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Abstract

Analysis of cosmic string breaking with formation of black holes attached to
the ends reveals a remarkable feature: the black holes can be correlated or uncor-
related. We find that, as a consequence, the number-of-states enhancement factor
in the action governing formation of uncorrelated black holes is twice the one for
a correlated pair. We argue that when an uncorrelated pair forms at the ends
of the string, the physics involved is more analogous to thermal nucleation than
to particle-antiparticle creation. Also, we analyze the process of intercommuting
strings induced by black hole annihilation and merging. Finally, we discuss the
consequences for grand unified strings. The process whereby uncorrelated black
holes are formed yields a rate which significantly improves over those previously
considered, but still not enough to modify string cosmology.
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1 Introduction

Recent investigations on pair production of black holes have yielded new evidence for
the conjecture that black holes have a number of internal states given by the exponential
of one quarter of the area of the event horizon. Processes where black holes are sponta-
neously created in pairs show an enhancement of the probability relative to formation
of e.g., monopoles, although we are still far from having a fully satisfactory microscopic
explanation of the underlying degrees of freedom.

Black hole pair creation has been investigated in several scenarios: Schwinger-like
production in Maxwell fields [1, 2, 3, 4], inflation-driven creation in de Sitter space [5]
and, very recently, the breaking of a cosmic string with black holes forming at its ends [6,
7, 8]. All these are quantum tunnelling processes mediated by gravitational instantons.
In fact, since these seem to provide a consistent picture of physically reasonable processes
we may take it as an indication that the Euclidean approach to semiclassical quantum
gravity is a meaningful one and that topology change should be taken into account.

The instantons describing black hole pair production have been mainly based on
different variations of the Euclidean section of the C-metric [9]. The Lorentzian section
of this space describes two black holes uniformly accelerating away from each other.
This hyperbolic trajectory turns into a circular orbit when continuing to Euclidean time.
One can then proceed in analogy with the calculation of the Schwinger effect in Ref. [10]
and construct an instanton for computing the rate for pair production in semiclassical
approximation. A nice feature of the general relativistic description of the process is
that the C-metric signals by itself the need of a force to accelerate the black holes, in
the form of conical singularities along the axis joining the black holes. The different
pair production processes mentioned above correspond to different ways of dealing with
these singularities.

In this paper our interest will be focused on situations where the force is provided
by a cosmic string. The process by which a string breaks by forming a pair of black
holes attached to its ends has also attracted recent attention because of its possible
relevance to cosmic string cosmology. Although vortex solutions are not easily handled
analytically, recent investigations on Nielsen-Olesen vortices piercing a black hole [11] or
ending at it [8] have shown that one can consistently model a thin gravitating physical
vortex by a conical deficit in the spacetime geometry. Moreover, it has been argued that
it is possible for a topologically stable string to end at a black hole [11, 7]. Then the
C-metric can be interpreted as providing a picture of a pair of black holes formed by the
breaking of a cosmic string and which are subsequently being pulled apart by the string
tension.

One could also consider a seemingly similar process, in which the cosmic string breaks
in such a way that the string tension is exactly balanced by the gravitational attraction
of the black holes. This black hole/cosmic string configuration has been considered in
Ref. [12] and very recently in Ref. [8]. However, as we will see below, the similarities
between the two processes are rather superficial and, in fact, differences between them
will be more significant. We will find a main difference in that the created black holes are
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correlated in one case and uncorrelated in the other. Also, the mechanisms involved in
string breaking are utterly different in each process. We will also discuss how black hole
annihilation or merging provides a mechanism for intercommuting strings and, finally,
we will analyze the relevance of the different breaking processes in the context of grand
unified strings. The idealization will always be made that a thin cosmic string is well
approximated by a conical singularity.

