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Abstract

In this pedagogical note, I present a method for constructing a fully covariant

normal coordinate expansion of the gauge potential on a curved space-time manifold.

Although the content of this paper is elementary, the results may prove useful in some

applications and have not, to the best of my knowledge, been discussed in the literature.
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1 Introduction

Riemannian normal coordinates are first introduced in the geometric interpretation of gravi-

tation as a realization of the equivalence principal which requires the existence of an inertial

reference frame at every point in space-time in which the effects of gravity can be locally

neglected.

In addition to their axiomatic significance, normal coordinates have found a very useful

place in perturbative quantum field theory on curved manifolds, and perhaps, in quantum

gravity. Generally covariant Taylor-type expansions in normal coordinates have proved useful

in the path-integral environment, for example, to perform loop calculations for the non-linear

sigma model [1, 2] and to analyze trace anomalies [3]. Generally, one can use these normal

coordinate expansions to perform the so-called proper time heat kernel expansion (sometimes

known as the DeWitt expansion [4]) both with [5] and without [6] the benefit of worldline

path-integral methods. Within the framework of the background field method, the latter

expansions can be very useful for straightforward determinations of the ultraviolet behaviour

of radiative corrections [7].

A good review of the generally covariant normal coordinate expansion for a tensor field

can be found in [1] where the expansion is given explicitly to fourth order. However, as far as

the author is aware, very little has been published concerning the fully covariant expansion

of a gauge field. The aim of this paper is to provide such a covariant expansion.

The following section reviews the construction of normal coordinates, and introduces the

notation which will be used thereafter. In section 3 the gauge field is introduced, along with

the so-called radial gauge condition which turns out to fit very well in the normal coordi-

nate system and can be used to construct a generally gauge-covariant normal coordinate

expansion.
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2 Normal Coordinates

Suppose we have some curved space-time manifold with a local coordinate system qα defined

in the neighbourhood of a fixed point φ, and a corresponding metric tensor gαβ(q) with affine

connection Γαβγ(q). We would like to define what is meant by a normal coordinate system

with φ at the origin.

For any given point qα we construct a geodesic λα(q, t) which connects q with φ. Then λ

can be taken to satisfy the equation equation

λ̈α(q, t) + Γαβγλ̇
β(q, t)λ̇γ(q, t) = 0 , (1)

for t ∈ [0, 1], with end-points

λα(q, 0) = φα

λα(q, 1) = qα .

The normal coordinates of any point q are defined to be the components of the tangent

vector ξ(q), at the origin φ, of the geodesic ending at q, i.e.

ξα(q) = λ̇α(q, 0) . (2)

Despite the suggestive notation, ξ(q) is not a vector field since the right hand side of equa-

tion (2) is a tangent vector at the origin φ, not at q. However, a corresponding vector field

ρ(q) can be defined by parallel transporting ξ(q) to q along the geodesic. The result,

ρα(q) = λ̇α(q, 1) , (3)

may be referred to as the radial vector field.

Now, in what follows it is convenient to write non-covariant tensor component equations

which are valid only when the indices refer to the normal coordinate basis; in such cases,

following the notation of [1], we will put a bar over the appropriate quantities. For example,
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using this notation it is clear that ρ(q) and ξ(q) are related by

ξα = ρα , (4)

which follows from the fact that the geodesics through φ are straight lines (λ = ξt) in the

normal coordinate system. From (1), we must also have

Γ
α

βγξ
βξγ = 0 ,

which allows us to write

ξβ
(
∂

∂ξβ
ξα + Γ

α

βγξ
γ

)
= ξα .

Using (4) this can be written covariantly (with the bars removed) giving

ρβ∇βρ
α = ρα , (5)

where ∇β indicates generally covariant differentiation with respect to the metric gαβ.

When we come to construct a normal coordinate power series expansion in the next

section, it will be important to know the various covariant derivatives of ρ(q) at the origin φ.

The results (equations (6)-(8), below) are not surprising, but their derivation is short enough

to be included for completeness.

