me/mµ ∼ λ4, mµ/mτ ∼ λ2 (5)

The U(1)A symmetry also forbids certain chiral superfield cubic couplings and hence produces
zeros in some entries of the Yukawa matrices for the resultant dimension-4 Yukawa terms.
This, in turn, enables one to explain why the off-diagonal elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix are small by allowing one to express them in terms of small quark

3See discussion after eq. (24) in Ref. [12].
4An early paper noting the importance of such operators for fermion mass relations is Ref. [15].
5Here the running masses are used, normalized at the same scale. Note that mdmsmb = λ6m3

b ,
memµmτ = λ8m3

τ , and, since mb(mb) ∼ λ−2/3mb(v) with mb(v) ' mτ (v), there follows the well-known
relation detMd(v) ' detML(v) which we shall use below.
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mass ratios md/ms, mu/mc, etc.6

A further puzzling property of the observed fermion mass spectrum is that, even if one re-
stricts oneself just to the third generation, mb and mτ are << mt, again with no explanation.
A general class of U(1)A models was discussed in Ref. [4], and a specific string construction
in Ref. [17] which account for this by means of a far-reaching hypothesis, namely, that even
the largest, j, k = 3, 3 elements of the (effective) down-quark and charged lepton Yukawa
matrices Y d and Y L actually arise from higher-dimension operators.

We note an additional appeal of the U(1)A symmetry. One might, a priori, try to restrict
the form of the fermion Yukawa matrices using a global symmetry. However, in addition
to the unesthetic nature of global symmetries as fundamental and problems with unwanted
goldstone bosons resulting from spontaneous symmetry breaking, there is also the problem
that they are, in general, broken by quantum gravity, even at the semi-classical level [18].

There are at least two worthwhile ways to study U(1)A–based models of low energy
physics7: (a) one can study specific scenarios suggested by particular string constructions,
as in Ref. [17, 20]; (b) alternatively, one can avoid committing oneself to any particular string
constructions, and instead study general solutions to the consistency conditions implied by
the Green-Schwarz mechanism. We continue to follow the second approach here, since it
allows one to explore in a very general way what can and cannot be achieved with such
models. As in Ref. [4], we shall study the simplest extension of the SM which may be able
to account for the observed fermion masses and the µ-term, i.e. one in which the observable
sector gauge group is just SU(3) × SU(2) × U(1)Y× U(1)A and the matter content includes
just the usual SM fields together with some additional SM–singlet fields which can carry
U(1)A charge. The model we study is a minimal supergravity extension of the SM with
enough new physics built in to have the potential to explain low energy data. Our objective
is to explore the implications of such a minimal model. Indeed, we find that such a model
can be phenomenologically viable.8

As part of our analysis, we will derive a simple linear relation between q
H

and the av-
erage (generational) U(1)A charges of the SM down-quark and lepton sectors. This result
holds independent of (i) whether the U(1)A charges of the superpotential Yukawa terms are
assumed to be symmetric in generation-space or not and (ii) the spectrum of SM–singlet
U(1)A charged chiral superfields, which will be denoted generically as χ, χ̃, etc. We consider
the general case where the effective Yukawa matrices in the up, down, and charged lepton
sectors are not necessarily symmetric in generation indices. We find that a Kähler potential
origin for the effective µ-parameter may well be more natural than a superpotential origin.
Indeed, if only one SM–singlet field χ gets a vev due to U(1)A breaking, then an acceptable
µeff must come from K (unless q

H
= 0) whereas if just two SM–singlet fields χ, χ̃ with

opposite U(1)A charges get vev’s, then the largest contribution to µeff is always from W
and an acceptable value is generated only if |q

H
| ∼ 11|q(χ)|. When all SM–singlet fields χ

6The latter result was also achieved in early models of quark mass matrices [16]; however, since these
used only dimension-4 Yukawa couplings, they had to put in the fermion mass hierarchy by hand.

