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1 Introduction

Suppose that (M, g) is a spacetime admitting a spin structure and denote
the Weyl and Ricci spinors by ΨABCD and ΦABC′D′ respectively (the abstract
index convention will be used throughout). The most common type of mixed
invariant of the Riemann spinor is, roughly speaking, a real or complex scalar
constructed from contractions of the Weyl spinor, its complex conjugate and
the Ricci spinor, for example the expression ΨABCDΦAB

A′B′ΦCDA′B′ defines a
mixed invariant. In section two a precise definition of a mixed invariant will
be given and their significance will be discussed. The main aim of this paper
is to use mixed invariants to provide a classification of the Riemann spinor
in the case of spacetimes representing Einstein-Maxwell fields and perfect
fluids. This classification will be presented in a fashion which is essentially
algorithmic and geometric in character and will provide a geometric inter-
pretation for the mixed invariants. Various aspects of such mixed invariants
have been considered by other authors and most recently by Carminati and
McLenaghan [1]; McIntosh and Zakhary [2] and Harvey [3] (see also [4]).

Since this paper is only concerned with algebraic properties of the spinors
(and tensors) involved it may be assumed that one is working at some partic-
ular point of the spacetime manifold. The algebraic classification of the Ricci
and Weyl spinors is well known and has been in use in relativity for many
years. For details and references see [5, 6] (for the Petrov classification of the
Weyl spinor/tensor) and [7] (for a review of various methods for classifying
the Ricci spinor/tensor). In addition it is possible to effect these classifica-
tions in a more or less algorithmic fashion [8, 9, 10] using pure invariants
of the Weyl and Ricci spinors. A pure invariant of the Weyl tensor will be
defined in section two but the main ones are, roughly speaking, scalars con-
structed by contraction of copies of the Weyl spinor, e.g. ΨABCDΨABCD, and
pure invariants of the Ricci spinor can be defined analogously. All these clas-
sification schemes must be invariant under SL(2, C ) otherwise the schemes
would change appearance under a change of dyad.

Despite the large body of literature concerned with the classification of
the Ricci and Weyl spinors individually, there has been little or no effort
directed to the classification problem for the full Riemann spinor. The com-
plex vector space of Riemann spinor type objects splits as a sum of four
irreducible subspaces under the action of SL(2, C ) [11] and the components
of this decomposition correspond to the Weyl spinor, its complex conjugate,
the Ricci spinor and Ricci scalar. Classification of the Riemann spinor in-
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volves the algebraic classification of its irreducible parts, followed by some
consideration of the ‘angle’ between the parts. By this it is meant that the
Ricci and Weyl spinors each determine certain directions in spin space and a
full classification of the Riemann spinor must take into account the degree of
alignment between these directions. Since the Ricci scalar is just a real num-
ber and contains no geometrical information it will take no further part in
these discussions. Unfortunately different Weyl and Ricci types require sep-
arate treatment in the consideration of ‘alignment’ and this leads to rather
a lot of cases to be considered. To reduce the amount of work, only three
Ricci types will be studied - those representing null Einstein-Maxwell fields,
non-null Einstein-Maxwell fields and perfect fluids. If these three Ricci types
are combined with the five possible Petrov types then one arrives at a total
of fifteen cases to be considered. These cases are covered in sections 4,5 and
6 where the NPspinor computer algebra package [12] has been used for some
of the calculations. It should be noted that all the subcases discussed in
these sections may not be realisable in actual spacetimes since restrictions
are placed by the Bianchi identities.

As a way of a gentle introduction to the full classification problem, a
‘toy problem’ will be considered in section three. This toy problem has the
benefit of being of some interest in its own right, as well as illustrating some
of the important aspects of the Riemann spinor classification. The problem
considered in section three is that of the algebraic classification of an ordered
pair of symmetric 2-spinors (σAB , ρAB). Since such a pair corresponds to a
complex bivector, this problem is relevant to complex general relativity and,
in fact, has been studied using other methods by Hall [13]. The classification
scheme presented in the third section will involve classifying the individual
2-spinors separately, and then introducing a concept of angle between the
pair of 2-spinors.

2 Mixed Invariants

The concept of a ‘curvature invariant’ can be taken to mean a (generally
real or complex) scalar constructed from the curvature components which
is invariant under the action of an appropriate group of transformations.
Such curvature invariants may be appropriate for singularity theory in that
singular points may be detected by ‘bad’ behaviour of these invariants. Other
types of curvature invariants may be required in renormalisation theory [14].
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The approach taken in this work has more in common with the discussion
of invariants in the context of algebraic classification given by Penrose and
Rindler [5]. The concept of an algebraic invariant discussed in this paper
should not be confused with the (related) classical concept of a ‘differential
concomitant’ (see [15] for a modern treatment). It is worth reiterating that
throughout this paper it is assumed that one is working at a particular point
in the spacetime manifold.

The vector space of unprimed totally symmetric 4-spinors (i.e. Weyl-type
spinors) will be denoted byW and the vector space of spinors with 2 primed
and 2 unprimed indices, which are totally symmetric over both primed and
unprimed indices, will be denoted byR (corresponding to Ricci-type spinors).
The complex conjugate ofW will simply be denoted byW′. A complex pure
invariant of the Weyl spinor (of order p) is a complex valued multilinear form
on W which is of pth order in the Weyl spinor components, and is invariant
under the action of SL(2, C ) on W. A real pure invariant of the Weyl spinor
can be defined in a similar fashion. The most important pure invariants of
the Weyl spinor are traditionally denoted by I and J and are defined by

I = ΨABCDΨABCD J = ΨAB
CDΨCD

EFΨEF
ABm(1)

It is remarked that a pure Weyl invariant, as defined above, need not nec-
essarily be defined by contraction of the Weyl spinor with copies itself, but
pure Weyl invariants defined in such a fashion are the only ones required in
this work. A pure invariant of the Ricci spinor of order p can be defined in
an analogous fashion and the only one required will be the second order real
invariant R1 defined by

R1 = ΦABA′B′Φ
ABA′B′m(2)

A complex basic mixed invariant of order (p, p′, q) is an SL(2, C ) invariant
multilinear function M defined by

M :W× · · · ×W︸ ︷︷ ︸
p times

×W′ × · · · ×W′︸ ︷︷ ︸
p′ times

×R × · · · ×R︸ ︷︷ ︸
q times

7→ Cm(3)

where it will be assumed that (p + p′)q 6= 0. A real basic mixed invariant
can be defined similarly. The appropriate basic mixed invariants which will
be required consist of the complex functions

M1 = ΨABCDΦAB
A′B′Φ

CDA′B′m(4)

M2 = ΨABEFΨEF
CDΦAB

A′B′Φ
CDA′B′m(5)

M5 = ΨABEFΨEF
CDΦAB

A′B′Φ
CD

C′D′Ψ̄
A′B′C′D′m(6)
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and the real functions

M3 = ΨABCDΨ̄A′B′C′D′Φ
ABA′B′ΦCDC′D′m(7)

M4 = ΨABEFΨEF
CDΨ̄A′B′E′F ′Ψ̄

E′F ′
C′D′Φ

ABA′B′ΦCDC′D′m(8)

The notation M1, . . .M5 is as used in [1] except in that reference the authors
used a lower case M and a different invariant labelled M4. The definition of
M4 given here is of rather high order, but is required in a few cases to extract
certain relevant geometric information. The two real invariants M3 and M4

can also be expressed in terms of the Bel-Robinson tensor Tabcd [11] and the
Ricci tensor Rab according to

M3 = 1
4
TabcdR

abRcdm(9)

M4 = 1
4
TabefT

ef
cdR

abRcdm(10)

All the pure invariants and basic mixed invariants may be calculated, in a
tensor formalism, using the GRTensor package [16].

