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Abstract

A large class of string-cosmology backgrounds leads to a spectrum of relic stochastic grav-

itational waves, strongly tilted towards high frequencies, and characterized by two basic

parameters of the cosmological model. We estimate the required sensitivity for detection of

the predicted gravitational radiation and show that a region of our parameter space is within

reach for some of the planned gravitational-wave detectors.
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1 Introduction

It is notoriously difficult to find accessible experimental signatures of fundamental strings

because of their small Planckian size. Possibly, an interesting exception to this rule is rep-

resented by the cosmological predictions of string theory, since these originate from physics

of the Early-Universe, when space-time curvatures may have been of Planckian strength.

In order to arrive at some concrete, yet generic, predictions of string cosmology, we shall

consider a large class of models in which a period of dilaton-driven inflation [1, 2, 3] is

followed by a stringy epoch, during which the curvature remains of the order of the string

scale λ−2
s , and then finally, after possibly a short dilaton-relaxation era, by the standard

(radiation then matter dominated) cosmology. As discussed in detail in [4], the presence

of a high-curvature stringy epoch appears to be unavoidable for a viable inflationary string

cosmology scenario. Additional support to this point of view was given in [5].

Recently, in collaboration with V. Mukhanov [6], we have discussed the main properties

of metric perturbations in a dilaton-driven background. Particular attention was given to

the correct treatment of scalar perturbations which, in a standard treatment, appear to grow

too large for the applicability of linear perturbation theory. By carefully “gauging down”

certain growing modes, we were able to show that both scalar and tensor perturbations can

be treated perturbatively and that they exhibit very similar spectra. A characteristic feature

of these spectra is that, unlike the spectra of the standard inflationary scenarios, they are

not flat but strongly tilted towards higher frequencies, as originally noted in [7].

In this note we will concentrate on tensor perturbations, those associated with gravita-

tional waves (GW), at frequencies which may be accessible to earth-based GW detectors.

Quite amazingly, their spectrum turns out to be rather independent of most of the details of

the above string cosmology scenario. As shown in the first part of this paper, the spectrum

can be completely given in terms of two parameters, the value gs of the string coupling pa-

rameter at the end of the dilaton-driven phase (equivalently, at the beginning of the string
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epoch), and the total red-shift zs occurring during the string era. The theoretical advantage

of considering GW signals stems from the fact that, unlike the electromagnetic perturba-

tions which underwent a complicated history until recombination, gravitons decoupled since

right after the Planck era. As a consequence, their present spectrum should be a faithful

portrait of the very early Universe. On the other hand, the detection of a cosmological

background of GW requires extremely precise length measurements, typically at least of the

order of δL/L < 10−21 [8]. In the second part of this paper we will show that the expected

range of gs and zs includes a region which should be accessible to future gravitational wave

experiments.

Throughout this paper we shall be working in the so-called String-frame, in which weakly

interacting strings move along geodesic surfaces. Identical results would follow by adopting

the more conventional Einstein frame in which the curvature is canonically normalized, but

we believe the physics to be more transparent in the former frame. In the String frame the

string length parameter which is the short-distance cut-off of string theory, λs =
√
α′h̄, is

constant, while the Planck length, λP =
√
GN h̄, evolves in time as λP = eφ/2λs in a time-

dependent dilaton background. In our scenario, the background evolution starts from the

string perturbative vacuum [3], therefore λP grows from a very small initial value to a value

gsλs reached at the beginning of the stringy era and, finally, to its present (very large!) value

of about 10−33 cm at the beginning of the radiation dominated era.

2 Primordial gravitational-wave spectra

Let us consider, for the moment, an isotropic, (3 + 1)-dimensional, spatially flat cosmology.

Following [9] (see also [6]) it is easy to show that the canonical variable ψ associated with

tensor perturbations is related to the String-frame metric gµν via

gµν = a2(ηµν + hµν) = a2(ηµν +
g

a
ψµν), (2.1)

where a(t) is the isotropic scale factor, ηµν is the flat Minkowski metric and g = exp(φ/2).

The Fourier modes of each of the two physical, transverse-traceless, polarizations satisfy the
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following simple wave equation [9]

ψ′′k + [k2 − V (η)]ψk = 0, V (η) = (g/a)(a/g)′′ (2.2)

where a prime denotes differentiation with respect to conformal time η (adη ≡ dt) and k is

the comoving wave number, related to the physical one, ω, by k = ωa. Note that, since a/g

has power-like behavior in η during the dilaton-driven phase [1, 2, 3], V (η) grows like η−2

during that epoch reaching a maximum at η = ηs, i.e. when H−1 ∼ ηsas ∼ λs ≡ M−1
s . We

expect V (η) to keep growing during the stringy era and then to fall rapidly to zero at the

onset (η = η1) of the radiation-dominated era since, in that phase, a/g ∼ η.