First note that the trivial geodesic λ(φ, t) ≡ φ leads immediately to the result

ξ(φ) = ρ(φ) = 0 . (6)

Furthermore, we can write

∇βρ
α =

∂

∂ξβ
ξα + Γ

α

βγξ
γ

which leads to the covariant result

∇βρ
α(φ) = δαβ . (7)

Iterative differentiation of (5) along with equations (6) and (7) can be used to prove that all

higher covariant derivatives of ρ(q) vanish at the origin,

∇β1∇β2 · · · ∇βnρ
α(φ) = 0 , n ≥ 2 . (8)
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3 The Gauge Field Aα = Aa
αT

a

We turn our attention to the task at hand, that of developing a fully covariant normal

coordinate expansion for the gauge potential. Firstly, we appeal to the generally covariant

normal coordinate expansion of a tensor. A systematic derivation of such an expansion can

be found in reference [1]1; here we simply quote the result for a vector field:

Aα(q) = Aα(φ) +
1

1!
{Aα;β} ξ

β +
1

2!

{
Aα;β1β2 +

1

3
Rγ
β1β2α

Aγ

}
ξβ1ξβ2 (9)

+
1

3!

{
Aα;β1β2β3 +Rγ

β1β2α
Aγ;β3 +

1

2
Rγ
β1β2α;β3

Aγ

}
ξβ1ξβ2ξβ3

+
1

4!

{
Aα;β1β2β3β4 + 2Rγ

β1β2α
Aγ;β3β4 + 2Rγ

β1β2α;β3
Aγ;β4

+
3

5
Rγ
β1β2α;β3β4

Aγ +
1

5
Rδ
β1β2α

Rγ
β3β4δ

Aγ

}
ξβ1ξβ2ξβ3ξβ4

+Oξ5 ,

where Rγ
β1β2α

is the curvature tensor and semicolons (;) indicate generally covariant differ-

entiation at the origin ∇|φ. Although (9) is generally covariant, it clearly does not exhibit

manifest gauge covariance. The purpose of this note is to attempt to rewrite the coefficients

of this expansion in a gauge-covariant manner (i.e. in terms of the field strength and its

covariant derivatives).

To this end, we propose to work in the so-called radial gauge (the curved-space gen-

eralization of the Fock-Schwinger gauge [8]) which fits very well in the normal coordinate

construction. The generally covariant gauge condition is

ρα(q)Aα(q) = 0 . (10)

This condition fixes the gauge relative to a global gauge transformation, and will now be

shown to impose some very specific requirements on the various derivatives of Aα which

1The author suspects that the fourth order coefficients presented in [1] are not all correct; those presented

here for the vector field should be reliable.
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appear in (9). The gradient of (10) gives

∇βρ
αAα + ρα∇βAα = 0 . (11)

At the origin, equations (6) and (7) reduce this to

Aα(φ) = 0 . (12)

Already it is evident that this choice of gauge has the potential to simplify (9) tremendously.

A second derivative of the gauge condition yields

∇β2∇β1ρ
αAα +∇β1ρ

α∇β2Aα +∇β2ρ
α∇β1Aα + ρα∇β2∇β1Aα = 0 . (13)

Using (6)-(8) along with (12) one finds that (13) yields a very simple relation at the origin,

Aβ1;β2 +Aβ2;β1 = 0 . (14)

This result can be used to write the first derivative of the vector field explicitly in terms of

the field strength, Fαβ = ∇αAβ −∇βAα + [Aα, Aβ]. It is straightforward to show that,

Aα;β = −
1

2
Fαβ(φ) , (15)

which provides a covariant expression for some of the coefficients in (9). Continuing in this

way, we will now show that all of the coefficients can be written covariantly.

Equations (12) and (14) have a very straightforward generalization to higher derivatives.