7One should also note that efforts have been made to describe the origin of this pattern in terms of new
physics operative at a much lower mass scale, e.g., 1-100 TeV, in theories involving dynamical electroweak
symmetry breaking. See also Ref. [19]

8In generic string-motivated models there are extra (nonanomalous) U(1) gauge symmetries, as well as
discrete symmetries and nontrivial kinetic normalizations for the matter fields.
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which get vev’s carry the same sign U(1)A charge then an acceptable µeff may originate
from either K or W , but it appears more easily from K.

If the Yukawa matrix charge assignments are symmetric in generation space, the number
of free parameters reduces greatly and stronger statements are possible. In fact, in this case,
it is difficult to reproduce observed fermion mass hierarchies if (i) both top and bottom
masses arise from renormalizable superpotential couplings, (ii) effective Yukawa couplings
are due to the vev of just one SM–neutral U(1)A charged field or (iii) effective Yukawa
couplings are due to the vev’s of just two SM–neutral fields with opposite (nonzero) U(1)A
charges. It is possible to avoid problems associated with these three cases if the bottom mass
arises from a nonrenormalizable superpotential coupling and effective Yukawa couplings are
due to several SM–singlet fields which all carry the same sign (nonzero) U(1)A charge. When
there are just two such fields we show that an acceptable µ-parameter cannot be achieved
from W if tan β is not allowed to get either very large or very small.

To begin, we assign arbitrary U(1)A charges to all fields. This introduces 17 parameters
for the 3 generation minimal standard model, plus additional parameters for SM singlets [4].
We use the parametrization

q(Qi) = q̄Q + αi , q(u
c
i) = q̄

uc
i
+ βi , q(d

c
i) = q̄

dc
+ γi , q(Li) = q̄L + ai , q(e

c
i) = q̄ec + bi (6)

where q̄(f) = (1/3)
∑3
i=1 q(fi) denotes the generational average U(1)A charge of f , and thus∑

i

αi =
∑
i

βi =
∑
i

γi =
∑
i

ai =
∑

bi = 0 (7)

With the standard normalization of U(1)Y hypercharge, Y (Q) = 1/3, Y (u) = −4/3,
Y (d) = 2/3, Y (L) = −1, Y (e) = 2, Y (H2) = 1, and Y (H1) = −1, the mixed anomaly
coefficients are

c1 = Tr(TaT
2
Y ) =

q̄Q

2
+ 4q̄uc + q̄dc +

3

2
q̄L + 3q̄ec +

qH1

2
+
qH2

2
(8)

c2 = Tr(TaT
2
SU(2)) =

9

2
q̄Q +

3

2
q̄L +

qH1

2
+
qH2

2
(9)

and

c3 = Tr(TaT
2
SU(3)) = 3q̄Q +

3

2
q̄uc +

3

2
q̄dc (10)

Since these anomaly coefficients are linear in the U(1)A charges and involve sums over all
generations, they depend only on average U(1)A charges, as indicated. An immediate con-
sequence is that

c1 + c2 −
8

3
c3 = q

H
− 3(q̄Q + q̄dc − q̄L − q̄ec) (11)

The anomaly cancellation by the Green-Schwarz mechanism requires [2] ci/cj = ki/kj where
the ki are the levels for the Kac-Moody algebra on the string worldsheet which determine the
gauge couplings for each of the factor groups U(1)Y , SU(2), and SU(3) by g−2

i = ki〈Re(s)〉
(at Mstr), where, in turn, s is the dilaton/axion. The unification of gauge couplings in the
MSSM 9 requires g−2

1 = (5/3)g−2
i , i = 2, 3 and hence (with k2 = k3 = 1 to avoid exotics),

c1 : c2 : c3 =
5

3
: 1 : 1 (12)

9For a recent discussion of the current status of MSSM gauge unification, see Ref. [21].
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From this it follows that

c1 + c2 −
8

3
c3 = 0, i.e., q

H
= 3(q̄Q + q̄dc − q̄L − q̄ec) (13)

where, as before, q
H

= q
H1

+ q
H2

. Thus, the U(1)A charge q
H

of the µ term H1H2 is
determined in terms of the generational-average charges of the matter fermions. Later we
will give another expression for the RHS which will have important consequences for the
effective µ-parameter.