A given mode k will be well inside the horizon initially, then hit the potential barrier

V (η) at some “exit” time ηex ∼ k−1, and leave the barrier at some later “reentry” time

η = ηre ∼ η1. The approximate solutions of eq. (2.2) in these three regimes are given by

ψk =
λs√
k
e−ikη , η < ηex (2.3)

ψk =
a

g

[
Ak +Bk

∫ η

dη′
(
g

a

)2
]
, ηex < η < ηre (2.4)

ψk =
λs√
k

[
c+(k)e−ikη + c−(k)eikη

]
, η > ηre (2.5)

Equation (2.3) enforces the proper normalization of the primordial vacuum fluctuations. In

the regime described by eq. (2.4) the perturbation is frozen outside the horizon and the

two terms appearing there correspond to the freezing of h and of its canonically conjugate

momentum, respectively. Finally, in (2.5), the magnitude of c− (so-called Bogoliubov coeffi-

cient) gives the amplification of the GW with respect to a minimal vacuum fluctuation. The

actual value of |c−| can be easily obtained by matching the above solutions and their first

derivatives at each transition time,

2kη1|c−(k)| '
gex/aex
gre/are

1 + kη1

(
gre/are
gex/aex

)2

+ k(gex/aex)−2
∫ η1

ηex
dη (g/a)2

 (2.6)

At this point we have to insert some information about the background evolution. In the

simple case at hand of a D = 3 + 1 isotropic cosmology with static extra dimensions, the

3



dilaton-driven inflationary background is simply given by [3]

a(η) = (−η)
− 1

1+
√

3 , φ(η) = −
√

3 ln(−η) , a/g ∼ (−η)1/2, −∞ < η < 0 (2.7)

while, for the string era, we will assume that H and ∂tφ are approximately constant and

of order λ−1
s . Limiting our attention for the time being to those scales which crossed the

horizon during the dilaton-driven phase, we thus arrive at the following estimate

2kη1|c−(k)| ' (k/ks)
1/2zs(gs/g1)

[
1 + z−3

s (g1/gs)
2 + ln(ks/k) + I

]
, k < ks (2.8)

where we have denoted for convenience are/as ' a1/as = zs. In eq.(2.8) k−1
s ∼ ηs ∼ (Hsas)−1

is the last scale exiting during the dilaton-driven phase, g1 = exp(φ1/2) is a number of order

unity which may be determined in term of the (known) present value of the ratio λp/λs [10],

and I is the k-independent quantity

I =
∫ η1/ηs

1

dη

ηs

(g/a)2

(gs/as)2
∼ 1 + z−3

s (g1/gs)
2 (2.9)

The r.m.s. perturbation amplitude over a comoving length scale k−1 (see for instance [6]) is

given, in general, by |δhk(η)| ' k3/2|hk| = (g/a)k3/2|ψk|. For η > η1, we then find

|δhk(η)| '
H1a1

a(η)Mp

(
k

ks

)1/2
gs

g1
zs

1 +
1

2
ln

(
ks

k

)
+ z−3

s

(
g1

gs

)2
 (2.10)

Equation (2.10) is the main result of this section and we will use it subsequently to estimate

the required sensitivity for detection.

It is worth stressing that the leading term in |c−| comes from the integral appearing

in eq. (2.4), associated with the freezing of the momentum variable conjugate to h. This

unusual result is due to the fact [3] that, in the Einstein frame, the scale factor is aE = a/g,

and our background corresponds to a contracting, rather than expanding, Universe. The

amplification of tensor perturbations in a contracting Universe was first considered long ago

in [11, 12].

In spite of the presence of a high-curvature regime, we expect our estimates to be valid

for scales that went out of the horizon in the dilaton-driven phase, since they follow from

the general physical principle that a perturbation and its canonically conjugate momentum
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should remain frozen while outside the horizon. The perturbations thus evolve in a purely

kinematical way, giving rise to the logarithmic term in (2.8) from evolution during the

dilaton-dominated phase and to the second term I from the stringy epoch.