2 Breaking the string

Let us first consider summarily the breaking of a cosmic string as described by the C-
metric. The leading contribution to the instanton action governing the semiclassical rate
for string breaking, exp(−I), was computed in Ref. [6] to be

I '
πm2

µ
, (1)

where m is the black hole mass and µ the string tension. This result is the same as
the one for breaking the string forming monopoles at its ends [14]. To find out whether
substitution of monopoles with black holes results in an enhanced rate, we will expand to
next-to-leading order the exact result in Ref. [6]. For gravitationally corrected monopoles
the action is the same as for creation of extremal black holes, since the topology of the
instantons is the same in both cases. We find

Imon =
πm2

µ
− πm2 + . . . (2)

For nearly extremal black holes (the wormhole configuration) the result is

Inon−ext =
πm2

µ
− 2πm2 + . . . (3)

The difference between both is, as expected [2, 3], the factor πm2 = Abh/4. Therefore,
breaking by non-extremal black holes is enhanced by a factor of expSbh.

Let us now consider the process of static breaking of a cosmic string 1. The metric
describing it belongs to a family of axisymmetric multi-Schwarzschild configurations
which are conveniently written in Weyl’s canonical coordinates [13]

ds2 = −e2ψdt2 + e−2ψ[e2γ(dρ2 + dz2) + ρ2 , dφ2] , (4)

with

ψ =
1

2

N∑
i=1

ln
r
(+)
i + r

(−)
i − 2Mi

r
(+)
i + r

(−)
i + 2Mi

, (5)

1We will refer to this process as ‘static breaking’; however, it should be noted that the C-metric,
although describing accelerating objects, is also static in a way similar to Rindler space.
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and

γ =
1

4

N∑
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ln
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(−)
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(+)
i l

(−)
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[r(−)
i r

(−)
j + l

(−)
i l

(−)
j + ρ2]

[r(−)
i r

(+)
j + l

(−)
i l

(+)
j + ρ2]

[r(+)
i r

(+)
j + l

(+)
i l

(+)
j + ρ2]

+ γ0 . (6)

Here we have defined

r
(±)
i

2
= l

(±)
i

2
+ ρ2 ,

l
(±)
i = z − zi ±Mi . (7)

This metric describesN black holes of massesMi, with event horizons at ρ = 0, |z−zi| ≤
Mi. In general, the metric posseses conical singularities at the intervals between black
holes, zi + Mi < z < zi+1 −Mi+1, ρ = 0. If φ has periodicity 2π, then for a small
circumference centered at these points

circumference

radius

∣∣∣∣
rad→0

= 2πe−γ|ρ=0 = 2π
(zi+1 − zi)2 − (Mi −Mi+1)2

(zi+1 − zi)2 − (Mi +Mi+1)2
e−γ0 , (8)

while at the axis outside the black holes (z < z1−M1 or z > zN +MN ) we have a conical
deficit 2π(1− exp(−γ0). It is therefore impossible in general to adjust γ0 to cancel the
conical singularities everywhere. The physical reason for this is clear: we need a force
to balance the gravitational attraction between the black holes. We can choose γ0 so
that we have a conical deficit running from the outermost black holes to infinity, and
smaller (or zero) conical deficits inbetween the black holes. The physical configuration
described in this way is that of a thin cosmic string split or ‘thinned’ by a set of black
holes.

The most interesting cases correspond to N = 1, 2, also considered in Ref. [12]. For
N = 1 and γ0 6= 0, we have a black hole of gravitational mass M and internal energy
(ADM mass) Me−γ0 pierced by a cosmic string of energy density µ = (1− e−γ0)/4. For
N = 2 and taking M1 = M2 = M , the choice

γ0 = ln
(∆z)2

(∆z)2 − 4M2
, (9)

(∆z ≡ |z2 − z1|), results in the geometry of a thin cosmic string broken by a pair of
static black holes separated a distance

∆z = M/
√
µ . (10)

This equation can also be read as the balance between the string tension and the New-
tonian gravitational attraction. For the thin string limit to be consistent we must have
M > µ−1/2 [11]. Also, for the semiclassical calculations to be reliable we will need
M >> MPl and small µ. One deduces from here that the black holes must be far from
each other, ∆z > µ−1.