A further requirement of anomaly cancellation is that

0 = Tr(T 2
aTY ) = 3q̄2

Q − 6q̄2
uc + 3q̄2

dc − 3q̄2
L + 3q̄2

ec + q2
H2
− q2

H1
+ ∆ (14)

where ∆ is quadratic in parameters αi, βi, γi, ai, bi which do not depend on average (barred)
charges. In general, there is no simple solution to eq. (14); however, when ∆ = 0, eq. (14)
imposes a simple quadratic constraint on the average U(1)A charges. ∆ vanishes identically
when additional symmetry requirements are imposed, e.g. when the Yukawa charge assign-
ments are required to be symmetric in flavor space, as in [3, 4] so that αi = βi = γi, ai = bi.
We recall the general solutions to the full set of anomaly constraints found in Ref. [4] for
the ∆ = 0 case:

q̄Q q̄uc q̄dc q̄L q̄ec qH2 qH1

x x y y x z −z
x x y

2
− z

2
y x −3

2
y − 1

2
z −z

x+ v x+ 2v y + w y x 3v + 3w + z −z

(15)

The first two solutions describe two distinct 3–parameter family of solutions to the con-
straints. The last solution, with v 6= 0, describes a 4 parameter family of solutions with x
given by

0 = −2v2 + 2w2 + 3v(w − x) + vz + w(y + z) (16)

The first solution in (15) was already given in [3], while the latter two were new in Ref. [4].
These two new solutions which we discovered, and which allow q

H
= qH1 + qH2 6= 0, can play

an important role in constraining the µ-parameter.
Labelling the U(1)A charges of the cubic superfield terms as

q(Q3u
c
3H2) = δt , q(Q3d

c
3H1) = δb , q(L3e

c
3H1) = δτ (17)

we have

q̄Q + q̄uc + qH2 + α3 + β3 = δt,

q̄Q + q̄dc + qH1 + α3 + γ3 = δb,

q̄L + q̄ec + qH1 + a3 + b3 = δτ (18)

The U(1)A charges Yukawa coupling charge matrices are given by

q(Qiu
c
jH2) = δt + αi − α3 + βi − β3 (19)

q(Qid
c
jH1) = δb + αi − α3 + γi − γ3 (20)
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q(Lie
c
jH1) = δτ + ai − a3 + bi − b3. (21)

For the symmetric charge assignment case, βi = γi = αi, bi = ai, the charge matrix structures
(19)-(21) imply

q(Qid
c
jH1) = q(Qiu

c
jH2) + (δb − δτ). (22)

From this we deduce:

1. If δt = δb then the up-quark U(1)A charge matrix is identical to the down-quark U(1)A
charge matrix. Hence, we have Y u

ij ∼ Y d
ij which cannot fit experimental data. This

includes the case where the top and bottom masses both arise from renormalizable
couplings.

2. If superpotential couplings of the quark sector to a single SM–singlet field which receives
a vev are responsible for all effective (low-energy) Yukawa matrices, then we again must
have Y u

ij ∝ Y
d
ij which is in contradiction with data.

3. If superpotential couplings of the quark sector to two SM–singlet fields which have
opposite U(1)A charges and receive vev’s are responsible for all (effective) Yukawa
matrices, then we also must have Y u

ij ∝ Y d
ij , again in disagreement with data.

Therefore if one wishes to explain low energy Yukawa data via the U(1)A symmetry, and
one wants either δt = δb or invokes SM fermion couplings to only a single SM–singlet field
or two SM–singlet fields with opposite U(1)A charges, then one must relax the condition of
symmetric charge assignments (as in [5, 6]).

However, there is no ab initio reason to use just a single SM–singlet field (or a pair
of oppositely charged SM–singlets), and, indeed, as we previously demonstrated [4], in the
context of symmetric textures, the above restrictions can be avoided if one considers, for
example, two SM–singlet, U(1)A-charged fields χ, χ′ which do not have opposite charges.
We will exhibit a new model of this type which is able to fit all low energy mass data.