After n derivatives at the origin, the gauge condition (10) along with (6)-(8) yields the

following identities,
n∑
i=0

Aβi;β0···βi−1βi+1···βn = 0 , n = 0, 1, 2, · · · . (16)

This equation contains somewhat more information than we actually need since, only the

symmetric components of field derivatives will contribute to expansion (9). Useful corollaries

arise by symmetrizing (16) on all or all-but-one of its indices respectively, to give,

A(β0;β1···βn) = 0 , and (17)
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Aα;(β1···βn) + nA(β1;αβ2···βn) = 0 , (18)

where, in these equations and hereafter, symmetrization (· · ·) is implied over the βi indices

only. Following the sort of reasoning which led from (14) to (15), we hope that these last

two equations will be useful to relate any order of symmetrized derivative of the vector field

to covariant derivatives of the field strength Fαβ at the origin.

Since we would like to recover manifest gauge covariance in the coefficients of the expan-

sion (9), we must introduce the notion of gauge-covariant differentiation before proceeding

any further. Following the usual rules for gauge transformations, the gauge-covariant deriva-

tive of any object T (in the adjoint representation of the gauge group) is defined to be

∇gauge
β T = ∇βT + [Aβ, T ] .

Multiple covariant derivatives of T at the origin φ must take the form

T;β1···βn|gauge = T;β1···βn +
∑

[Aβ;β···β [Aβ;β···β, [· · · [Aβ;β···β, T;β···β ] · · ·]]] , (19)

where
∑

[· · ·] indicates some complicated sum of generic terms which involve at least one

commutator of the form shown. In this gauge, such terms a guaranteed to vanish after

symmetrization over the βi indices, owing to equation (17).

Returning to the symmetrized covariant derivatives of the field strength tensor, we can

now write

Fα(β1;β2···βn)gauge = A(β1;αβ2···βn) − Aα;(β1···βn) +
n∑
l=1

(
n− 1

l − 1

) [
Aα;(βl+1···βn, Aβ1;β2···βl)

]
. (20)

The second term in this expression is exactly of the desired form (i.e. it appears in the

expansion (9)). The first term can also be written in this form by employing (18) while the

commutator terms vanish by (17). The result,

Aα;(β1···βn) = −
n

n+ 1
Fα(β1;β2···βn)|gauge , (21)

is not unexpected since it is very straightforward to verify in the flat-space limit; what

is noteworthy is that it was derived in curved space without having to introduce explicit
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curvature-dependent terms. This absence of additional curvature terms was not obvious at

the outset.

Substituting (21) and its special cases (12) and (15) into (9) yields the desired fully

covariant normal coordinate expansion:

Aα(q) =
{

1

2
Fβα

}
ξβ +

{
1

3
Fβ1α;β2|gauge

}
ξβ1ξβ2 (22)

+
{

1

8
Fβ1α;β2β3|gauge +

1

12
Rγ
β1β2α

Fβ3γ

}
ξβ1ξβ2ξβ3

+
{

1

30
Fβ1α;β2β3β4|gauge +

1

18
Rγ
β1β2α

Fβ3γ;β4|gauge +
1

24
Rγ
β1β2α;β3

Fβ4γ

}
ξβ1ξβ2ξβ3ξβ4

+Oξ5 .

Higher order corrections to this expansion should be very straightforward to obtain by using

the methods of [1] along with equation (21).

4 Discussion

Building on the ungauged developments of ref. [1], we have been able to show how a normal

coordinate expansion can be constructed for the gauge field with fully covariant coefficients

in curved space.

Although this type of expansion may have additional uses, the motivation for this work

was in constructing a proper time (DeWitt) expansion for the gauged heat kernel in curved

space-time. In that context, these results could contribute to a covariant analysis of the

renormalization group in non-Abelian gauge theory. The results of the former study are

forthcoming [5].

Finally, it should be pointed out that a third-order normal coordinate expansion can be

found in ref. [6] (also in the context of proper time expansions). Regrettably, the gauge field

expansion falls outside of the main interests of that work, so all relevant details have been

omitted. The results quoted therein do not agree with those presented here.
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