We will focus on this solution, and compute its Euclidean action to obtain the proba-
bility for static string breaking. First we continue t→ iτ . To avoid conical singularities
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at the horizons (expψ = 0) the Euclidean time must have period β = 8πM . This
amounts to requiring the black holes to be in a thermal bath so that they are in ther-
mal equilibrium with their surroundings (this condition also requires equality of the
black hole masses). In contrast, thermal equilibrium in the situation described by the
C-metric is achieved by equating the black hole and acceleration temperatures and, to
obtain this, one must introduce a charge to lower the black hole temperature to a value
close to extremality 2.

Following Ref. [16], we compute the Euclidean action as

IE = βH −
1

4
Ahor . (11)

The action must be defined relative to a reference background, which we take to be ther-
mal flat space containing a thin cosmic string of tension µ, and at the same temperature.
The Hamiltonian H contains two terms: one is proportional to the Hamiltonian con-
straint of General Relativity and vanishes for exact solutions. The other is a boundary
term which is easily computed. We find

βH = 2βM(1− 4µ) . (12)

The area term in Eq. (11) appears because surfaces of constant τ intersect at the horizons.
It contains the difference between the area of all the horizons with respect to the reference
background. In our case, two black hole horizons of the same area are present, while the
reference metric contains none. For each of these horizons we find

Abh =
∫ 2π

0
dφ
∫ z2+M

z2−M
dz
√
|gzzgφφ|ρ=0

= 2βM
∆z

∆z − 2M
. (13)

Then

IE = βM(1−
2
√
µ

1− 2
√
µ
− 8µ) (14)

and, for small µ, we will keep only the leading term IE ' βM .
By slicing in half the Euclidean geometry and gluing it to a constant Lorentzian time

section we obtain an instanton describing the quantum tunneling from the initial string
to a string split by a pair of black holes. The leading semiclassical value for the rate of
this process is given by exp(−IE).

We want to compare this result to the process where the string breaks by forming
particles without horizons at its ends. In this case we can not consider extremal black
holes: the modification of Eqs. (5,6) to include magnetic charge, the axisymmetric multi-
Reissner-Nordstrom metric, describes a pair of equally charged objects whose repulsion
tends to balance the gravitational attraction, doing so completely in the extremal case;

2It has been argued [15] that physical vortices can dress the horizons and relax the periodicity
requirements. This would allow to consider, e.g., an uncharged C-metric [8]. However, for simplicity
we will continue to keep the usual conditions for Euclidean time periodicity. Our conclusions will not
be affected in any essential way by this.
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conical singularities and therefore cosmic strings can be avoided in the latter case. It
is also clear that we can not use this form of the metric if magnetic charges are to be
conserved.

On the other hand, if we wanted the string to break into monopoles, it should be
topologically unstable. In any case, string stability will not be an issue for the arguments
in this section, which concern the properties of black holes and not those of strings. In
the next section we will discuss some aspects of the breaking of real cosmic strings,
but for the moment we will consider that the string can break into two neutral massive
particles without horizons, separated a distance much greater than their mass. The rate
for this process will be given by Eq. (11) without the area terms, i.e., ∼ exp(−2βM).

Therefore we find that the probability for string breaking by black holes is enhanced
by a factor exp(2Sbh), where Sbh = 4πM2 is the entropy of a single black hole. Instead,
the enhancement factor for the C-metric is only expSbh. This is a clear indication that
string breaking by accelerating black holes and by static ones are markedly different
processes. Actually, whereas the C-metric produces a black hole/anti-black hole pair, the
static breaking does not. The Euclidean section of the C-metric describes the circular
trajectory of a single black hole in Euclidean time. When one slices the Euclidean
geometry at τ = τ0 and at the corresponding antipodal value τ = τ0 + β/2, the spatial
section contains two oppositely charged black holes. In this case we expect the internal
state of one of the members of the pair to be correlated with the internal state of
the other, and therefore we expect to obtain just one factor expSbh. Mathematically,
this happens because the Euclidean C-metric contains only one black hole ‘bolt’ (the
‘acceleration bolt’ is dealt with by taking the adequate reference metric).