Let us next define Σ as the diagonal sum of U(1)A charges in a Yukawa charge matrix.
Hence,

Σu = 3(δt − α3 − β3),

Σd = 3(δb − α3 − γ3),

ΣL = 3(δτ − a3 − b3). (23)

Note that Σ is also the U(1)A charge of any term in the determinant of a Yukawa coupling
matrix, e.g. Σd = q(det[Qid

c
jH1]), and similarly for ΣL and Σu. From eqs. (11) and (18), we

get

c1 + c2 −
8

3
c3 = q

H
+ ΣL − Σd (24)

or, for the condition (12),
q
H

= Σd − ΣL. (25)

As we will see, this form of eq. (13) makes the analysis of the relation between the effective
µ-parameter and fermion mass matrices quite transparent in many cases of interest.
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It is interesting to note that there is a general relation between k1/k3 and the Yukawa
and µ-term superpotential charges. From eqs. (10), (18), and (23), we have

2c3 = Σu + Σd − 3q
H
. (26)

For k2 = k3, hence c2 = c3, we have

c1 −
5

3
c3 = q

H
+ ΣL − Σd. (27)

Together, these last two equations yield

k1

k3
=
c1

c3
=

6ΣL − Σd + 5Σu − 9q
H

3Σd + 3Σu − 9q
H

(28)

In models involving a single SM–singlet U(1)A–charged field, one can derive the relation
sin2 θw = 3/8 if one has q

H
= 0 and c2 = c3 [5]. (This can be seen from our eq. (28); the

condition detY L ∼ detY d implies ΣL ∼ Σd, so the RHS of eq. (28) = 5/3 for q
H

= 0.)
However, the property that q

H
= 0 in such models means that they do not solve the µ

problem. In contrast, the relations we have derived, (13) and (25), are independent of the
number of U(1)A charged fields and can be used to constrain U(1)A charges in more general
situations. Our approach is to assume canonical Kac-Moody levels k2 = k3 = 1 and k1 = 5/3
for which c1 + c2 −

8
3
c3 = 0 and use eqs. (13) and (25) to analyze relations between q

H
and

fermion masses. The µ-term charge q
H

is only zero if Σd = ΣL, which is sufficient, but
not necessary, to satisfy data on fermion masses and mixing. The point here is that when
one says the i, j entry in an effective Yukawa matrix is of order λn, this means that the
dimensionless coefficient cij multiplying λn lies within the range λ ≤ cij ≤ λ−1. This finite
range in each of the coefficients produces an intrinsic uncertainty in the actual, as opposed to
formal, power of λ describing the determinant of the Yukawa matrix. Indeed, because of this
uncertainty, the fermion mass data can be satisfied without requiring that ΣL = Σd as long as
the ratio between these determinants is within the range induced by the above dimensionless
coefficients. Hence, even in such a model, a small µ-parameter may be obtained by requiring
q
H

to be small and nonzero so that only a Kähler potential contribution to µeff is obtained.
If a model has two SM–singlet fields χ, χ̃ with opposite U(1)A charges x,−x, then one

needs |q
H
| ∼ 11|x| to get an acceptable value for µeff . This is because if q

H
is not an

integer multiple of x then no µ-term is allowed, and if q
H

is an integer multiple of x then the
largest contribution is always fromW and is either of the form χ|qH |/|x|H1H2 or χ̃|qH |/|x|H1H2.
Assuming vev’s of O(λ2)M̄P , we then find µ ∼ λ2|q

H
|/|x|M̄P .

We now study the case of two fields χ, χ′ with same–sign U(1)A charges. With no loss of
generality, we take

q[χ] = 1, q[χ′] = α > 1. (29)

We have three possibilities:

1. q
H

= 0. If one were to choose this value, the model would have an unresolved µ–
problem, so we avoid this choice.
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2. q
H
< 0. If q

H
= −n−mα for nonnegative integers n,m, then W contains the term

χn(χ′)m

(M̄P )(n+m−1)
H1H2, (30)

so that upon U(1)A breaking,
µ ∼ λ2(n+m)M̄P . (31)

In this case, unless n + m is sufficiently large, one naturally has too large a µ–term.
On the other hand, if q

H
< 0 but q

H
6= −n−mα for nonnegative integers n,m, then

the superpotential contribution to the total µ-term is zero.