Finally, let us digress a moment to show the stability of the result (2.10) with respect

to O(d, d) transformations which connect [13] different homogeneous string cosmologies. A

simple derivation of this nice feature is obtained by working in cosmic time and by using

directly the amplitude h [defined in eq. (2.1)] rather than the canonically normalized per-

turbation ψ. It is straightforward to check that, in arbitrary O(d, d)-related Bianchi I-type

backgrounds (including possible dynamical internal dimensions and an antisymmetric tensor

Bµν), the Fourier modes of h satisfy the following simple equation (see also [9])

ḧω −
˙̄φḣω + ω2hω = 0 (2.11)

where dots denote derivatives with respect to cosmic time and φ̄ = φ− ln |detgµν |1/2 is the

so-called shifted dilaton, invariant under O(d, d) transformations. Using the fact that, in

any dilaton-driven vacuum cosmology, φ̄ ∼ − ln t, we easily obtain, for perturbations well

outside the horizon,

hω(t) ∼ ln
∣∣∣∣ ttex

∣∣∣∣ ∼ ln |ωt| , (2.12)

showing that the spectrum of GW is independent of the chosen string-cosmology background,

and increasing our confidence that eq. (2.10) is indeed the generic GW spectrum of a

large class of string cosmology models. Note, incidentally, that this is not the case for the

electromagnetic perturbations discussed in [14].

3 Observability

In order to discuss the observability of our signal it is useful to rewrite our main result (2.10)

in terms of present, red-shifted proper frequencies ω = k/a. One easily finds

|δhω| '

√
H0

Ms

z−1/4
eq gszs

(
ω

ωs

)1/2
1 +

1

2
ln
(
ωs

ω

)
+ z−3

s

(
g1

gs

)2
 , ω < ωs (3.1)

ωs = ks/a ' z
−1/4
eq

√
H0Msz

−1
s ≡ z

−1
s ω1 ∼ z−1

s g
1/2
1 1011Hz (3.2)
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where zeq = a/aeq ∼ 104 takes into account the transition from radiation to matter dominance

at t = teq, ω1 = H1a1/a ∼ 1011Hz is the maximal frequency reached during the string phase,

Ms = λ−1
s ∼ H1, and H0 ∼ 10−18Hz is the present value of the Hubble scale.

It is also convenient to rewrite our results in terms of another commonly used quantity,

the fraction of critical density, ΩGW = ρGW /ρc, stored in our GW per logarithmic interval

of ω. Defining dΩGW /(d lnω) = ω4|c−|2/(MpH)2 we have

dΩGW

d lnω
= z−1

eq g
2
s

(
ω

ωs

)3
1 +

1

2
ln
(
ωs

ω

)
+ z−3

s

(
g1

gs

)2
2

∼
(
ω

H0

)2

|δhω|
2
, ω < ωs (3.3)

It emerges from eq. (3.3) that ωs plays the role of an effective temperature in the sense

that, below ωs, the spectrum is Planckian (up to logarithms of ω). The normalization of the

spectrum, however, is different from Planck’s because of the further amplification due to the

stringy phase. Also, we do not expect the spectrum to stay Planckian above ωs (see below),

but rather to keep growing and to reach its maximum at ω1 before falling exponentially.

Finally we give, with the appropriate caveats, the generalization of the above results to

frequencies whose exit occurred during the stringy phase, i.e. to the high frequency part

ωs < ω < ω1. We are aware of the possible dangers in using field theoretic methods to discuss

perturbations in this regime. However, in the absence of a full string theoretic calculation,

we shall present our results as an indication of what a possible outcome might be. One finds,

after straightforward calculations,

|δhω| ' g1

√
H0

Ms

z−1/4
eq

[(
ω

ω1

)2−β

+
(
ω

ω1

)β−1
]

(3.4)

dΩGW

d lnω
' g2

1z
−1
eq

[(
ω

ω1

)6−2β

+
(
ω

ω1

)2β
]
, ωs < ω < ω1 (3.5)

where β = − log(gs/g1)/ log zs is also the average value of ġ/(gH), which we have assumed

to vary little during the string phase. We have also used the fact that during the string phase

the curvature stays controlled by the string scale λs so that, in the String frame, the metric

describes a de Sitter-like expansion with zs = a1/as = ηs/η1 (see [15] for further details, and

for a different derivation of the same spectrum in the Einstein frame).