In contrast, the Euclidean multi-black hole metric contains N ‘bolts’, each of which
contributes a factor −Abh/4 to the action. In this case it seems more proper to regard
the formation of two black holes at the ends of the string not as the creation of a particle-
antiparticle pair, but rather as a process of thermal nucleation of black holes in a heat
bath, like the one studied in Ref. [17]. The Euclidean topology of the static two-black
hole instanton is different from the one required for pair creation (i.e., S2 × S2 − {pt}
with spatial sections S2 × S1 − {pt} for pair creation of non-extremal black holes in
a non-compact space). In the instanton for the static process we have two different
‘bolts’ corresponding to different horizons and therefore we do not expect any correlation
between the internal states of the black holes. This explains the enhancement factor in
this case. Each time a black hole is added to the configuration, the leading semiclassical
probability is multiplied by a factor ∼ exp(−βM + Sbh).

This interpretation is consistent with what we have said about the charge of black
holes in each process. The C-metric instanton requires the black holes to have opposite
charges. The static instanton would yield, if modified to include charge, two black
holes with equal charges of the same sign, clearly something not expected in particle-
antiparticle creation.

Differences between the two processes not only concern the correlations between the
internal states of the black holes. Actually, the action Eq. (14) is completely dominated
by the thermal nucleation factors βM . In contrast, the C-metric instanton is dominated

5



by the string action: the leading term in Eq. (1) can be obtained by computing the
Nambu-Goto action of the string that is ‘eaten’ when the string breaks apart (see Ref. [4]
for a similar calculation), and the number-of-states enhancement factor appears only at
next-to-leading order. Therefore, in the static process the string does not break because
of its tension, but rather because black holes nucleate on it. One could say that in the
accelerating process the black hole pair is created by the breaking of the string, whereas
in the static situation it is the formation of the black holes what causes the string to
break.

What happens to a string swallowed by a black hole? Amusingly, the string does
not actually break. For the C-metric process (involving non-extremal black holes) the
string passes through the wormhole connecting the black holes [7]. Apparently we may
run into trouble in the static process, since we have argued that there is not such
a wormhole. However, no real problem is posed by this. For a single Schwarzschild
solution there are two causally disconnected asymptotic regions, and the string can pass
through the Einstein-Rosen bridge from one region to the other [11]. In the two-black
hole configuration that we have been considering, there are two independent pairs of
asymptotic regions and we see that the string can disappear and reappear in them
without needing to connect the black holes.

Finally, we point out that the static configuration is unstable. The reason is that
black holes have negative specific heat, and therefore a small fluctuation would cause
them to grow or to evaporate. The balance between string tension and gravitational
attraction would then be destroyed, and the black holes would either approach and
merge or accelerate away. A small acceleration temperature would then appear, but it
is unlikely that it may compensate for the evaporation.

3 Black hole annihilation and intercommuting strings

We would like to address now processes of annihilation or merging of black holes created
in one of the two ways presented here. Black hole annihilation has been analyzed in the
context of pair creation processes in Ref. [2].

The same instanton that describes pair creation can, when reversed in time, describe
pair annihilation, yielding an equal rate for the process. It is clear that we can describe in
this way the annihilation of two black holes previously created as a particle-antiparticle
pair. However, as it has been argued in [2], black hole annihilation between members of
different pairs should also be possible, with a probability to happen of order exp(−Sbh).
This crossed annihilation of two pairs would contain just one black hole loop, instead
of the two loops involved in independent creation and annihilation of the two pairs. In
general, the action for these processes of creation/annihilation will contain one factor of
black hole entropy per each black hole loop.

It is interesting to find that when the black holes are created at the endpoints of
the string, annihilation between members of different pairs results in a process of in-
tersecting and intercommuting strings, analyzed in [14]. Conservation laws require that
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these processes of crossed creation and annihilation take place only between oppositely
charged black holes and with zero total magnetic flux. Using the instanton methods
that we have been describing, one can compute the probability that two intersecting
strings intercommute by this process. The previous argument implies that intersecting
and intercommuting should be suppressed relative to non-intercommuting by a factor
exp(−Sbh).

Instead, we could consider a process whereby the strings intercommute without an-
nihilating the black holes. In this case, black holes would merge into a bigger one, and
we would end with a pair of strings each threading a black hole. The probabilities for
intercommuting and non-intercommuting in this case would be of the same order. How-
ever, intercommuting by this process would still be very low because of the need to first
break the string by quantum tunnelling, and it is generally assumed that another kind
of mechanism is involved which makes the probability to be of the order of unity.