Finally, a real or complex mixed invariant is defined as a rational function
constructed from pure invariants and basic mixed invariants. It is thus an
SL(2, C ) invariant rational function of the components of the Weyl spinor,
its conjugate and the Ricci spinor.

To close this section, some general remarks concerning the use of invari-
ants, within the context of classification up to some invariance group, will
be made. Suppose that a group G acts on a set S and hence decomposes S
as a disjoint union of orbits. If F is a G-invariant function (taking values in
some convenient set - say R) then the value of F is constant on each orbit.
A collection of G-invariant functions F1, . . . , Fp is known as a complete set
of invariants if F1(x) = F1(y), . . . , Fp(x) = Fp(y) imply that x and y lie on
the same orbit. This list of G-invariant functions can therefore be used to
place each element of S into its appropriate orbit under G. As a straightfor-
ward example, consider the tangent space TpM under the action of the full
Lorentz group L. If the zero vector is excluded then the real-valued function
f(v) = g(v, v) provides a complete set of invariants for the tangent space
under L. This is because any two vectors of the same size lie in the same
L-orbit, and the function f is obviously Lorentz invariant. In this particular
case one normally effects a broader classification based on the sign (+,−
or 0) of f but the invariant f provides the ‘finest possible’ classification of
non-zero vectors in TpM under L. Another method of classifying a non-zero
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tangent vector v is to give its nature (that is: timelike, spacelike or null)
together with |g(v, v)| if v is non-null. It is remarked that there is no obvious
real-valued Lorentz invariant function on TpM which separates the orbit con-
sisting of null vectors, from the orbit consisting of the zero vector. Instead,
one could use the function g which takes the value 1 if the sum of the squares
of the components of a vector is non-zero and 0 if this sum vanishes. This
function is a perfectly acceptable Lorentz invariant function taking values in
the set {0, 1}. Problems analogous to this problem concerning the separation
of zero and null vectors also arise in the algebraic classification of the Weyl,
Ricci and Riemann spinors using invariants - for example in the separation of
Petrov types N and III in the algebraic classification of the Weyl tensor [8].

3 Classification of a Pair of Symmetric 2-Spinors

For the purposes of this section suppose that (σAB , ρAB) is an ordered pair of
symmetric 2-spinors which will both be assumed non-zero. As was mentioned
earlier, this ordered pair can be identified with a complex bivector Fab by

Fab = σABεA′B′ + ρ̄A′B′εABm(11)

The classification of a single (non-zero) symmetric 2-spinor is well-known
and can be effected by consideration of the pure invariant I1 = σABσ

AB . If
I1 = 0 then σAB is said to be null and can be written as σAB = αAαB for
some 1-spinor αA (the repeated principal spinor of σAB) which is defined up
to sign. Since all 1-spinors are equivalent under SL(2, C ) it follows that all
null symmetric 2-spinors are also equivalent under SL(2, C ). If I1 6= 0 then
σAB is referred to as non-null can be reduced to the canonical form µo(AιB)

where oA, ιA is a normalised spin dyad (that is oAιA = 1) and µ ∈ C . The
dyad is defined up to transformations of the form oA 7→ λoA, ιA 7→ λ−1ιA
for λ ∈ C and the 1-spinors oA and ιA are principal spinors of σAB. Such
a 2-spinor is therefore uniquely determined, up to SL(2, C ) transformations,
by the complex scalar µ - given by −µ2 = 2I1. The invariant I1 does not
form a complete set since it takes equal values for σAB and −σAB, which lie
on different SL(2, C ) orbits. It is possible to construct some kind of invariant
taking values in {−1, 1} to separate these two cases but generally such sign
problems may be ignored.

Now turn the case of a pair of symmetric 2-spinors (σAB, ρAB) and define
three invariants in the following manner. Pure invariants I1 and I2 are defined
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by

I1 = σABσ
AB I2 = ρABρ

ABm(12)

and a mixed invariant M is defined by

M = σABρ
ABm(13)

In general the set {I1, I2,M} is complete except for the sort of sign problems
which arose in the case of a single symmetric 2-spinor. The cases where this
set is not complete are of interest since similar problems arise in the case of
the Riemann spinor. For the pair (σAB , ρAB) there are really four cases to
consider, denoted in an obvious fashion as non-null/non-null, null/non-null,
non-null/null and null/null. The middle two cases in this list can clearly be
dealt with in the same fashion so one is left with three cases to consider.

Case 1: Non-null/Non-null In this case I1 6= 0 and I2 6= 0 and it may
be assumed that there exist 1-spinors αA, βA, γA and δA such that

σAB = α(AβB) ρAB = γ(AδB)m(14)

Given four ordered spinor directions, one can define their cross-ratio [11, 17]
in terms of 1-spinors spanning these directions. The cross-ratio of the four
directions spanned by αA, βA, γA and δA is denoted by χ and defined by

χ =
(αAγA)(βBδB)

(αCδC)(βDγD)
m(15)

The function χ is assumed to take values in C ∪ {∞}. If the corresponding
flag-pole directions are denoted by (A,B,C,D) then the cross-ratio can be
interpreted geometrically in terms of Lorentz transformations required to
take the A−B plane into the C−D plane [11]. The cross-ratio χ of αA, βA, γA
and δA can be expressed in terms of I1, I2 and M by

χ =
µ + 1

µ− 1
where µ2 =

M2

I1I2
m(16)

The sign ambiguity in the above definition of χ corresponds to the arbitrary
ordering of αA with respect to βA and of γA with respect to δA. If the
directions of two or more of the 1-spinors αA, βA, γA and δA coincide then
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χ must take one of the values 0, 1 or ∞. Since one cannot have χ = 1
for finite µ these degenerate cases correspond to µ = ±1 or equivalently
M2 = I1I2. One thus concludes that the condition M2 = I1I2 is necessary
and sufficient for at least one of the principal spinors of σAB to align with
one of the principal spinors of ρAB .

The case where M2 6= I1I2 is referred to as the non-aligned case and in
this case the pair of symmetric 2-spinors is determined (up to sign) by the
set of three complex invariants {I1, I2,M}. The expression (16) determines
the cross-ratio and hence the relative positions of the directions of the four
principal spinors up to SL(2, C ) rotations [11] and then the invariants I1 and
I2 determine individual scalings.

The aligned (M2 = I1I2) case can be further subdivided into the partially
aligned case where exactly one of the principal spinors of σAB is parallel to
exactly one of the principal spinors of ρAB ; and the totally aligned case where
σAB is a multiple of ρAB . In the partially aligned case, if one notes that any
three spinor directions are equivalent (under SL(2, C )) to any other then it
is clear that knowledge of I1 and I2 is sufficient to reconstruct the spinor
pair (possibly with some residual sign ambiguity). Similar comments apply
in the totally aligned case. The problem is that the invariants I1, I2 and M

do not appear to be able to separate the partially and totally aligned cases
from each other. One method of resolving this problem is to consider the
symmetric 2-spinor φAB defined by φAB = σACρ

C
B − ρACσCB and define an

invariant s which takes the value 1 if φAB 6= 0 and 0 if φAB = 0. It may be
verified that s = 0 if and only if σAB is a multiple of ρAB .

then show that φAB = (βCγ
C)αAαB

Case 2: Null/Non-null In this case one has that I1 = 0 and I2 6= 0 and
one can choose a dyad oA, ιA (with oAιA = 1) such that

σAB = (oA +BιA)(oB +BιB) ρAB = µo(AιB)m(17)

for B, µ ∈ C . The pair of 2-spinors are then completely determined, up
to SL(2, C ) transformations, by the complex quantities B and µ which are
related to the invariants M and I2 by M = −µB and I2 = −µ2/2. Thus M
and I2 form a complete set of invariants (apart from a sign ambiguity) and
furthermore there is an aligned case corresponding to M = 0.
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Type
I1