We would like to discuss now the prospects of observing our spectrum in gravitational

wave detectors. Our main emphasis will be on the planned large interferometers LIGO [16]
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and VIRGO [17], which are expected [8] to start operating at sensitivities (for detection of

a stochastic GW background) of dΩGW /d lnω = 10−6 in a frequency band around a few

hundred Hz, and have set the ambitious final sensitivity goals of dΩGW /d lnω = 10−10 in

a frequency band around ωI = 100Hz. It may well be, especially in the first stages of

operation, that coincidence experiments between bars and interferometers [18] could also

be able to reach similar sensitivities at frequencies around 1 KHz. We will mention later

other possible devices which seem to have some good potential sensitivity, especially in the

higher frequency range, but which have not yet matured into concrete operating systems.

Detection of stochastic GW backgrounds at frequencies below 1 Hz does not seem accessible

with current technologies, and we therefore limit our attention to the range above 1 Hz.

We are interested in finding the regions in our {zs, gs} parameter space that may be

accessible to experimental detection. From eq. (3.2) we can immediately see that the

accessible region requires large values of zs. We may distinguish values of zs in the range

zs < 109 (i. e. ωs > ωI), in which the observable spectrum at ωI comes mainly from

perturbations that crossed the horizon during the dilaton-driven era, from those in the range

zs > 109 (ωs < ωI) in which the observable spectrum comes mainly from those perturbations

that crossed the horizon during the stringy era. The predictions in the range zs > 109

should be considered as less robust than those in the range zs < 109. In addition, we may

distinguish values of gs in the range gs<∼g1 in which the dilaton does not change much during

the stringy phase, from those in the range gs � g1 in which the dilaton changes by a large

amount during the stringy epoch.

In all cases we have to impose the bound following from pulsar-timing measurements [19],

which implies dΩGW /d lnω<∼10−6 at ωP = 10−8Hz. We also accept the bound ΩGW<∼0.1,

imposed by standard nucleosynthesis [20]. Moreover, we have derived the spectrum in the

linear approximation, expanding around a homogeneous background. We have thus to im-

pose, for consistency, that the amplified perturbations have a negligible back-reaction on

the metric, namely dΩGW /d lnω < 1 at all frequencies and times. This, together with the

nucleosynthesis bound, requires a range of parameters corresponding to a spectrum which is

growing also in the stringy phase, 0 < β < 3, namely (gs/g1) < 1 and (gs/g1) > z−3
s .
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Inserting the appropriate numbers in eqs. (3.3), (3.5) we find, respectively, the following

conditions for detectability in interferometers, i. e. dΩGW /d lnω > 10−10 at ωI = 102Hz

(assuming that the design goals would actually be achieved),

z3
sg

2
s

[
11−

1

2
ln zs + z−3

s (gs/g1)−2
]2

> 1021, (3.6)

for zs < 109, and either

log10

g1

gs
<
(

1

3
+

1

18
log10 g

2
1

)
log10 zs, β < 3/2 (3.7)

or

log10

g1

gs
>

(
8

3
−

1

18
log10 g

2
1

)
log10 zs, β > 3/2 (3.8)

for zs > 109.

It may be useful to list approximate forms of the GW spectral distribution, dΩGW /d lnω,

in different regions of parameter space, which we do in Table 1,

zs < 109 zs > 109

β < 3/2 z−1
eq g

2
s

(
ω
ωs

)3
z−1
eq g

2
1

(
ω
ω1

)2β

β > 3/2 z−1
eq z

−6
s g4

1g
−2
s

(
ω
ωs

)3
z−1
eq g

2
1

(
ω
ω1

)6−2β

Table 1. Approximate forms of (dΩGW /d lnω) in various regions of parameter space, ωs = ω1/zs, β =

− log(gs/g1)/ log zs.

Actually, if one considers also the amplification of electromagnetic (EM) perturbations in

this scenario [14], one finds an even stronger bound following from the condition ΩEM < 1,

i.e. (g1/gs) < z2
s . Such a constraint washes out completely the allowed region of parameter

space corresponding to the lower row of Table 1. The condition Ω < 1 has to be imposed,

however, for the validity of the linear approach, but it could be evaded in a more general,

inhomogeneous model of background, in which the evolution of fluctuations is treated non-

perturbatively.