3. q
H
> 0. In this case there can be no superpotential µ–term; however the Kähler

potential contains the terms

(a) (χ†)n(χ′†)mH1H2 if q
H

= n+mα,

or (b) χ(χ′†)mH1H2 if q
H

= −1 +mα,m ≥ 1,

or (c) (χ†)nχ′H1H2 if q
H

= n− α, n ≥ 2, (32)

for some nonnegative integers n,m. Upon SUSY and U(1)A breaking, these give con-
tributions to the effective µ–term

(a) µeff ∼ m3/2λ
2(n+m),

(b) µeff ∼ m3/2λ
2m+2,

(c) µeff ∼ m3/2λ
2n+2, (33)

If one of the conditions (a) through (c) above is not satisfied, then there is no Kähler potential
contribution to µ. Otherwise, if the only contribution to the effective µ-term is from K, it
will will be too small unless n and m are sufficiently small. In fact, µ ∼ v

EW
suggests that

only the cases
q
H

= 1, or q
H

= α (34)

(corresponding to K containing χ†H1H2 or χ′†H1H2, respectively), which both give µeff ∼
m3/2λ

2, can naturally yield an acceptable value of the µ-parameter.
It appears considerably more difficult to construct models where an acceptable µ–term

arises from the superpotential. If we require

detY d ∼ detY L ∼ λ2d, (35)

we can derive
|q
H
| ≤ (α− 1)d, (36)

by considering upper and lower bounds on the determinants,

λ−2Σd ≤ detY d ≤ λ−2Σd/α, λ−2ΣL ≤ detY L ≤ λ−2ΣL/α, (37)

and using (25). It follows that if there is a nonzero superpotential µ-term then q
H
< 0 and

µ ≥ O(λ2(α−1)d)M̄P . (38)
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Since one expects d ∼ 7, an acceptable superpotential contribution to µeff requires α ≥ 2.5.
In models with multiple SM–singlet fields with same–sign U(1)A charges, this requires the

largest magnitude U(1)A charge to be at least 2.5 times greater than the smallest magnitude
U(1)A charge. To realize how restrictive this can be, we first note that (38) assumes the
µ-term couples exclusively to the SM singlet with charge 1 (i.e. the smallest U(1)A charge).
If, instead, it couples only to the SM singlet with charge α > 1, then we can never produce a
sufficiently small superpotential µeff . Thus, in general, we expect α to be much bigger than
2.5. Furthermore, there can be restrictions on α from data on fermion masses and mixing.
For example, in the symmetric case with just two additional fields we can argue that µeff
should originate from K in order to satisfy fermion mass data and tanβ not too large (or
small). To do this, we concentrate on the two most massive generations. For simplicity we
assume the top mass arises from a renormalizable operator, i.e. δt = 0. From (19) we note
that in order to have mc/mt ∼ λ4, i.e. Y u

22Y
u
33 − Y u

23Y
u
23 ∼ λ4(Y u

33)
2,, it is necessary that

q(H2Q2u
c
3) = α1 + 2α2 = −1,−α or −(1 + α)/2. If δb = 0, then the mass mb also arises

from a renormalizable operator, i.e. the small value of mb/mt must be entirely accounted
for by a large tan β. If, however, δb = −1 or −α, then Y d

33/Y
u
33 ∼ λ2 and one does not need

either a very large or small value of tanβ. This leads to six possible charge assignments for
the up and down-quark Yukawa couplings of the the two highest generations in terms of the
unkown parameter α. One can then show that the only solutions with ms/mb ∼ λ2 have
α = 2, 3

2
, 2

3
or 1

2
. Therefore the bound α ≥ 2.5 cannot be achieved, and hence an acceptable

µeff can only arise from K; if there is a contribution from W it will be too large. (We must
require q

H
= 1 or q

H
= α in order to get a sufficiently large µeff from K.)