I2

M
φAB

Non-null/Non-null aligned
6= 0
6= 0
6= I1I2

Non-null/Non-null partially aligned
6= 0
6= 0

= I1I2

6= 0
Non-null/Non-null totally aligned

6= 0
6= 0

= I1I2

= 0
Null/Non-null non-aligned

= 0
6= 0
6= 0

Null/Non-null aligned
= 0
6= 0
= 0

Null/Null non-aligned
= 0
= 0
6= 0

Null/Null aligned
= 0
= 0
= 0

Table 1: Classification of a pair of 2-spinors. The invariants I1, I2 and M are
defined by equations (12) and (13) and φAB ≡ σACρ

C
B − ρACσCB
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Case 3: Null/Null The final case is characterised by I1 = I2 = 0 and the
pair of 2-spinors take the form

σAB = αAαA ρAB = βAβBm(18)

This case can be split into the aligned case (αA parallel to βA, equivalent
to M = 0) and the non-aligned case (M 6= 0). In the non-aligned case, the
2-spinor pair is determined by the pair of 1-spinors αA and βA. However,
a pair of non-parallel 1-spinors are determined uniquely (up to SL(2, C )
transformations) by their inner product and this is given by M = (αAβA)2.
There is a sign ambiguity in the inner product, but the individual signs of
αA and βA are irrelevant in the determination of σAB and ρAB . In the non-
aligned case, the mixed invariant M is therefore sufficient to determine the
pair of 2-spinors up to SL(2, C ) transformations. In the aligned case, one has
ρAB = λαAαB for some λ ∈ C . There are clearly no non-zero invariants which
can be constructed by contractions of the pair of 2-spinors but different values
of λ give rise to inequivalent (under SL(2, C )) pairs of symmetric 2-spinors.
With respect to any given dyad the components of ρAB must be λ times the
components of σAB. Hence one can calculate λ by choosing A,B such that
ρAB 6= 0 (bold-face indices denote components) and then λ = ρAB/σAB. The
quantity λ defined in this way is independent of A and B and of the dyad
used and {λ} is a complete set of invariants in the aligned case.

A summary of the discussion in this section is given in table 1 which
displays the classification scheme for a pair of non-zero symmetric 2-spinors
using the invariants I1, I2 and M .

4 Null Einstein-Maxwell Fields

Throughout this section it will be assumed that the Ricci spinor takes the
form ΦABC′D′ = γAγBγ̄C′ γ̄D′ for some 1-spinor γA. Clearly the Ricci spinor is
completely determined by γA and in fact λγA will give rise to the same Ricci
spinor provided that |λ| = 1. Given that the Ricci spinor is of this form, the
necessary mixed invariants required to analyse the relationship between the
Weyl and Ricci spinors turn out to be M3, M4 and M5. The expressions for

9



these invariants are

M3 =
∣∣∣ΨABCDγ

AγBγCγD
∣∣∣2m(19)

M4 =
∣∣∣ΨABEFΨEF

CDγ
AγBγCγD

∣∣∣2m(20)

M5 =
(
ΨABEFΨEF

CDγ
AγBγCγD

) (
Ψ̄A′B′C′D′ γ̄

A′ γ̄B
′
γ̄C
′
γ̄D
′
)

m(21)

In the above one has that M3M4 = |M5|2 and the invariants M3 and M5

(perhaps together with some pure Weyl invariants) will be seen to form a
complete set of invariants for the Riemann spinor in the case of a null Einstein
Maxwell field (cf [1]). The invariants M3 and M4 have a direct geometric
interpretation, as will be seen in theorem 1.

If γA is a repeated principal spinor of the Weyl spinor then the Ricci and
Weyl spinors will be said to be repeatedly aligned and similarly the terminol-
ogy non-repeatedly aligned will refer to the case where γA is a non-repeated
principal spinor of the Weyl spinor. It should be noted that Maxwell’s
equations imply that the flagpole direction of γA is geodesic and shearfree
and hence is a repeated principal null direction of the Weyl tensor (by the
Goldberg-Sachs theorem [18]) and one is forced into the repeatedly aligned
case. In the case of a null fluid one does not have Maxwell’s equations and
all cases - repeatedly aligned, non-repeatedly aligned and non-aligned may
be possible. The following theorem shows how M3 and M4 may be used to
separate these three possibilities.

Theorem 1 Suppose that ΦABC′D′ = γAγB γ̄C′ γ̄D′ and that M3 and M4 are as
defined by equations (19) and (20). One has the following three possibilities
for alignment between the Weyl and Ricci spinors, assuming both to be non-
zero.

(i) Non-aligned M3 6= 0, M4 6= 0

(ii) Non-repeatedly aligned M3 = 0, M4 6= 0

(ii) Repeatedly aligned M3 = M4 = 0

Proof The condition M3 = 0 is clearly equivalent to (repeated or non-
repeated) alignment. If M3 = 0 then let ηAB = ΨABCDγ

CγD and it follows
that ηABγAγB = 0 and ηABη

AB = 0 ⇔ M4 = 0. But then M4 = 0 implies
ηAB ∝ γAγB and hence ηABγA = 0. The definition of ηAB then shows that
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ΨABCDγ
AγBγC = 0 i.e. γA is a repeated principal spinor of ΨABCD. Con-

versely if γA is a repeated principal spinor of ΨABCD it follows that ηABγA = 0
and hence ηAB is null and so M4 = 0. 2

For each of the Petrov types the Weyl spinor invariantly determines a
normalised dyad oA, ιA up to some, possibly trivial, group of transformations.
The spinor γA can be written in this dyad as γA = AιA − BoA so that
A = oAγ

A and B = ιAγ
A and, given the indeterminacy in γA, A and B

are defined up to transformations of the form A → λA and B → λB with
λ ∈ C , |λ| = 1. For each Petrov type, the appropriate pure Weyl invariants
determine the Weyl spinor and then one merely needs to find A and B in
order to determine the Ricci spinor and hence the full Riemann spinor. In
general A and B can be expressed in terms of the mixed invariants M3,M4

and M5 and the following is a case by case account of how this is done.

Petrov type N This is arguably the simplest case since both the Ricci
spinor and Weyl spinors are each determined by a single 1-spinor. The Weyl
spinor can be written as ΨABCD = oAoBoCoD for some 1-spinor oA, defined
up to multiplication by λ ∈ C satisfying λ4 = 1. A dyad oA, ιA is determined
by the Weyl spinor in which the 1-spinor ιA is arbitrary apart from the
normalisation condition oAιA = 1. In the non-aligned case, where oAγA 6= 0,
the 1-spinor ιA may be assumed to be parallel γA, that is γA can be written
as γA = AιA for some A ∈ R, A > 0. Under these assumptions one has
that M3 = A8 and hence M3 completely determines the relationship between
γA and oA and therefore determines the Riemann spinor up to SL(2, C )
transformations. In the (necessarily repeatedly) aligned case the Ricci spinor
takes the form λoAoB ō

′
C ō
′
D for some λ ∈ R. Clearly there are no non-zero

mixed invariants which can be formed from contractions of the Weyl and
Ricci spinors in this case, and yet different values of λ give rise to SL(2, C )-
inequivalent Riemann spinors. In the aligned case the invariants formed
by contractions do not form a complete set and this is reminiscent of the
null/null aligned case in section two and one can use similar methods to
define the invariant λ.