If we consider now black holes thermally nucleated at the string ends, reversed in-
stantons would correspond to thermal fluctuations in which black holes disappear, not
necessarily in pairs. In this case once the strings are broken their ends do not know to
which other end they were previously joined (as long as the string tensions and black
hole parameters are the same). We could still consider direct annihilation with a prob-
ability of order exp(−Sbh) but, again, the dominant process for string intercommuting
mediated by black holes would involve merging.

4 Strings and black holes at GUT scale

If a string is present in hot flat space, it is more probable for a black hole to nucleate
on it than away from it. The reason is that, for a given temperature, T = (8πM)−1, the
energy required to nucleate a black hole piercing a string is

E = Mint = M(1− 4µ) < M , (15)

(this can be calculated easily using the expression for the energy in Ref. [16]; see also
Refs. [12, 11]). The action in this case is I = βMint/2, and there is an enhancement over
nucleation in flat space given by δI = 2βMµ.

The temperature at which grand unified strings are expected to form is TGUT ∼
v ∼ 1016GeV, where v is the Higgs vacuum expectation value corresponding to string
formation. The tension of the strings would then be µ ∼ v2 ∼ 10−6MPl. At this
temperature, we expect to find nucleation of black holes of mass M ' 1/(8πTGUT) ∼
1/(8π

√
µ). However, for the thin string limit to hold we should let the temperature lower

down at least one order of magnitude. We will consider M
>
∼ µ−1/2. The mass of these

black holes would be M ∼ 103MPl, still large enough for the semiclassical approximation
to be reliable. In this case,

I '
1

2
βM

>∼ O(µ−1) ∼ 106 , (16)
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which yields a negligible nucleation rate. However, the relative ratio for nucleation at
a string compared to nucleation in flat space is ∼ exp(16πM2µ)

>
∼ O(1). Thus, when

strings are present, if black hole nucleation were to occur, it would mainly take place at
a string.

Let us now consider the process of string breaking. In Refs. [6, 7] the rate for the
process mediated by the C-metric instanton has been calculated using Eq. (1); an ap-
proximate estimation yields I > 1012, but this is only a lower limit, since one expects
that the dominant process should involve breaking by black holes smaller than the string
thickness. A more detailed examination in Ref. [8] shows that it may be possible to lower
the value down to I ∼ 107.

Now we want to find out whether the breaking induced by thermal black hole nu-
cleation can modify these rates. An issue to clarify previously is whether it is more
probable for the string to break than to ‘thin’ by nucleating black holes a distance larger
than (10), in which case a residual string tension µin would remain inbetween the black
holes.

It is not difficult to find that when γ0 is selected so as to match the required string
tensions, the following relation must hold

M

∆z
=

√
µ− µin

1− 4µin
. (17)

The Hamiltonian is still given by Eq. (12), but the black hole area is modified. The final
result for the action is

I = 2βM(1− 4µ)− βM
1 + 2M/∆z

1− 4µ

= βM(1− 2
√
µ +

µin
√
µ

+ . . .) , (18)

where the small µ limit has been taken in the last line. It is evident from here that the
action takes its minimum value for µin = 0.

Then, at finite temperatures and in the presence of cosmic strings, we could expect
to find black hole nucleation at the strings, in such a way that the strings break. The
value of the action governing this process at GUT temperatures is I

>
∼ 106, significantly

lower than the naive estimation based on Eq. (1), but still negligible. It is unlikely
that the arguments considered in Ref. [8] to improve Eq. (1), which involve the strong
magnetic fields present near the string core, would be of use in this situation, since, as
we have seen, it is essentially the thermal bath and not the string what causes black hole
nucleation. Therefore, even if the mechanism we have been considering could improve
over those previously studied, breaking by black holes is not likely to modify in any
essential way string cosmology.

8



Acknowledgements

Conversations with Ana Achúcarro, Iñigo Egusquiza and Juan L. Mañes are gratefully
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