We next construct a model with symmetric Yukawa matrices and qH1 + qH2 6= 0 which
serves as an explicit example of how one can both solve the µ problem and account for fermion
masses and mixing with the U(1)A symmetry. It incorporates and extends our results in Ref.
[4]. The model assumes symmetric U(1)A charge assignments for simplicity (but could be
generalized to the case of asymmetric charges). It provides a fundamental explanation for
why even in the third generation, the masses mb and mτ are much less than the electroweak
scale: these masses are generated by higher-dimension operators, in contrast to the top mass,
which arises from a dimension-4 operator. Hence, Y d

33 and Y L
33 are both ∼ λ2Y u

33. We found
a solution with two SM–neutral fields χ, χ′ with same sign U(1)A charge. Normalizing the
charge of one field, χ, to be 1, our solution is

q[χ′] =
3

2
, α1 = −

4

3
, α2 =

1

6
, δt = 0, δb = −1 (39)

which leads to

Y u ∼

 λ8 λ6 λ4

λ6 λ4 λ2

λ4 λ2 1

 , Y d ∼ λ2

 λ6 λ4 λ4

λ4 λ2 λ2

λ4 λ2 1

 , (40)

after breaking of U(1)A with < χ > /M̄P ∼< χ′ > /MP ∼ λ2. As we showed in Ref. [4],
these patterns can fit the data on quark masses and mixing.

We now wish to find appropriate leptonic charge assignments so that Y L
33 ∼ Y d

33 and
detMd ∼ detML. This model will have q

H
= 1 and an appropriate scale for µeff .

Requiring Y L
33 ∼ Y d

33 means δτ = −1 or δτ = −3/2. Here we look only at the case δτ = −1.
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Using eqs. (24) and (25), we deduce that

a1 + a2 = α1 + α2 −
q
H

6
= −

4

3
. (41)

It is straightforward to classify all models which have q
H

= 1 and the above U(1)A charge
assignments. There are many such models corresponding to different values of a1 and a2;
however, not all of these yield acceptable leptonic hierarchies. One model which gives an
acceptable leptonic hierarchy has

a1 = −
7

6
, a2 = −

1

6
, (42)

so that

q(H1Lie
c
j) =

 −6 −5 −3.5
−5 −4 −2.5
−3.5 −2.5 −1

 . (43)

The allowed Yukawa couplings are then

Y L
ij (χ, χ

′) ∼

 (χ′)4 (χ′)2χ2 χ′χ2

(χ′)2χ2 (χ′)2χ χ′χ
χ′χ2 χ′χ χ

 , (44)

giving rise to effective Yukawa terms

Y L ∼ λ2

 λ6 λ6 λ4

λ6 λ4 λ2

λ4 λ2 1

 , (45)

There is no superpotential term of the form H1H2χ
n(χ′)m, for any n,m ≥ 0 but there is

a Kähler term

K 3 a
χ†

M̄P

H1H2 + h.c., (46)

which leads to
µeff ∼ aλ

2m3/2. (47)

Once the previous charge assignments are given, eqs. (18) are three linear equations
for the average generational U(1)A charges. These equations must be compatible with the
solutions (15). For example, for the second set of solutions in (15) we find

x = −
29

15
, y = −

6

5
, z =

8

15
, (48)

for the explicit model given. These charge assignments have the feature that the lepton and
baryon number–violating superfield terms

ηiLiH2, λijkucid
c
jd
c
k, λ′ijkLiQjd

c
k, λ′′ijkLiLje

c
k, (49)

(where the coefficients are functions of χ, χ′) are forbidden in perturbation theory, since one
cannot render these terms invariant under U(1)A using integral powers of fields. For example,
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q(L1H2) = −5/6, q(L2H2) = 1/6, q(L3H2) = 5/3, so there is no integer power of χ and/or
χ′ which could couple to these in a U(1)A–invariant manner.

In conclusion, we have discussed a class of models of fermion masses and mixing based
on a string-motivated U(1)A gauge symmetry in which there is a natural solution to the µ
problem. This solution implies a profound connection between the fact that µ ∼ v

EW
and

the observed pattern of fermion masses.
This research was partially supported by the NSF Grant PHY-93-09888.
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