Petrov type D In this case the Weyl spinor is determined by a pair of spin
directions and a complex scalar. One can choose a normalised dyad oA, ιA
spanning the principal directions of the Weyl spinor and determined up to
the transformations oA → λoA and ιA → λ−1ιA for λ ∈ C . This dyad may

11



be assumed scaled (and reordered if necessary) so that the 1-spinor γA can
be written as γA = AιA − oA where A is real and non-negative. The Weyl
spinor may be assumed to take the form 6ηo(AoBιCιD) for η ∈ C and then
the pure Weyl invariants defined by (1) are given by I = 6η2 and J = −6η3.
Now a short calculation will show that M3 = 6A4|I | and hence the invariants
M3 and I will determine the Weyl spinor (up to sign) and the Ricci spinor.
The (necessarily repeatedly) aligned case corresponds to M3 = 0 and in this
case the only invariant required to determine the Ricci and Weyl spinors (up
to sign) is I . If one wishes a complete set of invariants, that is if one wishes
to remove the sign ambiguity, then one can replace I with J/I .

Petrov type III In the Petrov type III case the Weyl spinor determines
(and is determined by) an ordered normalised dyad oA, ιA subject to the
transformation oA → −oA, ιA → −ιA. The canonical form in this dyad is
ΨABCD = −4o(AoBoCιD) where oA is a repeated principal spinor and ιA is a
non-repeated principal spinor. Writing γA = AιA − BoA as before one has

M3 = |4A3B|2m(22)

M4 = |2A4|2m(23)

M5 = (4A3B)(2A4)m(24)

It can be confirmed from (23) that M4 = 0 is the necessary and sufficient
condition for repeated alignment and that M3 6= 0 is equivalent to no align-
ment. In the non-aligned case and the non-repeatedly aligned case M3 and
M5 determine 4A3B and 2A4 up to multiplication by a complex number of
unit modulus. Consequently M3 and M5 determine A and B to within their
intrinsic ambiguity and so form a complete set in this case. However, in the
repeatedly aligned case A = 0 and then all three of the mixed invariants M3,
M4 and M5 vanish and one has ΦABC′D′ = λoAoB ōC′ ōD′ for some λ ∈ R. It
can be seen that there are no mixed non-zero mixed invariants which can
be expressed in terms of contractions of the Ricci and Weyl spinors and the
invariant function λ must be determined using similar methods to those used
in the null/null aligned case in section two.

Petrov type II In this case a canonical dyad oA, ιA is determined to within
a finite number of discrete transformations [5] and in this dyad the Weyl
spinor takes the form

ΨABCD = 6η(o(AoBιCιD) + oAoBoCoD)m(25)
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The repeated principal spinor in this case is oA; the non-repeated principal
spinors are oA± iιA and the pure Weyl invariants are I = 6η2 and J = −6η3.
If γA = AιA − BoA then the mixed invariants M3,M4 and M5 are given by

M3 = 6|I ||P1|
2m(26)

M4 = |I |2|P2|
2m(27)

ĪM5 = −6IJ̄P̄1P2m(28)

where

P1 = A4 +B2A2 and P2 = 2A4 − B2A2m(29)

Assuming that I and J are given, equations (26)-(28) provide values for the
expressions |P1|2, |P2|2 and P̄1P2 and hence determine P1 and P2 subject
to the transformations (P1, P2) → (P1e

iθ, P2e
iθ) for θ ∈ R. However this

ambiguity merely reflects the intrinsic ambiguity in A and B and so one can
consider the values of the polynomials A4 + B2A2 and 2A4 − B2A2 to be
completely determined by the mixed invariants. These polynomials will in
turn determine the values of A and B except in the case where A = 0. This
exceptional case is the repeatedly aligned case.

In the non-repeatedly aligned case, A = ±iB and so it may be assumed
that B is purely imaginary and that A is real and then M4 = 9|I |2A8 and
hence the components of γA in the dyad oA, ιA are determined by I and M4.
The case where M4 = 0 and M3 6= 0 corresponds to γA being a principal
spinor of the square of the Weyl spinor. In the repeatedly aligned case one
again finds that all mixed invariants constructed by contractions of the Ricci
and Weyl spinors vanish and cannot give a complete classification of the
Riemann spinor.

Petrov type I If the Weyl spinor is of Petrov type I then one possible way
of putting it into canonical for is to choose a (unique up to certain discrete
transformations [5]) dyad oA, ιA where ΨABCD takes the form

ΨABCD = 6η(χo(AιBιCιD) + (χ+ 1)o(AoBιCιD) + o(AoBoCιD))m(30)

for η, χ ∈ C . In this case the principal spinors are oA, ιA, oA+ιA and oA+χιA
and if one defines P1 and P2 by

P1 = 6ηAB(A+B)(χB +A)m(31)

P2 = −3
2
η2[3A4 + (4 + 4χ)A3B + (4 + 2χ+ 4χ2)A2B2

+(4χ+ 4χ2)B3A+ 3χ2B4]m(32)
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then the appropriate pure and mixed invariants are given by

M3 = |P1|
2m(33)

M4 = |P2|
2m(34)

M5 = P̄1P2m(35)

I = 6η2(χ− χ+ 1)m(36)

J = −6η3(χ+ 1)(χ− 2)(χ− 1
2
)m(37)

In the non-aligned case A,B, η and χ are determined by I, J,M3 and M5 as
can be shown using similar arguments to those employed in the Petrov type
II case. In the exceptional case where M3 = 0 then γA is parallel to one of
the principal spinors of ΨABCD and one has either A = 0, B = 0, B = −A or
B = −A/χ and a complete set of invariants is I, J and M4. In these aligned
cases M5 = 0 and M4 is non-zero and given by the following expressions

A = 0, M4 =
∣∣∣9
2
χ2η2B4

∣∣∣2m(38)

B = 0, M4 =
∣∣∣9
2
η2A4

∣∣∣2m(39)

B = −A, M4 =
∣∣∣9
2
η2A4(χ− 1)2

∣∣∣2m(40)

A = −Bχ, M4 =
∣∣∣9
2
η2χ2B4(χ− 1)2

∣∣∣2m(41)

5 Non-Null Einstein-Maxwell Fields

For the purposes of this section it will be assumed that the Ricci spinor can
be written as ΦABC′D′ = φABφ̄C′D′ for some non-null symmetric 2-spinor φAB.
The Ricci spinor therefore picks out two directions in spin space spanned by
αA and βA, the principal spinors of φAB . It may be assumed that αAβA = 1
so that φAB = µα(AβB) where the phase of the complex number µ is arbitrary
and so µmay be chosen real and positive. Also the unordered pair of principal
Ricci spinors αA and βA are determined subject to the transformations αA →
λαA and βA→ λ−1βA. The Ricci spinor in this case is completely determined
(up to SL(2, C ) transformations) by the real invariant R1 which is related to
µ through the equation 4R1 = |µ|4. The relevant mixed invariants for this
section will be denoted by N1 and N2 and are defined by N1 = −M1/R1 and
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N2 = M2/R1. These invariants are given by the following equations.

N1 = 2ΨABCDα
AβBαCβDm(42)

N2 = −2ΨABEFΨEF
CDα

AβBαCβDm(43)

Petrov type N The Weyl spinor can be written as ΨABCD = oAoBoCoD
and determines a canonical normalised dyad oA, ιA in which the direction of
ιA is arbitrary, and oA is subject to multiplication by a fourth root of unity.
It may therefore be assumed that βA = ιA, by scaling βA and/or swapping
αA and βA as necessary. The condition αAβ

A = 1 then shows that there
exists A ∈ C such that αA = oA + AιA where, given the ambiguity in oA, it
may be assumed that A lies in the first quadrant of the complex plane. The
mixed invariant N1 is then equal to 2A2 and hence determines A uniquely
and a complete set of invariants for this case is {R1, N1}. The special case
A = 0, equivalent to N1 = 0, is the aligned case.