In Figure 1 the allowed region of parameter space, corresponding to the possible detec-

tion of the spectrum appearing in the upper row of Table 1, and compatible with the various

bounds on the parameters, is plotted by taking g1 = 1 as a reference value. Also shown are
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the parameter intervals in which other detectors may be useful, for the range corresponding

to the upper left corner of Table 1.
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Figure 1. The allowed region in {zs, gs} parameter space corresponding to the first row in Table 1 is the shaded

region defined by the various constraints. The dashed lines mark the regions in which various detectors may be useful, for the

range zs < 109
and β < 3/2.

We now turn to discuss in more detail the observability of our spectrum as function of

frequency, limiting our attention, for sake of simplicity, to the frequencies leaving the horizon

during the dilaton-driven phase [eqs.(3.1), (3.3)]. This spectrum is pictorially described in

Fig. 2 for the case β < 3/2, in terms of the quantity |δhω| (denoted hc in [8]), which

represents the characteristic amplitude of a stochastic background. The odd-shaped region

in Fig. 2 shows detection sensitivities for the so called “Advanced LIGO” project, in

terms of the quantity h3/yr defined as the amplitude necessary for detection of a stochastic

background at the 90% confidence level in a 1/3 of a year (see [8] for exact definitions). In

Fig. 2 we can observe clearly that larger amplification goes together with larger red-shift

for this region of parameter space. For a given red-shift zs, the higher amplitudes, for all

regions of parameter space, are at higher frequencies.

In addition to interferometers and bars, microwave cavities may be operated as gravity

wave detectors for the high frequency range 106 − 109 Hz. For the MHz range specific

suggestions [21, 22] were actually implemented [23]. As can be seen from Fig. 2, the required

sensitivity for detection of gravity waves in the MHz region is |δhω| ∼ 10−26, corresponding
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to h3/yr of the same order. We leave to experts to study whether or not such a sensitivity

is accessible with current technologies and may be reached in a near future, with microwave

cavity detectors or with other experimental apparatus.

zs

δhω

Frequency in Hertz

 δh

ω max

gsω1/2

ω1/2

ω1/2

Ω
GW =10 −10

Ω
G

W =10 −4

102 106 10101 

10−30

10−26

10−22

Ω
GW =10 −16

Figure 2. The characteristic spectral amplitude of gravitational waves |δhω|. The solid lines show several individual

spectra for different values of zs and gs = 1. The thick dashed line shows the maximum amplitude |δhmaxω | as a function

of zs for gs = 1. The dashed lines are lines of fixed gs and therefore lines of constant energy density. ΩGW is roughly

the maximal amount of gravitational energy density at a given value of gs. Also shown in the figure is the odd-shaped region

marking the sensitivity goals for the detection of a stochastic background according to “Advanced LIGO” project.

4 Conclusion

We showed that a rather generic string cosmology scenario leads, naturally, to the production

of an amplified quasi-thermal spectrum of gravitons during the dilaton-driven phase. This

spectrum is very stable under modifications of the background and in particular underO(d, d)

transformations. The slope of the spectrum may change for modes crossing the horizon in

the subsequent string phase, but remains in general characterized by an enhanced production
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of high frequency gravitons, irrespective of the particular value of the spectral index.

We showed, in particular, that it may be possible to detect such a relic GW background

with large interferometers for a range of the two parameters characterizing our class of mod-

els. We would like, however, to encourage the study and the developments of gravitational

detectors with enhanced sensitivity in the high frequency, KHz - GHz, range. This frequency

band should be in fact all but a “desert” of relic gravitational radiation that one may expect

on the grounds of the standard inflationary scenario or from ordinary astrophysical sources.

Our string cosmology scenario is unique in predicting a strong signal in this range of fre-

quencies. In general, a sensitivity of Ω ∼ 10−4 − 10−5 (which is not out of reach, in the KHz

region, for coincidence experiments between bars and interferometers [18]), could be already

enough to detect a signal, so even a null result at that level of sensitivity would already con-

strain in a significant way the parameters of the string background, while detection would

provide a first glimpse at some new and exciting Planckian physics.

As we stressed, many of our results are independent of details of the string cosmology

scenario. However, it would be worthwhile pointing out again that, although some ideas

have been put forward [24], a solid string-theoretic treatment of the stringy phase, which

we propose as the necessary bridge between the dilaton-driven and the standard decelerated

era, does not yet exist. Recent progress [24] on the interpretation of singularities in string

theory, as simply a failure to describe physics in terms of the original set of massless fields,

may shed light on the resolution of this issue. The understanding of singularities in string

theory would certainly help putting our string cosmology scenario on a firmer basis, and

may even provide a framework for the calculation of the parameters gs and zs.
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