Petrov type D In this case the Weyl spinor and the Ricci spinor each
determine a pair of directions in spin space. Since any four ordered directions
in spin space are determined by their cross ratio χ it follows that the Riemann
spinor is determined by χ, I and R1 (up to a sign ambiguity). In order to
compute the cross ratio, assume that ΨABCD = 6ηo(AoBιCιD), as in the
previous section, and suppose that the principal Ricci spinors αA and βA are
given by

αA = (AB + 1)oA +BιA βA = AoA + ιAm(44)

where A,B ∈ C . The invariant N1 is then given by

N1 = 2η(6A2B2 + 6AB + 1)m(45)

The cross ratio of the four spinors oA, ιA, αA, βA can then be expressed in
terms of A and B as follows (recall that χ takes values in C ∪ {∞})

χ =
AB

AB + 1
m(46)

A short calculation using (46) and (45) and the expressions for I and J in
the type D case, given in the last section, shows that

χ+
1

χ
=

2N1I − 8J

N1I + 2J
m(47)
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Now recall that if any of the four spin directions coincide then the cross ratio
must take one of the values 0, 1 or ∞. From (47) it can be seen that χ 6= 1
for J 6= 0 (and J = 0 is inconsistent with Petrov type D) and that χ = 0 or
∞ is equivalent to N1I + 2J = 0. Thus the aligned case is characterised by
the condition N1I + 2J = 0.

In the non-aligned case, the cross ratio is determined by (47) and the
residual ambiguity in the value of χ corresponds to the ambiguity in the
ordering within the pairs oA, ιA and αA, βA. The invariants I, R1 and N1

therefore form a complete set in this case (apart from a sign ambiguity).
The aligned case can be divided into partially aligned, where exactly one

of the principal spinors of the Weyl spinor is parallel to a principal Ricci
spinor, and totally aligned where both principal spinors of the Weyl spinor
are parallel to the Ricci principal spinors. Since any pair of spinor directions
is equivalent under SL(2, C ) and similarly for any triple of spinor directions it
follows that for each type of alignment the appropriate pure invariants form
a complete set. This begs the question of how one separates the partially
and totally aligned cases and it would appear that there are no suitable real
or complex mixed invariants. It is relevant to compare this problem with a
similar difficulty which arose during the consideration of the non-null/non-
null aligned case in section 3. In the present situation the simplest solution
seems to be to consider the following expression

ΦABE′F ′Φ
E′F ′GHΨGHCD − ΦCDE′F ′Φ

E′F ′GHΨGHABm(48)

If one supposes that the Ricci and Weyl spinors are at least partially aligned
then one may assume that ΨABCD = 6ηo(AoBιCιD) and ΦABC′D′ = φABφ̄C′D′

where φAB = µo(AβB) and βA = AoA + ιA. In this case the expression (48)
takes the form

µ4η

2

[
(2o(CιD) − AoCoD)o(AβB) − (2o(AιB) − AoAoB)o(CβD)

]
m(49)

The expression (49) clearly vanishes if ιA is parallel to βA (and hence A = 0).
Conversely if (49) vanishes then contracting with ιAoC gives

3Aµ4η

4
oBoD = 0m(50)

which implies that A = 0. Consequently, in the aligned case the vanishing of
(48) is equivalent to total alignment. It is worth remarking that this result
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also follows if one notes that the vanishing of (48) is equivalent to φAB being
an eigen-2-spinor of ΨABCD and refers to the remarks in [5] concerning the
eigen-2-spinor structure of the Weyl spinor.

Petrov type III As in section 4, it may be assumed that oA and ιA are
principal spinors and the Weyl spinor takes the form ΨABCD = −4o(AoBoCιD).
Additionally the Ricci spinor will be assumed to take the form µ2α(AβB)ᾱ(A′β̄B′)
where µ ∈ R and αA and βA are as in (44). The mixed invariants N1 and N2

are then given by

N1 = 4B(2AB + 1)m(51)

N2 = 4B2m(52)

Following [5] a necessary and sufficient condition for alignment is thatQ1 = 0
where Q1 is defined by

Q1 = 2I − 4N2 + (N1)2m(53)

In the case of Petrov type III one has that I = 0 and on substituting (51)
and (52) into (53) one obtains

Q1 = 64B3A(AB + 1)m(54)

The non-repeatedly partially aligned case is where AB + 1 = 0 or A = 0
but B 6= 0 and so ιA is parallel to αA or βA but oA is not parallel to either
principal Ricci spinor. Hence from (52), (53) and (54) one can see that
necessary and sufficient conditions for non-repeated partial alignment are
N2 6= 0 and (N1)2 = 4N2. In this case N1 determines the pair A,B (up to
sign) and hence the invariants N1, R1 form a complete set.

If N2 = 0 then N1 is also zero and oA is parallel to αA. Thus, N2 = 0 is
a necessary and sufficient condition for repeated partial alignment or total
alignment. In these cases ΦABA′B′ = φABφ̄A′B′ where φAB = µ(AoAoB +
o(AιB)) and there is no way of determining A from contractions of the Ricci
and Weyl spinors. A complete set of invariants is {A,R1} and the partially
and totally aligned cases can be separated using similar methods to those
used in the type D case.

In the non-aligned case, A and B are determined by N1 and N2 and so
the Riemann spinor is completely fixed by R1, N1 and N2. The cross ratio χ
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of the four spin directions spanned respectively by oA, ιA, αA and βA is given
by equation (46) and can be expressed in terms of N1 and N2 as

(N1)2

4N2
=

(
1 + χ

1− χ

)2

m(55)

The question of the significance of N1 = 0, N2 6= 0 arises. In this case one
can see from (55) that χ = −1 and hence the four principal spinors are
harmonic [5]. Equivalently, the flagpole directions of the four spin directions
form a square on the celestial sphere of null directions. The other possibilities
for the harmonic case are χ = 2 or χ = 1

2
and these two values for χ are

equivalent to (N1)2 = 36N2. In the three harmonic cases one has that αA is
parallel to either AoA + 2ιA, 2AoA + ιA and AoA− ιA where βA is as in (44).

Petrov type II The canonical form for the Petrov type II Weyl spinor
was was given in equation (25) and the dyad oA, ιA is fixed up to a finite
group of transformations. It will be assumed that the Ricci spinor takes the
same form as in the preceding discussion of the Petrov type III case.

There are a number of possible types of alignment in the case of a Petrov
II non-null Einstein-Maxwell field and the different types will be listed before
the interpretation of the mixed invariants is discussed. Firstly, there is the
non-aligned case where the set of five spinors consisting of the principal Weyl
and Ricci spinors all have different directions in spin-space. In the non-
repeatedly partially aligned case, one of the Ricci principal spinors aligns
with one of the non-repeated Weyl principal spinors, and there are no other
alignments, whereas in the non-repeatedly totally aligned case the pair of
principal Ricci spinors aligns with the pair of non-repeated Weyl spinors. If
the repeated principal Weyl spinor aligns with one of principal Ricci spinors
and there is no other alignment then the Weyl and Ricci spinors are said to
be repeatedly partially aligned. Finally the repeatedly totally aligned case is
where the principal spinors of the Ricci spinor are both aligned with principal
Weyl spinors - one repeated and one non-repeated.

In all cases, the Weyl spinor is completely determined (up to sign) by the
pure invariant I and then the directions of the Ricci principal spinors are
determined by A and B. The expressions for N1 and N2 in terms of A and
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B are

N1 = −2
J

I

(
6B(BA2 +A+B) + 1

)
m(56)

N2 =
I

3

(
6B(BA2 +A− 2B) + 2

)
m(57)

In general this pair of equations determine A and B in terms of N1, N2, J
and I . For example one has

18B2 = 1−
3N2

I
−
IN1

2J
m(58)

and then the resulting solution for B can be substituted back to find A
(unless B = 0). Noting that I3 = 6J2, it follows that the set of invariants
I,N1, N2 and R1 determine the Ricci and Weyl spinors, up to sign.

As in the type III case, the necessary and sufficient condition for any
type of alignment is Q1 = 0 where Q1 is defined by (53) and in this case is
given by

Q1 = 24IB2(A2 + 1)
(
(AB + 1)2 +B2

)
m(59)

It can be confirmed that Q1 = 0 is equivalent to either B = 0, A = ±i or
AB+ 1 = ±iB, which correspond to the different ways of aligning one of the
principal Ricci spinors with one of the principal Weyl spinors. In the repeat-
edly aligned cases (partially or totally) one necessarily has B = 0 and from
(58) one sees that a necessary and sufficient condition for repeated partial
or total alignment is 2IJ = 6JN2 + I2N1. In both the repeatedly aligned
cases all real and complex mixed invariants formed from contractions can be
expressed in terms of the pure invariants and a complete set of invariants is
{I, R1, A}.

If B 6= 0 (equivalently 6JN2 + I2N1 6= 2IJ) but Q1 = 0 then the Ricci
spinors must be non-repeatedly aligned - either totally or partially. If one
assumes total alignment then it follows that 4J = IN1. Conversely if 4J =
IN1 and Q1 = 0 then it can be shown (from (53)) that 6N2 = 7I and
equations (56) and (57) imply

B(BA2 +A+B) = −
1

2
m(60)

B(BA2 +A− 2B) =
1

4
m(61)
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Solving the above gives (A,B) = (±i,± i
2
) which is seen to be equivalent to

non-repeated total alignment. One therefore has that necessary and sufficient
conditions for non-repeated total alignment are N1I = 4J and 6N2 = 7I . It
also follows that Q1 = 0, N1I − 4J 6= 0, N1I + 2J 6= 0 are necessary and
sufficient conditions for non-repeated partial alignment (the latter ensuring
that B 6= 0). The values of A and B can be determined from N1 in the
case of partial alignment and so a complete set of invariants (ignoring sign
ambiguities) is {R1, I, N1}. In the totally aligned case only pure invariants
are required to form a complete set.

Petrov type I In this case the Weyl spinor has four non-repeated principal
spinors and so there are three possibilities for alignment between the Ricci
and Weyl spinors : total, partial or non-aligned. The canonical form for the
Weyl spinor is given by (30) and the Ricci spinor will be assumed to take the
same form as in the preceding discussion of Petrov types III and II . The
invariants N1 and N2 are given by the following rather lengthy expressions.

N1 = −12 ηχA3B2 +
(
12 (χ+ 1) η B2 − 18ηχB

)
A2

+
(
−12ηB2 + 12 (χ+ 1) ηB − 6ηχ

)
A

− 6ηB + 2 (1 + χ) ηm(62)

N2 = 9η2χ2A4B2 +
(
−
(
12χ2 + 12χ

)
η2B2 + 18η2χ2B

)
A3

+
((

2 + χ+ 2χ2
)

6η2B2 − 18 (1 + χ)χη2B + 9η2χ2
)
A2

+
(
−12 (1 + χ) η2B2 + 6

(
2 + χ+ 2χ2

)
η2B − 6 (χ+ 1)χη2

)
A

+ 9η2B2 − 6 (χ+ 1) η2B −
(
χ− 4χ2 − 4

)
η2m(63)

From [5] it follows that a necessary and sufficient condition for at least one
of the Ricci principal spinors to align with one of the principal Weyl spinors
is Q1 = 0 where in this case Q1 factorises as follows

Q1 = 144 η2AB (A− 1) (χA− 1) (AB + 1) (AB −B + 1) (χAB −B + χ)
m(64)

Noting that the principal Weyl spinors are oA, ιA, oA + ιA and oA +χιA, it is
clear that the vanishing of Q1 is equivalent to at least partial alignment. To
determine a condition for total alignment, the easiest method is to assume
total alignment and examine the invariants. There are actually nine different
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ways of aligning the principal Ricci spinors with a pair of principal Weyl
spinors, but the algebraically simplest possibility would seem to be A = B =
0. Assuming A and B both zero the pure Weyl invariants are given by (36)
and (37) and the mixed invariants are given by

N1 = 2η(1 + χ)m(65)

N2 = η2(4χ2 − χ+ 4)m(66)

Searching for relationships between I, J,N1 and N2 one finds that Q2 = 0
where

Q2 = 6N1I − 3(N1)3 + 8Jm(67)

Now it must be checked that Q1 = Q2 = 0 is necessary and sufficient for
total alignment of all types. To achieve this it is necessary to assume partial
alignment (i.e. Q1 = 0) and, taking each possible solution of Q1 = 0 in turn,
factorise the resulting expression for Q2, thus solving the equation Q2 = 0.
For example, assuming βA and ιA are parallel, that is A = 0, one has

Q2 = 648η3B(B − 1)(B − χ)m(68)

Thus Q2 = 0 is equivalent to B = 0, 1 or χ - the conditions for αA to align
with one of the other principal Weyl spinors (note that η 6= 0 for Petrov
type I). The other possible cases can be dealt with similarly and it may be
verified that Q1 = Q2 = 0 is necessary and sufficient for total alignment.

6 Perfect Fluids

For the purpose of this section it will be assumed that the trace-free Ricci
tensor Sab takes the form

Sab =
1

4
(µ + p)(4uaub − gab)m(69)

In the above, µ, p ∈ R, ua is a future pointing unit timelike vector and
the spacetime metric gab has signature −2. For each of the Petrov types, a
canonical dyad oA, ιA is fixed by the Weyl spinor, up to some subgroup of
SL(2, C ), and determines a corresponding complex null tetrad la, na,ma, m̄a

in a standard way [11, page 120]. The complex null tetrad satisfies lana =
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−mam̄a = 1 with all other inner products zero and thus ua can be expressed
in terms of this tetrad according to

ua = Ana +

(
1 + 2CC̄

2A

)
la + Cma + C̄m̄am(70)

for C ∈ C , A ∈ R, A > 0. The components of ΦABA′B′ in the correspond-
ing dyad oA, ιA are then given below. Bold-face indices are used to denote
components and the common factor (µ+ p) has been omitted.

Φ000′0′ =
1

2
A2 Φ010′0′ = −

1

2
AC Φ110′0′ =

1

2
C2

Φ010′1′ =
1

8
+

1

2
CC̄ Φ110′1′ = −

C(1 + 2CC̄)

4A
m(71)

Φ111′1′ =
(1 + 2CC̄)2

8A2

The Ricci scalar R has the value 3p−µ in this case and the other pure Ricci
invariant required is R1 which haa s the value 3

16
(µ + p)2 and is necessarily

non-zero. The Ricci spinor is uniquely defined, up to sign, by the unit timelike
vector ua and the pure invariant R1. The role of the mixed invariants in this
case is to determine ua in terms of the canonical tetrad fixed by the Weyl
tensor. For perfect fluids, appropriate pure invariants are P1 and P2 and
defined by

P1 =
3M3

4R1
m(72)

P2 =
3M5

16R1
m(73)

The corresponding tensor expressions for P1 and P2 are displayed below

P1 = Tabcdu
aubucudm(74)

P2 = 1
16

−
Caghb(CacdbCgefh +

∗
Cacdb

∗
Cgefh)ucudueufm(75)

where Cabcd is the Weyl tensor,
∗
Cabcd its dual and

−
Cabcd ≡ 1

2
(Cabcd + i

∗
Cabcd)

is the anti-self dual part.
It is of interest to discuss the behaviour of P1 considered as a quartic

form on the space of unit timelike vectors i.e. P1(ta) = Tabcdt
atbtctd. It
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is known [11] that P1 is necessarily positive but one can actually find a
lower bound for P1 which varies with Petrov type. Before proving a theorem
concerning the lower bound of P1, some notation will be required. The
electric and magnetic parts of the Weyl tensor (with respect to some unit
timelike vector ta) are denoted by Eab and Bab respectively and defined by

Eab = Cacdbt
ctd Bab =

∗
Cacdbt

ctdm(76)

It should be noted that Eab and Bab are both symmetric and orthogonal to
ta and are thus elements of the vector space S = {Sab|Sab = Sba, Sabt

b = 0}.
The vector space S is endowed with a negative-definite inner product defined
by total contraction. A duality rotation of angle θ can be applied to the Weyl
tensor Cabcd and transforms it to (θ)Cabcd where

(θ)Cabcd = cos(θ)Cabcd + sin(θ)
∗
Cabcdm(77)

The following theorem concerning the lower bound of P1 can now be given.

Theorem 2 If P1(ta) = Tabcdt
atbtctd then it satisfies the inequality 4P1 ≥ |I |

for all possible unit timelike vectors ta. Furthermore, one has 4P1 = |I | if
and only if there exists θ such that (θ)Cabcdt

btc = 0.

Proof Applying the Cauchy-Schwartz inequality to the inner product space
S defined above one obtains

(EabB
ab)2 ≤ (EabE

ab)(BabB
ab)m(78)

with equality if and only if Eab and Bab are linearly dependent. Multiplying
each side of (78) by 4 and adding (EabEab)2 + (BabB

ab)2 one obtains

(EabE
ab − BabB

ab)2 + 4(EabB
ab)2 ≤ (EabE

ab +BabB
ab)2m(79)

again with equality if and only if Bab and Eab are parallel. Using the defi-
nitions of Eab and Bab to expand the right hand side, one finds that (79) is
equivalent to

∣∣∣(Eab + iBab)(E
ab + iBab)

∣∣∣2 ≤ ((CabcdC
a
ef
d +

∗
Cabcd

∗
Ca

ef
d)tbtctetf

)2

m(80)
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Finally it can be seen from [6] that the left hand side of (80) is equal to |I |2

(note that the definition of I in that reference differs by a factor of 1/2 from
the one used here) and using the definition of Tabcd in terms of the Weyl
tensor [11] it can be seen that the right hand side of (80) is equal to (4P1)2.
Consequently the inequality

|I | ≤ 4P1m(81)

has been established. This inequality is an equality if and only if Eab and Bab

are linearly dependent, that is to say if and only if there exists θ such that
cos(θ)Eab + sin(θ)Bab = 0. This last equation can be seen to be equivalent
to (θ)Cabcdt

btc = 0 and the proof of the theorem is complete.
Defining the complex symmetric tensor Pab ≡ Eab + iBab and noting that

(θ)Cabcdt
btc = 0 implies that Eab and Bab are linearly dependent, it follows

that Pab is a complex multiple of a real tensor in this case. Hence Pab is
diagonable with eigenvalues of equal phase and therefore the Weyl tensor is
of Petrov type I , D or O. In the Petrov type I case one can see from [5]
that the equality of the phases of the eigenvalues implies that the cross-ratio
of the four principal spinors is real and hence the Weyl tensor belongs to
the subclass of Petrov type I denoted by I(M+) as defined by Arianrhod
and McIntosh [19]. It also follows that, in the case of Petrov types II , N
and III , the lower bound on P1 cannot be attained. In fact it will be seen
from the calculations which follow that |I | = 4P1 would imply that the angle
between ta and the (unique) repeated principal null direction vanishes. The
value of 4P1 therefore approaches |I | as ta approaches the repeated principal
null direction.

Petrov type N In this case the freedom in the canonical dyad oA, ιA de-
termined by writing ΨABCD = oAoBoCoD may be used to make C = 0 in
(70). It can then be shown that P1 = A4, that is to say that P1 = (uala)4.
The value of A is therefore determined by P1 and then the Ricci spinor is
given by (71) and the pure invariant R1. A complete set of invariants for a
Petrov type N perfect fluid is therefore {R,R1, P1}.

Petrov type D As in the previous two sections the canonical form ΨABCD =
6ηo(AoBιCιD) will be used where the dyad oA, ιA is defined up to reordering
and the rescaling oA → λoA and ιA → λ−1ιA. The corresponding complex
null tetrad is therefore defined up to arbitrary boosts in the l− n plane and
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spatial rotations in the m− m̄ plane, which can be used to make A = 1 and
C = C̄. In this tetrad the mixed invariant P1 is given by

P1 =
|I |

4
(1 + 12C2 + 24C4)m(82)

The aligned case is where ua lies in the l − n plane and this is equivalent to
C = 0, or 4P1 = |I | (the minimum value of P1). In all cases the direction
of ua is determined by P1 via (82), which determines C. The equation (82)
appears to give four possible values for C, but since P1 > 0 [11] there is a
unique real solution of (82) for C in terms of P1 and |I |. A complete set
of invariants in this case is given by (allowing for sign ambiguities) the pure
Ricci invariants R and R1, the pure Weyl invariant I and the mixed invariant
P1.

Petrov type III As before the Petrov type III Weyl spinor will be as-
sumed to take the canonical form −4o(AoBoCιD) where the dyad oA, ιA is
determined up to a sign change and hence determines a unique complex null
tetrad. If ua is given by (70) in this tetrad then the mixed invariants P1 and
P2 are expressed in terms of A and C by the following equations.

P1 = 2A2(1 + 8CC̄)m(83)

P2 = −2A3C̄m(84)

Two possible cases arise. The aligned case is where u[albnc] = 0 and is charac-
terised by C = 0, or equivalently P2 = 0. The non-aligned case corresponds
to P2 6= 0. In all cases one can clearly determine C and A from P1 and P2.
Consequently a complete set of invariants for the Riemann spinor in this case
is {R,R1, P1, P2}.

Petrov type II Assume that the Weyl spinor takes the canonical form (25)
where the principal spinors are oA (repeated) and oA ± iιA (non-repeated)
in the canonical dyad oA, ιA. There are essentially three cases possible: the
repeatedly aligned case where ua lies in the plane spanned by the repeated
principal null direction and one of the other principal null directions; the
non-repeatedly aligned case where ua lies in the plane spanned by the pair
of non-repeated principal null directions; and the non-aligned case.
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The expressions for the invariants P1 and P2 are

P1 =
3ηη̄

2

[
24A4 + 24(C2 + C̄2)A2 + (24C2C̄2 + 12CC̄ + 1)

]
m(85)

P2 =
3η2η̄

8

[
48A4 + 24(2C̄2 − C2)A2 − (24C2C̄2 + 12CC̄ + 1)

]
m(86)

Recalling that I = 6η2 it can be seen that 4P1 tends to |I | if C = 0 and A
tends to zero. Notice also that (85) and (86) are equations for C and A in
terms of I/J, P1 and P2. Consideration of Q1 ≡ 4P2 + ηP1 (see (87)) enables
one to find an expression for A2 in terms of C̄2 which can be substituted
into (86) and the resulting equation split into real and imaginary parts and
solved to determine C. Thus a complete set of invariants in this case is
{I/J,R,R1, P1, P2}.

The relationship between the invariants and the various types of align-
ment will now be examined. The repeated principal null direction is spanned
by the vector la of the canonical tetrad and the non-repeated principal null di-
rections are spanned by pa ≡ la+na−i(ma−m̄a) and qa ≡ la+na+i(ma−m̄a).
The necessary and sufficient condition for repeated alignment can be shown
to be A2 = −C2 (which implies that C is purely imaginary). The full ex-
pression for Q1 defined above is

Q1 = 108η2η̄A2(C̄2 +A2)m(87)

and it is clear that Q1 = 0 is equivalent to A2 + C2 = 0 (cf [1]) and hence
Q1 = 0 is a necessary and sufficient condition for repeated alignment. In the
case of non-repeated alignment, one has that 1− 2C2 = 2A2 and C + C̄ = 0
and under these assumptions it is found that Q2 ≡ ηP1 − 2P2 − 9

4
η2η̄ = 0.

The expression for Q2 in the general case is

Q2 = 27η2η̄C(2CC̄2 + 2CA2 + C̄)m(88)

It follows that Q2 = 0 implies that C is purely imaginary and either 2A2 =
1 − 2C2 or C = 0. The former possibility implies non-repeated alignment,
but to deal with the C = 0 case one is required to consider Q3 defined by

Q3 = 7η2(P1)2 − 64(P2)2 +
27η2M4

4R1
−

189η4η̄2

4
m(89)

If C is purely imaginary and 2A2 = 1−C2 then Q3 = 0, but if C = 0 and A
is arbitrary then

Q3 = −2916η4η̄2A4(2A2 − 1)(2A2 + 1)m(90)
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Hence Q3 = 0 is equivalent (in the C = 0 case) to A = ±1/
√

2 which implies
1 − 2C2 = 2A2. It has thus been established that necessary and sufficient
conditions for non-repeated alignment are Q2 = 0 = Q3.

Petrov type I The actual forms of the invariants P1 and P2 in terms of the
components of ua are somewhat complicated and not too illuminating but a
result can be proven concerning alignment of the Ricci tensor with the Weyl
tensor. The Ricci and Weyl tensors (and spinors) will be said to be aligned
when the unit timelike Ricci eigenvalue is parallel to the timelike member of
the canonical orthonormal Petrov tetrad [20].

It was mentioned earlier in this section that P1 can be considered as a
quartic form on unit timelike vectors given by P1(ta) = Tabcdt

atbtctd. Now
define the quadratic form γ(ta) ≡ gabt

atb and denote the derivatives of γ and
P1 at a point ta in the tangent space by Dtγ and DtP1 respectively. It follows
from the theory of Lagrange multipliers [21, page 211] that ta is a critical
point of P1 restricted to γ−1(1) if and only if there exists λ ∈ R such that
DtP1 = λDtγ. It can then be seen that this condition is equivalent to

4Tabcdt
btctd = 2λtam(91)

or

t[aTb]cdet
ctdte = 0m(92)

It will now be shown that (92) is satisfied with ta replaced by ua if and
only if the Ricci and Weyl tensors are aligned. That is to say, it will be shown
that (92) is equivalent to ta being the timelike member of the canonical Petrov
tetrad (which is unique up to sign). If one defines the self-dual part of the

Weyl tensor
+

Cabcd as 1
2
(Cabcd − iCabcd), so that the anti self-dual part of the

Weyl tensor (
−
Cabcd) is the conjugate of the self-dual part, then Tabcd is given

by [11]

Tabcd =
+

Cp
ab
q
−
Cpcdqm(93)

Now suppose that ta, xa, ya, za is an orthonormal tetrad and define Fab =

2t[axb], Gab = 2t[ayb] and Hab = 2t[azb]. If one then defines
+

F ab = 1
2
(Fab−i

∗
F ab),
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+

Gab = 1
2
(Gab − i

∗
Gab) and

+

Hab = 1
2
(Hab − i

∗
Hab) the self-dual part of the Weyl

tensor can be expanded as follows

+

Cabcd = σ1

+

F ab

+

F cd + µ1(
+

Gab

+

Hcd +
+

Hab

+

Gcd)

+ σ2

+

Gab

+

Gcd + µ2(
+

Hab

+

F cd +
+

F ab

+

Hcd)m(94)

+ σ3

+

Hab

+

Hcd + µ3(
+

F ab

+

Gcd +
+

Gab

+

F cd)

In the canonical Petrov tetrad one has that µ1 = µ2 = µ3 = 0 but in a
general tetrad σi and µi are arbitrary complex numbers, only restricted by
σ1 + σ2 + σ3 = 0. Now recall that xa, ya and za are arbitrary for a fixed ta
(subject to orthogonality relations) and so it may be assumed that they are
chosen so that Bab defined by (76) assumes diagonal form. The consequences
of this restriction are that µ1, µ2 and µ3 are real and that the eigenvalues of
Bab are −(1/4) times the imaginary parts of σ1, σ2 and σ3. If the eigenvalues
of Bab are distinct then the tetrad ta, xa, ya, za is now fixed. If there is one
pair of equal eigenvalues then it may be assumed, without loss of generality,
that Im(σ1− σ2) = 0 and the eigenvectors with equal eigenvalues are xa and
ya and then the further freedom in the tetrad can be used to set µ3 = 0.
The tracefree nature of Bab means that any further eigenvalue degeneracy
would force Bab = 0 and so in this case one can diagonalise Eab and then set
µ1 = µ2 = µ3 = 0.

Using (93) and (94) the condition (92) can be shown to be equivalent to
the following three equations

µ3 · Im (σ1 − σ2) = 0m(95)

µ2 · Im (σ3 − σ1) = 0m(96)

µ1 · Im (σ2 − σ3) = 0m(97)

Assuming that Bab has no eigenvalue degeneracies the above clearly implies
that all the µi vanish. If there is an eigenvalue degeneracy of the form
discussed earlier, but Bab 6= 0, then it may be assumed that µ3 = 0 and
then (96) and (97) imply µ2 = µ1 = 0. Finally, if Bab = 0 then all the µi
automatically vanish. Conversely if all the µi vanish then equations (95)-
(97) are identically satisfied and hence (92) is satisfied. It has therefore been
shown that the critical points of P1(ta) restricted to γ−1(1) are merely the
two possible timelike members of the canonical Petrov tetrad, which differ
only by a sign. Since P1(ta) = P1(−ta) it may be assumed that P1 is further
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restricted to future pointing members of γ−1(1) and it has a unique critical
point on this set. It will now be shown that this critical point is the global
minimum. Since µi = 0 in the canonical Petrov tetrad (which will be denoted

by va, xa, ya, za) one can expand
+

Cabcd in this tetrad as (writing σi = αi+ iβi)

+

Cabcd = (α1

+

F ab

+

F cd + α2

+

Gab

+

Gcd + α3

+

Hab

+

Hcd)

+ i(β1

+

F ab

+

F cd + β2

+

Gab

+

Gcd + β3

+

Hab

+

Hcd)m(98)

where the self-dual bivectors have been redefined in terms of Fab = 2v[axb],
Gab = 2v[ayb] and Hab = 2v[azb]. The decomposition of the self-dual Weyl
tensor into the two bracketed quantities above gives rise to a corresponding
decomposition of the Weyl tensor Cabcd = C

1
abcd + C

2
abcd. It may then be

verified that (π/2)C
1
abcdv

bvc = 0 and C
2
abcdv

bvc = 0 where (θ)Cabcd was defined

by equation (77). The minimum values of the quartic forms associated with
T
1
abcd and T

2
abcd are shown by theorem 2 to occur at va. Since the following

can be shown to hold for any timelike vector ta

Tabcdt
atbtctd = T

1
abcdt

atbtctd + T
2
abcdt

atbtctdm(99)

P1(ta) has a minimum at va also and the minimum value is given by

P1(va) =
1

16

3∑
i=1

|σi|
2m(100)

The following theorem has therefore been established

Theorem 3 If the Weyl tensor is of Petrov type I and ua is a future pointing
unit timelike vector then the following are equivalent.

(i) u[aTb]cdeu
cudue = 0

(ii) ua is the timelike member of the canonical Petrov tetrad.

(iii) ua is the unique global minimum of the quartic form ta 7→ Tabcdt
atbtctd,

restricted to future pointing unit timelike vectors. The minimum value
is given by (100).

It is remarked that the condition u[aTb]cdeu
cudue = 0 can be expressed in

terms of a perfect fluid Ricci tensor to give a necessary and sufficient condition
for alignment.
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